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Some Combinatorial Results for Complex Reflection Groups

HIMMET CAN

In this paper, we prove that a simple system for a subsystem9 of the complex root system8
can always be chosen as a subset of the positive system8+ of 8. Furthermore, we show that a
set of distinguished coset representatives can be found for every reflection subgroup of the complex
reflection groups. The corresponding results for real crystallographic root systems and their reflection
groups (i.e., Weyl groups) are well known (see [9]).

c© 1998 Academic Press

1. INTRODUCTION

The object of this paper is to determine some results relating to the complex reflection
groups and their root systems which are more useful in an application to give a combinatorial
construction of representations of complex reflection groups. The first example of these
applications has been given in [3] which generalizes theλ[m]-Young tableau method given in
[2] for generalized symmetric groups. Since these results seem to be of independent interest,
they are gathered together in the present paper.

We first establish the basic notation and state some results which are required later. We refer
the reader to [4] and [8] for much of the undefined terminology. As a convention, throughout
this paper, we assume thatξ is a primitivem-th root of unity.

1.1 Let V be a complex vector space of dimensionn. A reflectionin V is a linear transfor-
mation ofV of finite order with exactly(n− 1) eigenvalues equal to 1. Areflection group G
in V is a finite group generated by reflections inV . DefineoG : V → N by oG(v) = |G〈v〉⊥ |
(v ∈ V). ThenoG(v) > 1 if and only ifv is a root ofG. In this case,oG(v) is the order of the
cyclic group generated by the reflections inG with rootv. If α is a root ofG then the number
oG(α) is called theorderof α (with respect toG).

1.2

(i) Let π = (B, θ) be a root graph, whereB = {a1, . . . , an}. Denote byW(π) the
reflection group generated by thesimple reflections sai ,θ(ai ) with ai ∈ B, i = 1, . . . , n.
If s ∈ W(π) then s = ri (1)ri (2) . . . ri (k) whereri ( j ) ∈ {ri (i = 1, . . . , n) | ri =
sai ,θ(ai ), ai ∈ B} for j = 1, . . . , k. The lengthof s, denoted byl (s) is the smallest
value ofk for any such expression fors. By convention,l (e) = 0 [8]. Letπ ′ = (B′, θ ′)
be another root graph. IfB ⊂ B′ and θ ′|B = θ , we say thatπ ′ is anextensionof
π , or thatπ is a sub-root graphof π ′. For any root graphπ = (B, θ) and for any
w ∈ W(π), letwπ = (Bw, θw), whereBw = wB andθw(w(a)) = θ(a) with a ∈ B,
then by Cohen [4]wπ is again a root graph which is equivalent toπ ; in this case,
W(wπ) = wW(π)w−1 = W(π) sincesw(a),θw(w(a)) = wsa,θ(a)w

−1 for all a ∈ B.
(ii) If π = (B, θ) is a root graph, then the pair8 = (R, f ) whereR = W(π)B and the

map f : R→ N\{1} is induced by the order functionoW(π) defines a pre-root system
with W(8) = W(π).

(iii) If 8 = (R, f ) is a pre-root system, then there is a root system6 = (S, g) with
W(6) = W(8), S⊂ R andg = f |S.
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(iv) If 8 = (R, f ) is a root system associated withW(8), whereW(8) is one of the
primitive reflection groups (in dimension greater than 2)W(J3(4)), W(L3), W(M3),
W(J3(5)), W(N4), EW(N4), W(L4), W(K5), W(K6), then we say that8 is aprimitive
root system.

1.3 Cohen [4] proves that all finite irreducible imprimitive reflection groups are of the form
G(m, p, n) for somem, p ∈ N with p|m andn ≥ 2. The reflection groupG(m, 1,n) has the
following presentation (see [5]):

G(m, 1,n) = 〈r1, . . . , rn−1, w1, . . . , wn | r 2
i = (ri r i+1)

3 = (ri r j )
2 = e, |i − j | ≥ 2, wm

i

= e, wiw j = w jwi , riwi = wi+1ri , riw j = w j r i , j 6= i, i + 1〉.
The reflection groupG(m, p, n), wherep|m, is the subgroup ofG(m, 1,n) . Any elementw ∈
G(m, 1,n) can be decomposed as follows (see [2]):w = τ ∏n

i=1w
si
i , whereτ ∈ W(An−1)

and 1≤ si ≤ m .
If 8(m, p, n) is a root system associated with an imprimitive reflection groupG(m, p, n),

then we say that8(m, p, n) is animprimitive root system.

1.4 Letπ be a root graph and8 be a root system.π is called asimple systemin8 if 8 is the
pre-root system (in the manner of 1.2(ii)) corresponding toπ with W(8) = W(π). If wπ =
(Bw, θw) is a root graph which is equivalent toπ , whereBw = wB andθw(w(a)) = θ(a)
with a ∈ B for anyw ∈ W(π), thenwπ gives rise to the same pre-root system8, and sowπ
is another simple system in8. Hence the number of simple systems in8 is equal to the order
of W(π). Let8 be a root system with simple systemπ , then a graph associated withπ is
called aCohen (Dynkin) diagramof 8. Clearly if8 is a root system then we may not have a
simple system for8. For example,G(m, p, n), for p 6= 1, m, is ann-dimensional reflection
group which needsn + 1 generating reflections, thus we do not have a root graph (see [4])
for G(m, p, n), and so we do not have a simple system for the root system associated with
G(m, p, n).

1.5 Let8 = (R, f ) be a root system withW(8). Let Sbe a subset ofR andg = f |S. The
pair9 = (S, g) is called asubsystemof8 if 9 is a root system. Areflection subgroup W(9)
of W(8) corresponding to the subsystem9 = (S, g) of 8 is the subgroup generated by the
sa,g(a) with a ∈ S. The subsystems91 = (S1, g1) and92 = (S2, g2) of 8 areconjugate
under W(8) if S2 = wS1 andg2(w(a)) = g1(a) for somew ∈ W(8) and for alla ∈ S1; in
this case,W(w91) = wW(91)w

−1 sincesw(a),g2(w(a)) = wsa,g1(a)w
−1 for all a ∈ S1.

Let π = (B, θ) (resp.8 = (R, f )) be a root graph (resp. system), by abuse of notation we
sometimes sayπ = B (resp.8 = R).

1.6 Let 8 be a root system with simple systemπ = (B, θ), whereB = {a1, . . . , an}.
Hughes [8] defines a ‘positive’ system (which he calls a primary root system) in8 by using
the following algorithm:

(i) Let B1 = B.

(ii) Let B2 = {ri (aj ) | i 6= j, i, j = 1, . . . , n, aj ∈ B1, ri (aj ) 6∈ B1}, whereri = sai ,θ(ai )

with ai ∈ B, i = 1, . . . , n.
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(iii) For k ≥ 3, put inductively

Bk = {ri (a) (i = 1, . . . , n) | a ∈ Bk−1, ri a 6= zb for all b ∈ Bl (l < k)},
where

z=
{±1, if π = π(m, p, n)(p = 1, m),
µ ∈ C (|µ| = 1), otherwise,

(in fact, Hughes [8] takes the scalarz asµ ∈ C with |µ| = 1, but this is not a suitable
choice for our later purposes whenπ = π(m, p, n) (p = 1, m), whereπ(m, p, n) is a
simple system in8(m, p, n)). Forπ = π(m, p, n) (p = 1, m), if we haveri a = −r j b
for somei, j, a, b, which may occur whenm is even, we choose eitherri a or r j b for
Bk. Forπ 6= π(m, p, n) (p = 1, m), if we haveri a = µr j b for somei, j, a, b and
|µ| = 1 then we choose eitherri a or r j b for Bk.

A ‘positive’ systemin 8 is defined to be the union of allBk (k ≥ 1) and will be denoted by
8+. (The construction of a ‘positive’ system8+ depends on the choice of a simple system
π in 8. Having fixedπ and the corresponding ‘positive’ system8+ in 8, replacingπ by
another simple systemwπ , w ∈ W(π), would just replace8+ by its conjugatew8+. The
proof of this fact will be given in Lemma 2.1.) By the construction of eachBk (k ≥ 1), it is
clear that8+ =⊎k≥1 Bk with Bi

⋂
Bj = ∅ wheneveri 6= j . The roots in8+ will be called

‘positive’ rootsand the remainder‘negative’ roots. The set of ‘negative’ roots in8 is called a
‘negative’ systemin 8 and will be denoted by8−.

The main results of this paper are summarized in the following theorems.

THEOREM 1. Let8 = (R, f ) be a root system with a fixed simple systemπ = (B, θ) and
8+ be the ‘positive’ system determined byπ . If 9 is a subsystem of8, then a simple system
J = (B′, θ ′) of9 can be chosen such that B′ ⊂ 8+.

The corresponding result forreal crystallographicroot systems8 (i.e.8 is one of the types
An (n ≥ 1), Bn (= Cn) (n ≥ 2), Dn (n ≥ 4), E6, E7, E8, F4, G2) has been proved
in Idowu and Morris [9]. As mentioned above, we shall show that a simple system for each
subsystem9 of 8 can always be found as a subset of8+. In fact, we shall show how such a
subsystem may be constructed.

Now, let8 be a root system with a fixed simple systemπ = (B, θ) and8+ be the ‘positive’
system determined byπ . Let 9 be a subsystem of8 with simple systemJ ⊂ 8+. Let
D9 = {w ∈ W(8) | w(α) ∈ 8+ for all α ∈ J}. We show thatD9 is a ‘distinguished’ set of
coset representatives forW(9) in W(8). The corresponding result for real crystallographic
root systems is well known (see, for example, [9]). We shall prove

THEOREM 2. If9 is a subsystem of8 then every element of W(8)can be uniquely expressed
in the form d9w9 where d9 ∈ D9 andw9 ∈ W(9).

2. PROOF OF THEOREM 1

We first show that differently chosen simple systems in8 determine different positive
systems.

LEMMA 2.1. Fix a simple systemπ = (B, θ) and the corresponding positive system8+ in
8. If wπ = (Bw, θw) is another simple system in8, where Bw = wB andθw(w(a)) = θ(a)
with a ∈ B for anyw ∈ W(π), thenw8+ is the positive system in8 determined bywπ .
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PROOF. Let 8+ = ⊎
k≥1 Bk, thenw8+ = ⊎

k≥1wBk with wBi
⋂
wBj = ∅ whenever

i 6= j . Now, let B′1 = Bw = wB. By applying the above algorithm, suppose that8+wπ =⊎
k≥1 B′k is the positive system determined bywπ . The proof will be completed if we show

that8+wπ = w8+. SinceB1 = B thenB′1 = wB1, and so it suffices to show thatB′k = wBk

for all k ≥ 2.
Let w(ai ) ∈ B′1, i = 1, . . . , n, thenr ′i = sw(ai ),θw(w(ai )) = wsai ,θ(ai )w

−1 = wriw
−1.

If β ∈ B′k (k ≥ 2), thenβ = r ′i1 . . . r ′i k(w(a)), wherew(a) ∈ B′1 andr ′i s ∈ {r ′1, . . . , r ′n}
for s = 1, . . . , k. Thusβ = wri1 . . . rikw

−1(w(a)) = wri1 . . . rik(a). But since
ri1 . . . rik(a) ∈ Bk (k ≥ 2), it follows thatB′k = wBk for all k ≥ 2. 2

The previous lemma says that any two positive systems in8 are conjugate underW(8).
(Thus, Lemma 2.1 shows that it makes no great difference which8+ we choose.)

Dynkin [6] gives an algorithm which gives all subsystems of a given root system relating to
a Weyl group. Inspired by extended Dynkin diagrams Hughes [8] introduced extended Cohen
diagrams in order to give an algorithm for obtaining subsystems of a given (real or complex)
root system. For typeπ(m, 1,n) = Bm

n , he gives the following graph

+
− 1√

2gm g g . . . g− 1√
2 gm ((n+ 1) points),

as an extended Cohen diagram, where the adjoined root is marked with the sign ‘+’, but this is
an error, since whenm is odd there does not exist a root in8(m, 1,n) to obtain such a graph.

To prove Theorem 1, to use a similar argument to that in the proof of the corresponding
theorem (Theorem 2.1 in [9] for the real case) is considerably more difficult as the idea of a
subsystem is not as well developed in the context of complex root systems. Because of this, we
now give an alternative way to obtain all subsystems of a given (real or complex) root system
by using a new and independent approach without reference to the extended Dynkin (Cohen)
diagram given in [6] and [8]. (This method is more useful from a computational point of view
and, as an example, in [1] we interpreted it as a computer program written using the symbolic
computation system Maple for the real crystallographic root systems. The outputs for these
root systems were also given in [1] to illustrate how this method works. The computer program
and outputs are available in [1] but are too long to be included in this paper.)

Theorem 1 comes as an immediate corollary of this method.
Let8 be a root system with a fixed simple systemπ = (B, θ). The subsystems of8 fall

into two categories. Let9 be a subsystem of8 with simple systemJ = (Bπ , θπ ), where
Bπ ⊂ B andθπ = θ |Bπ . Replacingπ by another simple systemwπ , w ∈ W(π), would just
replace9 by its conjugatew9 by 1.2(ii). All subsystems of8 obtainable in this way are called
parabolic subsystems. A subsystem of8 which is not the parabolic is called anon-parabolic
subsystem. For example, in the typeAn, all subsystems are parabolic but in all the other root
systems this is not the case.

The set of all parabolic subsystems of8 is obtained by removing one or more nodes in all
possible ways from the Cohen (Dynkin) diagram (and all equivalent diagrams) of8, that is,

LEMMA 2.2. If 8 = (R, f ) is a root system with a fixed simple systemπ = (B, θ) then the
pair J = (Bπ , θπ ), where Bπ ⊂ B andθπ = θ |Bπ , is a sub-root graph ofπ . Furthermore, J
yields a parabolic subsystem of8.

PROOF. The result follows immediately from 1.2(ii) and (iii). 2

If 9 = (S, g) is the parabolic subsystem of8 corresponding toJ, recall that its conjugates
w9, w ∈ W(π), are also parabolic subsystems of8.
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We shall now obtain non-parabolic subsystems of8 by means of the parabolic subsystems
of 8, that is,

LEMMA 2.3. Let8 = (R, f ) be a root system with a fixed simple systemπ = (B, θ) and
8+ be the ‘positive’ system determined byπ . Let9 = (S, g) be a parabolic subsystem of8
with simple system J= (Bπ , θπ ), where Bπ ⊂ B andθπ = θ |Bπ , and let9+ be the ‘positive’
system determined by J . Define8+9 = 8+\9+, and let B9 be a subset of8+9 such that

Bπ ∪ B9 is linearly independent overC. (1)

Then the pair J0 = (B0, θ0), where B0 = Bπ ∪ B9 andθ0 = f |B0, is a root graph which is
an extension of J . If B0 6⊂ wB for all w ∈ W(π), then J0 yields a non-parabolic subsystem
of8. Furthermore, if B0 ⊂ wB for somew ∈ W(π), then J0 yields a parabolic subsystem of
8.

PROOF. SinceB0 ⊂ R andθ0 = f |B0, J0 = (B0, θ0) is a vector graph. Denote byW(J0)

the group generated by all reflectionssa,θ0(a) with a ∈ B0, thenW(J0) is a subgroup ofW(8)

and soW(J0) is a finite reflection group. By Hypothesis (1),B0 is linearly independent over
C. ThusJ0 = (B0, θ0) is a root graph which is an extension ofJ.

Let S0 = W(J0)B0, and define a mapg0 : S0→ N\{1}by g0(a) = oW(J0)(a) for all a ∈ S0,
thenS0 ⊂ R andg0 = f |S0, so the pair90 = (S0, g0) is the pre-root system corresponding to
J0 with W(90) = W(J0) by 1.2(ii). By 1.2(iii), the pair90 = (S0, g0) is a root system and so
is a subsystem of8. If B0 6⊂ wB for all w ∈ W(π), then by definition of the non-parabolic
subsystem90 is a non-parabolic subsystem (note that its conjugatesw90, w ∈ W(π), are
also non-parabolic subsystems of8). On the other hand, ifB0 ⊂ wB for somew ∈ W(π),
then by definition of the parabolic subsystem90 is a parabolic subsystem. 2

As we run through all the parabolic subsystems, we generate all the non-parabolic subsys-
tems. Therefore, the above construction shows that all subsystems of8 can be obtained up to
conjugacy.

COROLLARY 2.4. If 8 is a real root system, then we can replace Hypothesis (1) of Lemma
2.3 by

(a, b) ≤ 0 for all pairs a 6= b in B0. (1′)

PROOF. We just need to show thatB0 is linearly independent overR under Hypothesis
(1′). Let B0 = {a1, . . . , ak} and suppose thatB0 is linearly dependent overR, i.e., let∑k

i=1 γi ai = 0 be a non-trivial relation.
Put I = {i | γi > 0} andK = {i | γi < 0}, and writeλi = γi , i ∈ I andµi = −γi , i ∈ K .

Then
a =

∑
i∈I

λi ai =
∑
j∈K

µ j aj 6= 0

with λi , µ j > 0 for all i ∈ I and j ∈ K . By Hypothesis (1′),

0< (a,a) =
∑
i, j

λiµ j (ai ,aj ) ≤ 0.

This forcesa = 0 which is a contradiction, and soB0 is linearly independent overR. 2

Let8 be a root system with a fixed simple systemπ and8+ be the ‘positive’ system of8
determined byπ . If 9 is a subsystem of8 obtained by means of the above construction, then
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a simple systemJ of9 can always be found such thatJ ⊂ 8+. We recall that this is also true
for its conjugatesw9, wherew ∈ W(π), because of the following reason. (Here, clearly, we
need only consider an elementw of W(π) \W(J), for if w ∈ W(J) thenw9 = 9 and we
are done.)

Now, letw9 be a subsystem of8 which is conjugate to9, wherew ∈ W(π) \ W(J).
Since, at any stage of the above construction, we have a subsystemϒ of8 such thatϒ = w9
with simple systemκ ⊂ 8+, one does not need to worry about the conjugates of a subsystem
of 8 obtained by means of the above construction.

We now give the following example to illustrate this fact.

EXAMPLE 2.5. Let8 be the root system of typeB3
3 with simple systemπ = {e1−e2, e2−

e3, e3}. By applying the above algorithm, the ‘positive’ system in8 with respect toπ is
obtained to be8+ = P ∪ P′ ∪ Q, whereP = {ei − ξ l ej | 1 ≤ i < j ≤ 3, 1 ≤ l ≤ 3},
P′ = −{ξ, ξ2}P andQ = {ek | 1≤ k ≤ 3}. (Here,ξ is a third root of unity.)

Now, considerJ = {e1 − e2, e3} as a sub-root graph ofπ . Then by Lemma 2.29 =
W(J)J = A1+ B3

1 = {e1− e2, e2− e1, e3, ξe3, ξ
2e3} is a parabolic subsystem of8 with

simple systemJ ⊂ 8+. Thus, the corresponding Cohen diagram for9 is

g w − 1√
2 g1 2 3

3

where the nodes corresponding toe1−e2, e2−e3 ande3 are denoted by 1, 2 and 3 respectively
and the node 2 has been deleted.

By considering Lemma 2.3, letJ0 = J ∪ {e2} wheree2 ∈ 8+9 , thenJ0 is a root graph which
is an extension ofJ. SinceJ0 6⊂ wπ for all w ∈ W(π), then90 = W(J0)J0 = B3

2 + B3
1 ={1, ξ, ξ2}{±(e1 − ξ l e2), e1, e2, e3 | 1 ≤ l ≤ 3} is a non-parabolic subsystem of8 with

simple systemJ0 ⊂ 8+. Then the Cohen diagram for90 is

g − 1√
2 g w − 1√

2 g3
1 2 3

3

We first consider the conjugates of9 = A1+B3
1. Letw1w

2
2 be an element ofW(π)\W(J),

thenw1w
2
29 = {ξe1− ξ2e2, ξ

2e2− ξe1, e3, ξe3, ξ
2e3} is a parabolic subsystem of8which

is conjugate to9. Now, consider a parabolic subsystem0 of 8 which has a simple system
L = {e3} ⊂ 8+. By following Lemma 2.3, if we putL0 = L ∪ {ξ2e2 − ξe1}, where
ξ2e2− ξe1 ∈ 8+0 , thenL0 is a root graph which is an extention ofL. SinceL0 ⊂ w1w

2
2r1π =

{ξ2e2−ξe1, ξe1−e3, e3} forw1w
2
2r1 ∈ W(π), then00 = W(L0)L0 is a parabolic subsystem

of 8 with simple systemL0 ⊂ 8+. But we have00 = w1w
2
29, so theL0 can be chosen as a

simple system ofw1w
2
29.

Secondly, we now consider the conjugates of90 = B3
2 + B3

1. Let r2w1w
2
2w

2
3 ∈ W(π) \

W(J0), thenr2w1w
2
2w

2
390 = {1, ξ, ξ2}{±(e1 − ξ l e3), e1, e2, e3 | 1 ≤ l ≤ 3} is a non-

parabolic subsystem of8. Now, putL∗0 = L ∪{e1−e3, e2}wheree1−e3, e2 ∈ 8+0 , thenL∗0
is a root graph which is an extention ofL by Lemma 2.3. SinceL∗0 6⊂ wπ for all w ∈ W(π),
then0∗0 = W(L∗0)L∗0 is a non-parabolic subsystem of8 with simple systemL∗0 ⊂ 8+. On
the other hand, since we have0∗0 = r2w1w

2
2w

2
390, then theL∗0 can be regarded as a simple

system ofr2w1w
2
2w

2
390.

Thus, as mentioned above, ifw9 is a subsystem of8 which is conjugate to9, then there
exists a subystemϒ of 8 obtained by means of the above construction such thatϒ = w9
with simple systemκ ⊂ 8+.
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Let8 = (R, f ) be a root system which has a simple system. Having fixed a simple system
π = (B, θ) and the corresponding ‘positive’ system8+ in 8, the above results enable us to
construct all subsystems of8 whose simple systemsJ = (B′, θ ′) are such thatB′ ⊂ 8+,
so the proof of Theorem 1 is complete. If8 is a real crystallographic root system, then we
recover the result of Idowu and Morris [9].

REMARK 2.6. We shall now make a few remarks on the groupsG(m, p, n) for p 6= 1, m.
The vector graph (see [10]) forG(m, p, n) is

1+ξ
2

g
g@�6 g . . . g gq− 1√

2 (n+ 1 points,n ≥ 2),

whereq = m
p . If we denote this vector graph byπ(m, p, n) (p 6= 1, m), thenW(π(m, p, n))

= G(m, p, n). But the elements ofπ(m, p, n) are linearly dependent overC, and so we do not
have a simple system for the root system8(m, p, n) (p 6= 1, m) associated withG(m, p, n).
If we delete a node fromπ(m, p, n) then we obtain one of the vector graphs of the form
π(m,m, n), π(q, 1,n), π(m,m, r )+π(q, 1,n− r ), which turn out to be root graphs. Let6
be a root system such that its simple system is one of the root graphs obtained as above. Thus
to obtain the subsystems of8(m, p, n) which have simple systems, we use Lemma 2.2 and
Lemma 2.3 on the root system6.

3. PROOF OF THEOREM 2

Let8(m, p, n) (p = 1, m) be an imprimitive root system with simple systemπ(m, p, n) =
(B, θ), where

B =
{ {αi = ei − ei+1 (i = 1, . . . , n− 1), αn = en}, if p = 1,
{βi = ei − ei+1 (i = 1, . . . , n− 1), βn = en−1− ξen}, if p = m.

By applying the above algorithm, a ‘positive’ system in8(m, p, n) is obtained to be

8+(m, p, n) =
{

P ∪ P′ ∪ Q, if p = 1,
P ∪ P′, if p = m,

where

P = {ei − ξ l ej | 1≤ i < j ≤ n, 1≤ l ≤ m},
Q = {ek | 1≤ k ≤ n}

and

P′ = −λP with λ =
{ {ξ l | 1≤ l ≤ m− 1}, if m is odd
{ξ l | 1≤ l ≤ m

2 − 1}, if m is even.

The ‘positive’ systems for the primitive root systems can be found in Hughes [7].
We are now in a position to give the proof of Theorem 2.

PROOF OF THEOREM 2. A simple systemJ of a subsystem9 of8 is chosen as in Section
2 such thatJ ⊂ 8+. We consider all the possible cases in terms of complex root systems8.
Clearly, we do not need to consider the real crystallographic root systems, for these have been
studied by Idowu and Morris [9].
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Now, consider an arbitrary cosetwW(9) wherew 6∈ W(9). Suppose that all the elements
w′ ∈ wW(9) are such thatw′ 6∈ D9 , that is,w′(α) ∈ 8− for someα ∈ J.

(i) If 9 is a subsystem of8 = 8(m, p, n) (p = 1, m) then we have two possibilities on the
α: the order ofα, oW(9)(α) is either 2 orm. If oW(9)(α) = 2 thenw′τα(α) = −w′(α) ∈ 8+
andw′τα ∈ wW(9). Sinceτ2

α = e andw′(α) ∈ 8− thenw′(α) = γ , whereγ ∈ 8−,
and sow′ = τγ w

′τα. Thus, l (w′τα) = l (τγ w′) < l (τγ w′τα) = l (w′), where the length
of an elementw ∈ W(8), l (w) is defined as in 1.2(i). (Here, it is clear thatτγ w′ 6= τα,
for if τγ w′ = τα thenw′ = e, contradicting the choice ofw′.) If oW(9)(α) = m then
α = ei (1 ≤ i ≤ n). Sincew′(α) ∈ 8− thenw′(α) = ξsej , where 1≤ s < m, 1 ≤ j ≤ n,
w′τm−s

α (α) ∈ 8+ andw′τm−s
α ∈ wW(9). This means thatws

i = τ s
α is involved inw′.

Furthermore, by 1.3, we can writew′ = τ
∏n

i=1w
si
i , whereτ ∈ W(An−1), si = s and

1≤ s1, . . . , si−1, si+1, . . . , sn ≤ m. Thus,

l (w′τm−s
α ) = l

(
τ

n∏
i=1

w
si
i w

m−s
i

)
< l

(
τ

n∏
i=1

w
si
i

)
= l (w′).

Repeating this argument will eventually show thate ∈ wW(9), which is obviously not the
case. Thus, there exists at least one element ofwW(9) in D9 . Denote this element byd9 .

This element is unique, for ifσ ∈ d9W(9) andσ ∈ D9 thenσ = d9ρ for someρ ∈ W(9)

andσ(α) ∈ 8+ for all α ∈ J. Suppose thatρ 6= e, then for someα ∈ J, ρ(α) ∈ 8−. If
oW(9)(α) = 2 then−ρ(α) ∈ 8+ and−(d9ρ)α ∈ 8+ and so(d9ρ)α ∈ 8−, that is,d9ρ 6∈
D9 , which is a contradiction, Thus,ρ = e andσ = d9 . If oW(9)(α) = m thenρ(α) = ξkej ,
where 1≤ k < m, 1 ≤ j ≤ n and thusξm−kρ(α) ∈ 8+ andξm−k(d9ρ)α ∈ 8+ and so
(d9ρ)α ∈ 8−, that is,d9ρ 6∈ D9 which is a contradiction. Thusρ = e andσ = d9 , and so
the proof is complete for the imprimitive root systems8(m, p, n) (p = 1, m) .

(ii) If 9 is a subsystem of the primitive root system8 then we have again two possibilities
on theα: the order ofα, oW(9)(α) is either 2 or 3 (see [4]). By using a similar argument as
above the result can be deduced for the primitive root systems.

Finally, let8 = 8(m, p, n), where p 6= 1, m. Referring to Remark 2.6, let6 be a root sys-
tem such that its simple system is one of the root graphsπ(m,m, n), π(q, 1,n), π(m,m, r )+
π(q, 1,n − r ). If 9 is a subsystem of6 with simple systemJ ⊂ 6+, then D9 = {w ∈
W(6) | w(α) ∈ 6+ for all α ∈ J} is a ‘distinguished’ set of coset representatives forW(9)

in W(6) since we have already dealt with these types in (i). This completes the proof of
Theorem 2. 2
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