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Influenza NS1 interacts with p53 and alters its binding to p53-responsive
genes, in a promoter-dependent manner
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The interplay between influenza A viruses (IAV) and p53 has only been reported in a limited number
of studies, mainly focusing on the antiviral role of p53. We investigated the impact of IAV infection
on p53 stability and transcriptional activity. Our results indicate that IAV-induced stabilization of
p53 only partially correlates with modulation of p53 transcriptional activity measured during infec-
tion. Moreover, we show that the viral non-structural protein 1 (NS1) is able to inhibit p53 transcrip-
tional activity, in a promoter-dependent manner. Based on these data, we propose that NS1 may
contribute to p53-mediated cell fate decision during IAV infection.

Structured summary of protein interactions:
p53 physically interacts with NS1 by anti bait coimmunoprecipitation (View interaction)
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1. Introduction

Influenza A viruses (IAV) belong to the Orthomyxoviridae family
of enveloped viruses that contain a segmented genome of single-
stranded negative sense RNA. This family comprises some of the
few RNA viruses that undergo replication and transcription within
the host cell nucleus using the nuclear machinery to support their
propagation [1]. Several studies have shown that IAV are able to
modulate and/or hijack several cellular networks and signalling
pathways [2,3]. The viral non-structural protein 1 (NS1) is involved
in multiple aspects of IAV/host interactions that together inhibit a
broad range of cellular functions, notably those related to the anti-
viral response, and also interferes with host mRNA export and
splicing [4]. Indeed, NS1 is believed to be important for regulation
of the host cell cycle and was recently shown to be involved in the
IAV-induced G0/G1 cell cycle arrest [5]. Moreover, NS1 seems to
play an ambivalent role in the regulation of apoptosis during IAV
infection, based on contradictory results from studies reporting
either its pro- or anti-apoptotic functions [6–8].

In response to stress, the transcription factor p53 rapidly accu-
mulates in the nucleus where it regulates gene expression to main-
tain genomic and cellular integrity [9]. The numerous genes
regulated by p53 are involved in several biological processes,
including cell cycle arrest (e.g. P21/CDKN1A), apoptosis (e.g. BAX)
or senescence [9]. The interplay between influenza viruses and
p53 has only been reported in a limited number of studies which
mainly highlight the role of p53 as an antiviral protein [10,11].
Moreover, we recently showed that p53 isoforms are involved in
the regulation of these p53-dependent antiviral properties [12].

Most of the studies dedicated to IAV and p53 have described an
increase in p53 protein levels during infection [11,13–15]. How-
ever, it is still not clear whether this accumulation is correlated
with the activation of p53 and consecutive transactivation of its
target genes. Wang et al. have suggested a possible interaction be-
tween NS1 and p53 leading to the inhibition of p53-mediated tran-
scriptional activity [16]. Interestingly, results from our previous
study based on transcriptional profiling of IAV-infected human
cells, showed a massive downregulation of the p53 pathway,
mostly its downstream part, in response to IAV infection [11].

Based on these observations, we further investigated the impact
of IAV infection on p53 stability and transcriptional activity in
human lung epithelial cells, with a systematic comparative focus
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on NS1. Our results indicate an IAV-induced increase in p53 stabil-
ity that is only partially correlated with the modulation of p53
transcriptional activity during IAV infection. Moreover, they show
that NS1 is able to inhibit p53 transcriptional activity by altering
its binding to target genes, in a promoter-dependent manner.

2. Materials and methods

2.1. Cell line, virus and infection

Human lung epithelial A549 cells (ATCC CCL-185, wild type
p53) and H1299 (ATCC CRL-5803, p53 null) were grown at 37 �C
in DMEM supplemented with 10% heat-inactivated foetal bovine
serum, 2 mM L-glutamine, 100 U/mL penicillin and 100 mg/mL
streptomycin sulphate. Influenza virus A/Moscow/10/99 (H3N2)
was propagated in MDCK cells (ATCC CCL-34) in EMEM supple-
mented with 2 mM L-glutamine, 100 U/mL penicillin, 100 mg/mL
streptomycin sulphate and 1 mg/mL trypsin. The virus was then ti-
trated to determine the 50% tissue culture infective dose (TCID50)
in MDCK cells, as previously described [17]. Sub-confluent A549
cells were then infected with the influenza virus at multiplicities
of infection (MOI) of 0.1 or 2 for 1 h in a minimal volume of DMEM
supplemented with 2 mM L-glutamine, 100 U/mL penicillin,
100 lg/mL streptomycin sulphate and 0.5 lg/mL trypsin (infection
medium) at 37 �C. Fresh infection medium was then added to the
cells before their incubation at 37 �C for different lengths of time.

2.2. Transfection and transactivation assay

Transient transfections were performed using TransIT-LT1 re-
agent (Mirus), according to the manufacturer’s instructions. For
the transactivation assay, A549 cells were transfected with 1 lg
firefly luciferase reporter vectors. Transfection efficiency was nor-
malised using 100 ng of Renilla luciferase plasmid. After 24 h, cells
were infected with influenza virus A/Moscow/10/99 at a MOI of 0.1
or 2 before being harvested at different time points for further
analysis. Alternatively, cells were co-transfected with a pCI-empty
or pCI-NS1-H3N2 expression plasmid and then harvested at 24 h
post-transfection. Luciferase activity was measured in whole cell
extracts using the Dual-Luciferase Reporter Assay System (Prome-
ga), according to the manufacturer’s instructions. Three indepen-
dent experiments were performed in triplicate. The different
reporter vectors used were pG13-luc, with a firefly luciferase gene
under the control of thirteen copies of the p53-binding consensus
sequence (50- CCAGGCAAGTCCAGGCAGG- 30 [18]), and p21-luc,
Mdm2-luc and Bax-luc, with the firefly luciferase gene under the
control of the complete (p21) or partial (Mdm2 and Bax) promoter
sequence of the corresponding genes [18–20].

2.3. p53 stability assay

For the p53 half-life experiments, previously transfected or in-
fected cells were treated with 50 lM cycloheximide (CHX). Total
protein lysates were harvested at different time-points during a
1 h period and were analysed by western blot [12] to determine
relative protein levels (RPL) by densitometry. RPLs between Mock
and NS1-transfected or infected cells were subjected to statistical
analysis (Student’s t test, statistical significance P < 0.05).

2.4. Chromatin immunoprecipitation assay (ChIP)

ChIP experiments were performed as previously described
[21,22]. Briefly, 2 � 106 H1299 cells were seeded onto a 15 cm
plate and co-transfected with 4 lg of pSV-p53 and 4 lg of
pCI-empty or pCI-NS1-H3N2 expression plasmid. After 24 h, cells
were fixed with 1% formaldehyde for 10 min at room temperature.
The cells were then scraped and washed with ice-cold PBS, and
then sonicated with salmon sperm DNA and protease inhibitors.
Immunoprecipitation was carried out using an anti-p53 monoclo-
nal antibody (DO-1) and Dynabeads (Invitrogen). Mouse IgGs were
used as negative controls. A mouse anti-NS1 monoclonal antibody
(Santa-Cruz ref sc-130568) was used to control a possible binding
of NS1 to promoter regions. The amount of total input DNA per
ChIP was adjusted to 25 lg. After immunoprecipitation and DNA
purification, samples were analysed by real-time quantitative
PCR (RT-qPCR), using specific primers and probes for p21 and
Bax. In parallel, the same quantitative analysis was performed on
Input DNA. The results were expressed as a percentage of total in-
put DNA. The specific primers and probes used for p21 and Bax
were the same as those described by Kaeser and Iggo [21].

3. Results

3.1. IAV infection increases p53 stability

To investigate the impact of influenza infection on p53 stability,
we mock-infected or infected A549 cells with influenza virus A/
Moscow/10/99 (H3N2) at an MOI of 2 or 0.1. At 4, 24 or 48 h post
infection (hpi), we then studied p53 stability by monitoring its lev-
els over a 1 h period post treatment with 50 lM cycloheximide
(CHX) (Fig. 1A). In all conditions tested, the mock-infected cells
displayed a loss of around 80% of the RPL of p53 in 1 h, thereby
reflecting a p53 half-life of approximately 15–20 min. In the
H3N2-infected cells, however, the RPL of p53 consistently re-
mained higher than in mock-infected cells, the difference of which
was particularly marked at the later time-points. For example, at
24 and 48 hpi, the 1 h stability of p53 was almost complete (p53
RPL of 0.91, P-value <0.001) or complete, respectively (Fig. 1A).
These first observations suggested a marked increase in p53 stabil-
ity during IAV infection, even from 4 hpi (Fig. 1A).

3.2. IAV NS1 expression contributes towards p53 stability

To further investigate the potential involvement of NS1 in this
virally-induced stabilization of p53, we transfected A549 cells with
either an empty plasmid (pCI-empty) or a plasmid expressing NS1
from the H3N2 strain (pCI-NS1-H3N2). We used the same method
as above to evaluate the endogenous p53 stability (Fig. 1B) and
western blot to assess the expression of NS1, p53 and its targets
(Fig. 1C) 36 h post-transfection. The CHX assay revealed a slight in-
crease in p53 stability in the NS1-expressing cells. For example, at
30 min, the RPL of p53 measured in the NS1-expressing cells was
more than two times higher than levels measured in pCI-empty
transfected cells (p53 RPL of 0.44 versus 0.21, P-value <0.05)
(Fig. 1B). Interestingly, stabilization of p53 in the NS1-expressing
cells did not reach the same level as that measured in the infected
cells, even with higher concentrations or longer kinetics of the
transient expression of NS1 (data not shown). Not only does this
finding support the contribution of NS1 towards the stabilization
of p53, it also suggests that NS1 may not be the only determinant.

3.3. NS1 interacts with p53

To investigate the potential interaction between p53 and NS1,
we transfected H1299 cells (p53 null) with an empty plasmid
(pCI-empty) or one expressing NS1 (pCI-NS1-H3N2), along with a
plasmid expressing p53 (pSV-p53). After 48 h, we analysed the cell
lysates using a co-immunoprecipitation assay (co-IP) with an anti-
p53 polyclonal antibody (CMI), or control IgG (Fig. 1D). Western
blot displayed a band corresponding to NS1 only with the



Fig. 1. NS1 is involved in the IAV-induced stabilization of p53. (A) Stability assay in IAV-infected cells. A549 cells were mock-infected or infected with influenza virus A/
Moscow/10/99 (H3N2) with an MOI of 2 or 0.1 and analysed at different time-points. Stability was assessed by monitoring relative protein levels (RPL) of p53 during a 1 h
time period, post treatment with 50 lM cycloheximide (CHX). Mean values ± standard deviation from three independent experiments are presented. ⁄ and ⁄⁄⁄ for P-value
<0.05 and 0.001, respectively. (B) Stability assay in presence of NS1. A549 cells were transfected with either an empty plasmid (pCI-empty) or a plasmid expressing NS1 from
the H3N2 strain (pCI-NS1-H3N2), and p53 stability was evaluated 36 h post-transfection. Mean values ± standard deviation from three independent experiments are
presented. ⁄P-value <0.05. (C) The efficient expression of NS1, p53 and its targets 36 h post-transfection were analysed by western blot. (D) Analysis of the interaction
between NS1 and p53 by co-immunoprecipitation (co-IP). H1299 cells were transfected with either an empty plasmid (pCI-empty) or a plasmid expressing NS1 (pCI-NS1-
H3N2), and a plasmid expressing p53 (pSV-p53). After 48 h, cells were scraped into ice-cold PBS and analysed using a co-immunoprecipitation assay with an anti-p53
polyclonal antibody (CMI), or a control IgG.
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anti-p53 antibody and not with the control IgG thus indicating that
the p53 could immunoprecipitate NS1 (Fig. 1D). These results sug-
gest that NS1 associates with p53 and are in line with previous
data obtained by Wang et al., based on the additional use of a
GFP-tag or Flag [16].

3.4. IAV infection modulates p53 transcriptional activity

To evaluate the impact of IAV infection on p53 transcriptional
activity we firstly transfected A549 cells with pG13-luc, which ex-
presses luciferase under the control of thirteen repeats of p53-bind-
ing consensus sequences. We then either mock-infected or infected
the A549 cells with A/Moscow/10/99 (H3N2) at a MOI of 2 or 0.1 be-
fore their analysis at 4 and 10 hpi or 24 and 48 hpi, respectively
(Fig. 2A). Western blot analysis allowed a confirmation at the pro-
tein level of the infection and the expression of p53 and products
of p53 target genes (Fig. 2B). The mock-infected cells displayed a
change in luciferase activity and thus p53 transcriptional activity,
most likely due to serum starvation of the cells in the infection
protocol. Consequently, to avoid any artefactual misinterpretation,
we only used luciferase activities obtained in infected samples
compared to their mock-infected counterparts, treated with the
same protocol and harvested at the same time points. At an MOI
of 2, we observed a significant increase in relative luciferase units
(RLU) in the infected cells compared to the mock-infected at 4 hpi
(P < 0.05), but no significant change at 10 hpi (Fig. 2A). Similarly,
at an MOI of 0.1 at 24 hpi, the RLU were two times higher in the in-
fected cells compared to the mock infected (P < 0.001). In contrast,
at 48 hpi luciferase activity had significantly decreased (P < 0.001)
(Fig. 2A). These first results suggest a biphasic modulation of p53
transcriptional activity during IAV infection, with an increase in
activity at the early time points, followed by a marked decrease
during the later stages. To confirm our results at the level of p53 tar-
get genes, we performed similar experiments, using p21, Bax or
Mdm2 luciferase reporter constructs (p21-luc, Bax-luc, Mdm2-luc,
Fig. 2A). At 48 hpi we observed a significant decrease in luciferase
activity with p21-luc and Mdm2-luc (P < 0.005 and P < 0.001,
respectively), similar to the levels measured with the pG13-luc con-
struct. The increase in p53 transcriptional activity observed at 4 hpi
was consistent with the significant increase in luciferase activity



Fig. 2. IAV infection modulates p53 transcriptional activity. (A) A549 cells were
transfected with pG13-luc, p21-luc, Bax-luc or Mdm2-luc reporter constructs and
then mock-infected or infected with A/Moscow/10/99 (H3N2) at an MOI of 2 or 0.1
for 4 and 10 h post infection (hpi) or 24 and 48 hpi, respectively. Relative luciferase
units (RLU) were monitored to evaluate the p53 transcriptional activity. (B)
Western blot analysis was used to monitor infection levels and the expression of
p53 and products of its target genes. Mean values ± standard deviation from three
independent experiments are presented. (ns, P > 0.05; ⁄P < 0.05; ⁄⁄P < 0.005; and
⁄⁄⁄P < 0.001).
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with Mdm2-luc (P < 0.005). In contrast, we measured a significant
decrease in luciferase activity for p21-luc and Bax-luc at the same
time point (P < 0.001 and P < 0.05, respectively) (Fig. 2A). In conclu-
sion, we observed distinct activity profiles for three p53 target
genes that differed from the global results obtained with pG13-
luc, suggesting that influenza virus regulates p53 transcriptional
activity in a promoter-dependent manner. A comparative similar
approach in a p53-deficient model was not technically possible,
due to the marked difference of viral replication kinetics in pres-
ence versus absence of p53 [10,12,11]. These results also highlight
that there is no correlation between p53 stability and its transcrip-
tional activity, as previously suggested by our transcriptomic study
of IAV-infected cells [11].

3.5. NS1 inhibits p53 transcriptional activity

To assess the role of NS1 in this IAV regulation of p53 transcrip-
tional activity, we transfected A549 cells with the pG13-luc repor-
ter plasmid together with increasing concentrations of the NS1
expressing plasmid (pCI-NS1-H3N2) (Fig. 3A, left panel). This titra-
tion showed that 1 lg of pCI-NS1-H3N2 was required to decrease
more than 80% of the RLU, and thus illustrated the considerable
impact of NS1 on endogenous p53 transcriptional activity. To fur-
ther explore the role of NS1, we then co-transfected 1 lg of pCI-
NS1-H3N2 and 1 lg of pG13-luc in H1299 cells (p53 null) together
with increasing concentrations of the p53 expressing plasmid
(pSV-p53) (Fig. 3A, right panel). As expected, in the absence of
NS1 (empty), we observed a significant increase in luciferase activ-
ity in correlation with increasing concentrations of p53, with RLU
fold changes of more than 60 and 192, for 0.1 and 1 lg of pSV-
p53, respectively. In the presence of NS1, this increase in luciferase
activity was reduced to RLU fold changes of 6.5 and 29, and corre-
sponded to 9 and 6 times lower RLU for 0.1 and 1 lg of pSV-p53,
respectively (Fig. 3A, right panel). These results confirm that NS1
inhibits p53 transcriptional activity and that this inhibition is in
turn titrated by increasing concentrations of p53.

Using a similar approach to that used in infected cells, we trans-
fected A549 cells with p21, Bax or Mdm2 luciferase reporter plas-
mid constructs together with 1 lg of empty or NS1-expressing
plasmid (Fig. 3B). we observed a highly significant decrease in
luciferase activity in the presence of NS1 for p21-luc and Mdm2-
luc (P < 0.001). In contrast, we did not observe any significant
change with Bax-luc (Fig. 3B).

In a second step, we performed a p53 titration in H1299 cells
transfected with each specific promoter reporter construct to-
gether with 1 lg of empty or NS1-expressing plasmid (Fig. 3C).
The inhibitory effect of NS1, as observed in all cases by reduced
luciferase activity compared to that obtained with p53 alone,
was titrated by increasing concentrations of p53. The titration pro-
file obtained with Mdm2-luc was similar to the results obtained
with the pG13-luc, with the same extent of NS1-dependent inhibi-
tion and similar titration by p53 (Fig. 3C). In contrast, the activity
profiles obtained for p21-luc and Bax-luc were distinct, notably
in terms of levels of the NS1-dependent inhibition. Interestingly,
p53 titration results obtained in H1299 revealed the NS1 inhibitory
effect on Bax-luc (Fig. 3C), whereas it was not visible in the context
of p53 wt cells (A549, Fig. 3B), suggesting that the p53/NS1 ratio
could be an important factor.

Altogether, our results confirm that IAV NS1 expression strongly
inhibits p53 transcriptional activity, in a similar way to that ob-
served in IAV infected cells (Fig. 2) Moreover, the use of specific
promoter reporter plasmids and the results from the titration
assays suggest that the impact of NS1 differs according to the
promoter studied.

3.6. NS1 partially blocks the binding of p53 to its target genes, in a
promoter-dependent manner

To further investigate the impact of NS1 on p53 DNA-binding
and uncover possible differences between promoters, we chose
to focus our analysis on p21 and Bax promoters, which presented
distinct activity profiles in the previous experiments (Figs. 2 and
3). ChIPs were performed in H1299 cells, transfected with



Fig. 3. NS1 inhibits p53 transcriptional activity. (A) A549 cells were transfected with the pG13-luc reporter plasmid together with increasing concentrations of NS1
expressing plasmid, (pCI-NS1-H3N2, left panel). H1299 cells (p53 null) were then co-transfected with 1 lg of pCI-empty or pCI-NS1-H3N2 and increasing concentrations of
p53 expressing plasmid (pSV-p53, right panel). (B) A549 cells were transfected with p21, Bax or Mdm2 luciferase reporter plasmid constructs together with 1 lg of pCI-empty
plasmid or pCI-NS1-H3N2 C. H1299 cells were co-transfected with 1 lg of pCI-NS1-H3N2 and 1 lg of each specific promoter reporter construct together with increasing
concentrations of pSV-p53. In A. B. and C. Cells were harvested at 36 hpi and RLU were measured. Mean values ± standard deviation from three independent experiments are
presented. (ns, P > 0.05 and ⁄⁄⁄,<0.001).
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pSV-p53 together with either an empty plasmid (pCI-empty) or the
NS1-expressing plasmid (pCI-NS1-H3N2), with an antibody against
p53 (DO-1) and specific primers and probes for p21 and Bax [21].
The plotted figures were based on the quantitative results by
real-time quantitative PCR, and the results were expressed as a
percentage of total Input DNA. As expected, p21 and Bax promoters
were specifically immunoprecipitated by the DO-1 antibody (IP
p53, Fig. 4). The percentage of total input DNA obtained for p21
and Bax was in accordance with previously published results
[21]. As a control, we also used an anti-NS1 antibody, with no



Fig. 4. NS1 partially blocks the binding of p53 at the level of p53-responsive genes, in a promoter-dependent manner. H1299 cells were co-transfected with 4 lg of pSV-p53
and 4 lg of pCI-empty or pCI-NS1-H3N2 expression plasmid. After 24 h, cells were fixed with 1% formaldehyde for 10 min at room temperature. The cells were scraped and
washed with ice-cold PBS, and then sonicated with salmon sperm DNA and protease inhibitors. Immunoprecipitation was carried out using Dynabeads (Invitrogen) and
different antibodies produced in mouse: an anti-p53 monoclonal antibody (DO-1), or an anti-NS1 monoclonal antibody (Santa-Cruz ref sc-130568). Mouse IgGs were used as
negative controls. The amount of total input DNA per chip was adjusted to 25 lg. After immunoprecipitation and DNA purification, samples were analysed by RT-qPCR with
specific primers and probes targeting p21 and Bax. Mean values ± standard deviation from two independent experiments are presented. (ns, P > 0.05; ⁄⁄P < 0.005).
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measurable binding compared to background (IP NS1 versus IgG
ctrl, Fig. 4). When comparing the two experimental conditions,
we observed that the level of binding was lower in the presence
of NS1, with a significant difference with the Bax promoter
(Fig. 4, P < 0.005 for ChIP-Bax). This result indicated that NS1 can
decrease the binding of p53 to its target genes, which is in agree-
ment with the results obtained in the transcriptional activity as-
says both in transfection and infection contexts.

4. Discussion

In this study, we have shown that IAV induces an increase in the
stabilization of p53 throughout the course of infection in vitro
(Fig. 1). These results are in agreement with previous studies
reporting increased p53 protein levels in IAV-infected cells, nota-
bly during the later stages of infection [11,13,15]. Interestingly,
Wang et al. have recently shown that this stabilization was associ-
ated with a compromised Mdm2-mediated ubiquitination of p53
[23]. At 24hpi, p53 protein levels were clearly higher in IAV-in-
fected cells than in non-infected cells (Fig. 2B). In contrast, no
marked difference of p53 protein abundance was observed at
48hpi (Fig. 2B), maybe due other levels of regulation of p53, not as-
sessed in stability assay (Fig. 1). Our results suggest that NS1 is also
involved in this stabilization but to a limited extent. Our co-IP
experiments indicated that NS1 interacts with p53, in a transient
expression context, confirming previously published reports of an
interaction displayed between GFP-p53 and Flag-NS1 [16]. We
hypothesise that both compromised ubiquitination of p53 and
NS1 interaction may contribute towards IAV-induced stabilization
of p53.

In one of the first studies dedicated to p53 and influenza
viruses, Turpin et al. showed that p53 activity was increased dur-
ing influenza infection [13]. On the other hand, NS1 expression
has been shown to inhibit p53-mediated transcriptional activity
[16]. Our results indicate that p53 transcriptional activity is mod-
ulated during IAV infection, with a significant increase at 24 hpi,
which would correspond to the experimental conditions used
by Turpin et al. [13]. In contrast, this activity is significantly
inhibited during the later stages of infection, in correlation with
elevated NS1 protein levels (Fig. 2). These results corroborate
those we obtained in our transcriptional profiling study, indicat-
ing a strong down-regulation of p53 target genes during the later
stages of IAV infection [11]. We demonstrated and validated that
NS1 strongly inhibits p53 transcriptional activity in a promoter
dependent manner, and that this phenomenon is titrated by
p53 (Fig. 3). These results suggest that the ratio of p53/NS1 is
an important factor and that NS1 may inhibit p53, via a direct
interaction. Another viral factor, yet to be determined, seems to
counterbalance the NS1-mediated inhibitory effect on p53 tran-
scriptional activity, as suggested by our results obtained in the in-
fected cells.

Our comparative evaluation of p53-mediated transcriptional
activity, using specific reporter plasmids for three p53 target genes,
has revealed marked differences between promoters, in both infec-
tion and transient expression contexts (Figs. 2 and 3). This observa-
tion refines our initial results obtained with an artificial promoter
composed of repeated p53-binding consensus sequences. How-
ever, we cannot exclude the possible role of other transcriptional
factors, with response elements in the complete (p21) or partial
(Mdm2 and Bax) promoters used in luciferase assays. ChIP experi-
ments demonstrated that NS1 inhibits the binding of p53 to differ-
ent extents for p21 and Bax (Fig. 4). Combined with our results
obtained with the transactivation assays in infected or NS1-trans-
fected cells, this observation confirms that NS1 can inhibit p53
transcriptional activity, in a promoter-dependent manner. These
results may contribute to better explain apparently contradictory
reports in the literature of the relative role of NS1 in apoptosis
[6,7,24] or recent results concerning NS1-induced cell cycle arrest
[5].

In conclusion, we have shown that IAV infection modulates p53
transcriptional activity and that NS1 contributes to the inhibitory
part of this modulation, possibly via its direct interaction with
p53. NS1 alters the binding of p53 to the promoter of its target
genes and may contribute to ‘‘drive’’ the p53-mediated cell fate
decision, in both a stage-of-infection and relative concentration –
dependent manner. In this context, further studies are required
to understand the role of NS1 in apoptosis and cell cycle regulation.
Moreover, the impact of NS1 on other p53 biological functions
needs to also be explored.
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