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a b s t r a c t

Exposure of cells to ionizing radiation (IR) generates reactive oxygen species (ROS). This results in in-
creased oxidative stress and DNA double strand breaks (DSBs) which are the two underlying mechanisms
by which IR causes cell/tissue injury. Cells that are deficient or impaired in the cellular antioxidant re-
sponse are susceptible to IR-induced apoptosis. The transcription factor CCAAT enhancer binding protein
delta (Cebpd, C/EBPδ) has been implicated in the regulation of oxidative stress, DNA damage response,
genomic stability and inflammation. We previously reported that Cebpd-deficient mice are sensitive to IR
and display intestinal and hematopoietic injury, however the underlying mechanism is not known. In
this study, we investigated whether an impaired ability to detoxify IR-induced ROS was the underlying
cause of the increased radiosensitivity of Cebpd-deficient cells.

We found that Cebpd-knockout (KO) mouse embryonic fibroblasts (MEFs) expressed elevated levels of ROS,
both at basal levels and after exposure to gamma radiation which correlated with increased apoptosis, and
decreased clonogenic survival. Pre-treatment of wild type (WT) and KO MEFs with polyethylene glycol-con-
jugated Cu-Zn superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) combination prior to irradiation
showed a partial rescue of clonogenic survival, thus demonstrating a role for increased intracellular oxidants in
promoting IR-induced cell death. Analysis of mitochondrial bioenergetics revealed that irradiated KO MEFs
showed significant reductions in basal, adenosine triphosphate (ATP)-linked, maximal respiration and reserved
respiratory capacity and decrease in intracellular ATP levels compared to WT MEFs indicating they display
mitochondrial dysfunction. KO MEFs expressed significantly lower levels of the cellular antioxidant glutathione
(GSH) and its precursor- cysteine as well as methionine. In addition to its antioxidant function, GSH plays an
important role in detoxification of lipid peroxidation products such as 4-hydroxynonenal (4-HNE). The reduced
GSH levels observed in KO MEFs correlated with elevated levels of 4-HNE protein adducts in irradiated KO
MEFs compared to respective WT MEFs.

We further showed that pre-treatment with the GSH precursor, N-acetyl L-cysteine (NAC) prior to irra-
diation showed a significant reduction of IR-induced cell death and increases in GSH levels, which contributed
to the overall increase in clonogenic survival of KO MEFs. In contrast, pre-treatment with the GSH synthesis
inhibitor- buthionine sulfoximine (BSO) further reduced the clonogenic survival of irradiated KO MEFs.

This study demonstrates a novel role for C/EBPδ in protection from basal as well as IR-induced oxidative
stress and mitochondrial dysfunction thus promoting post-radiation survival.
& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Exposure to IR during cancer radiotherapy inevitably results in
normal tissue toxicity to the rapidly renewing cell systems such as
the hematopoietic tissues and the gastrointestinal tract mucosa
[1–3]. The acute side-effects arise due to radiation-induced apop-
totic and clonogenic cell death, and functional changes in various
cellular compartments and microenvironments [1]. Although,
several studies using cell lines and murine knockout models have
demonstrated the role of genetics and genomics in toxic side-ef-
fects of radiotherapy, the molecular mechanism(s) of IR-induced
injury in normal tissues remains unclear [2,3]. Knowledge of the
underlying mechanisms is therefore critical for developing novel
interventions to mitigate radiation-induced injury to the normal
tissues [3].

IR exposure induces free radical generation and increased oxi-
dative stress, which result in DSBs that are the primary causes of
injury to cells and tissues [4–7]. It is known that exposure to IR
induces a plethora of responses by cells to counteract oxidative
stress, DNA damage response and inflammation by inducing the
expression of antioxidants, DNA damage repair proteins and in-
flammatory and anti-inflammatory cytokines [7–11]. Cells have
developed an antioxidant defense system to control the ROS
[8,12,13]. If cells are deficient in the production of antioxidants to
scavenge IR-induced oxidative stress and/or are impaired in the
repair of IR-induced DSBs, they could be more sensitive to IR-in-
duced apoptosis or become genetically unstable if they survive the
initial IR insult [10,14]. Additionally, IR also affects the mitochon-
drial metabolism, which can lead to elevated levels of O2

�� and
thus perpetuate the damaging effects of IR in cells and tissues [14–
17]. Most cellular ROS is generated in mitochondria, thus they play
a key role in ROS-mediated apoptosis [15]. In the cells, ROS are
mainly formed due to electron leakage naturally occurring in
complex I and III of the mitochondrial electron transport chain
[16]. Excessive and acute ROS accumulation triggers apoptotic
pathway leading to cell death [17,18]. ROS, including superoxide
(O2

��) and hydrogen peroxide (H2O2) can cause oxidative damage
via oxidation of DNA, proteins and lipids that may result in mi-
tochondrial dysfunction [6,19]. The increase in ROS production
leads to decreased ATP production, increased levels of protein
carbonyls, and increased nitration of cellular proteins [20–22]. A
balance between the production of ROS and the defensive capacity
to produce antioxidants determines the ability of the cell to
overcome oxidative damage [10,23].

The most abundant endogenous intracellular antioxidant pre-
sent in the cells is the tripeptide L-γ-glutamyl-L-cysteinyl-glycine,
GSH [24–27]. One of the major roles of GSH is to maintain the
redox state that is critical for cellular activities [28,29]. Deficiency
of GSH results in an increased pro-oxidizing shift and elevated
oxidative stress [30,31]. The cellular biochemical machinery re-
sponsible for the metabolic production of free radicals and other
reactive oxygen and nitrogen species derived from superoxide and
nitric oxide could remain perturbed for minutes, hours, days and
even years after exposure to IR [7].

The transcription factor C/EBPδ is a member of the basic leu-
cine-zipper family of transcription factors that is implicated in the
regulation of diverse biological processes in a cell-specific context
such as acute phase response, proliferation, differentiation, growth
arrest, apoptosis, hyperoxia, genomic stability, tumor suppression
and self-renewal of stem cells [32–38]. The antioxidant enzyme
SOD1 is a transcriptional target that is upregulated by C/EBPδ in
cisplatin-treated human urothelioma cells and represents yet an-
other important function for this protein [39].

Exposure to IR leads to increased oxidative stress, DNA-damage
and inflammation, and although C/EBPδ is implicated in the
regulation of these processes, how it regulates these processes in
the context of IR is not clear [32,36,39–42]. We have recently re-
ported that C/EBPδ-deficiency promotes increased radiation leth-
ality primarily due to injury to the gastrointestinal and
hematopoietic tissues, however the underlying mechanism has
not been elucidated [43].

Here we investigated the role of C/EBPδ in modulating IR-in-
duced oxidative stress and mitochondrial dysfunction to prevent
cells from undergoing IR-induced cell death.

We report that C/EBPδ-deficiency is associated with increased
oxidative stress and oxidative damage and results in an increased
sensitivity of MEFs to IR-induced cell death. The increased oxida-
tive stress and mitochondrial dysfunction and increased sensitivity
of C/EBPδ-deficient cells is due to the reduced levels of the cellular
antioxidant GSH and its precursor amino acid- cysteine as well as
methionine.
2. Materials and methods

2.1. Ethics statement

This study was carried out in strict accordance with the re-
commendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health and approved by the
Institutional Animal Care and Use Committee of the University of
Arkansas for Medical Sciences (animal use protocol number: 3511).

2.1.1. Generation of primary mouse embryo fibroblasts (MEFs)
Primary MEFs were isolated from 13.5 day old Cebpd-KO and

WT embryos as described previously [36] and grown in T-75 flasks
in DMEM supplemented with 10% FBS, 2 mM glutamine, 0.5%
penicillin-streptomycin, 50 μM β-mercaptoethanol, 1 mM sodium
pyruvate. The cells were cultured at 37 °C in a humidified in-
cubator with 5% CO2 and 95% air. All studies were carried out on 2–
3 pairs of early passage primary WT and KO MEFS (passage 3–7) in
the presence of serum containing medium.

2.2. Reagents

NAC (Cat# A7250, St. Louis, MO) was prepared as 1 mM stock
solutions with sodium bicarbonate and pH of 7.0. To prevent oxi-
dation, NAC stocks were prepared fresh just before addition to the
culture. BSO (cat# sc-200824, Santacruz Biotechnology, Dallas, TX),
was dissolved in phosphate buffered saline (PBS) and prepared as
a 10 mM stock solution.

2.3. Irradiation of MEFs

Irradiation (gamma-rays) of MEFs was performed in a Shep-
herd Mark I model 25 137Cs irradiator (J. L. Shepherd & Associates,
San Fernando, CA). Dose uniformity was assessed by an in-
dependent company (Ashland Specialty Ingredients, Wilmington,
DE) with radiographic film and alanine tablets. Alanine tablets
were analyzed by the National Institute of Standards and Tech-
nology (Gaithersburg, MD) and demonstrated a dose rate of
1.14 Gy/min at 21 cm from the source. For each experiment the
dose rate was corrected for decay.

2.3.1. Flow cytometry
2.3.1.1. Measurement of apoptosis

IR-induced cell death was measured with Annexin V FITC
apoptosis detection kit (Cat # 556420, BD Biosciences, San Jose,
CA, USA) and cleaved-caspase-3 expression. WT and KO MEFs
(2�105 cells) were seeded per 60 mm dish in triplicates and 18 h
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later exposed to 10 Gytt, and harvested at 0, 6 h and 24 h post-
irradiation. The cells were detached with Accutase (Cat# AT104,
Innovative Cell Technologies, Inc, San Diego, CA). Another set of
dishes were treated with NAC (5 mM) for 2 h prior to IR exposure
at 10 Gy. At 3 h post-irradiation, NAC containing media was re-
placed with a NAC-free medium and cells were harvested at 0 and
24 h post-irradiation and processed similarly for Annexin V
staining as described above.

Staining of cleaved caspase-3 was used to further confirm late-
apoptosis. 2�105 cells were seeded in 60 mm dishes and exposed
to 10 Gy and harvested at 0 and 24 h post-irradiation. The cells
were detached, washed with chilled PBS, stained with antibody
specific for cleaved caspase-3 (Cat# 9644, Cell Signaling Technol-
ogy, Danvers, MA, USA) and processed as per the manufacturer's
instructions.

Cells stained for Annexin V as well as cleaved caspase-3 were
analyzed immediately on a BD FACS Calibur 488 nm excitation
wavelength with 530/30 nm (FL1) emission filter. For each analy-
sis, 20,000 cells were assayed for fluorescence and the data were
analyzed using FlowJo (FlowJo, LLC, Ashland, OR, USA) and results
are expressed as mean fluorescence intensity of 20,000 cells 7
standard error mean (S.E.M.).

2.3.1.2. Measurement of ROS
WT and KO MEFs were seeded at a density of 2 x 105 cells per

60 mm dish in triplicates and 18–20 h later exposed to 2 Gy . The
cells were harvested 24 h later for measurement of ROS levels. At
24 h post-irradiation, cells were detached with 0.05% trypsin (Cat#
25300054, Thermo Fisher Scientific, Grand Island, NY), followed by
a wash with PBS and were stained with 2 μM MitoSOX Red (Cat#
M36008, Life technologies, Grand Island, NY, USA) at 37 °C for
15 min. Unirradiated WT and KO MEFs were processed similarly as
irradiated groups. The stained cells were washed and suspended in
200 ml PBS and analyzed immediately on a BD FACS Calibur using
405 nm excitation wavelength with 585/642 nm (FL2) emission
filter to detect ROS signal [44,45]. Results are expressed as mean
fluorescence intensity of 20,000 cells 7 S.E.M.

2.3.1.3. Clonogenic survival assay-dose curve
Clonogenic survival of MEFs was performed to compare the

ability of cells to recover from radiation exposure and measure the
differences in survival between WT and KO MEFs. Chinese hamster
ovary (CHO) cells exposed to 35 Gy, were seeded at a density of
3�104 cells per well in six-well plates to serve as a feeder layer for
the primary MEFs as has been described previously [46]. The ir-
radiated CHO cells secrete growth factors into the medium which
aid the growth of the primary MEFs.

WT and KO MEFs (2�105) cells were seeded in 60 mm pet-
ridishes, and 18 h later were exposed to irradiation doses of 0, 2,
4 and 8 Gy. The cells were re-seeded on the CHO feeder layers at
low densities (50–300 cells/well) 3 h post-irradiation. Unirradiated
WT and KO MEFs were treated similarly and seeded at various cell
densities to measure the plating efficiency and used to calculate
the percent survival as described previously [47]. By day 10–14
post-seeding, the CHO cells undergo cell death by mitotic cata-
strophe, while the MEFs form colonies. A negative control dish
with no MEFs is included as a control and shows no colonies. At
2 weeks post-seeding, the colonies were fixed with chilled me-
thanol (100%) for 30 min, followed by staining with Giemsa stain
and were counted with a stereomicroscope. Colonies were defined
as containing at least 50 cells. The plating efficiency and surviving
fractions were calculated as described previously [47].

2.3.1.4. Clonogenic assay with antioxidant enzymes
PEG-SOD and PEG-CAT
(Sigma, St. Louis) were dissolved in sterile PBS at 5000 U per ml
or 50,000 U per ml for stock solutions respectively. WT and KO
MEFs were treated at a concentration of 50 U per ml for 2 h prior
to irradiation at 2 Gy with PEG-SOD/PEG-CAT or in combination.
PEG alone was used as a control. The cells were seeded on the
irradiated CHO feeder layer and processed similarly as described
above.

2.3.1.5. Clonogenic assay with NAC and BSO
For determining the effects of GSH levels on clonogenic survival,

MEFs were treated with 5 mM NAC for 2 h prior to irradiation
(2 Gy) and removed 3 h post-irradiation, when cells were re-see-
ded for the clonogenic assay in NAC-free medium. An aliquot of
the treated cells was frozen for GSH measurements.

We also examined whether inhibition of GSH biosynthesis
would further increase sensitivity of KO MEFs to IR. WT and KO
MEFs (2 x 105) were seeded in 60mm dishes and 18h later treated
with 10 μM BSO for 24 h prior to irradiation at 2 Gy. Cells were re-
seeded 3 h post-irradiation in BSO-free medium on the irradiated
CHO feeder layer and processed similarly as described above.

2.3.1.6. Immunoblotting
WT and KO MEFs (2�105) were seeded in 60 mm dishes and

18 h later exposed to 2 Gy. The cells were harvested and whole cell
extracts were prepared at 0, 2 h, 4 h and 24 h post-irradiation.
50 μg protein was run on SDS-PAGE gels and immunoblotted. The
blot was blocked with 5% milk in 10 mM Tris �HCl at pH7.5,
150mMNaCl and 0.05%Tween20 (1X TBST) probed with rabbit
polyclonal serum against 4-HNE (1:10,000) in 1 X TBST. The blots
were developed using peroxidase-conjugated anti-rabbit -sec-
ondary IgGs and visualized by ECL. Ponceau S staining of the blot
served as a loading control for each sample per lane.

2.3.1.7. Mitochondrial cellular bioenergetics
We used the Seahorse Extracellular Flux 96 Analyzer (Agilent

Biotechnologies, Santa Clara, CA, USA) to measure the oxygen
consumption rate (OCR), an indicator of mitochondrial respiration
in real-time in WT and KO MEFs. Briefly, 2�105 MEFs were seeded
in 60 mm dishes and 18 h later exposed to 2 Gy. At 6 h post-irra-
diation, cells were trypsinized and 104 cells/well were seeded in
Seahorse XF96 cell culture microplates and allowed to grow
overnight at 37 °C. The cells were washed and subsequently
changed to unbuffered seahorse assay medium at 24 h post-irra-
diation and the oxygen consumption rate (OCR) was measured
using a 2 min mix, 4 min read cycling protocol as described pre-
viously [48]. The basal respiration, ATP-linked respiration, max-
imal respiration, reserved respiratory capacity, non-mitochondrial
respiration and proton leak was calculated [49].

2.3.1.8. Measurement of ATP levels
WT and KO MEFs (8�105) were seeded in 100 mm dishes and

18 h later exposed to 2 Gy and cells were collected 24 h post-ir-
radiation and flash frozen. Adenosine 5′-triphosphate (ATP) levels
were measured using the ATP Bioluminescent Assay kit ( Cat#
FLAA, Sigma-Aldrich, St. Louis, MO) as per the manufacturer's in-
structions [50]. Standard curve for ATP was generated and total
ATP levels were extrapolated and expressed as nmoles per cell.

2.3.1.9. Measurement of NADH, NAD, NADP, NADPH, GSH, GSSG,
Methionine and Cysteine

WT and KO MEFs were seeded at a density of 8 x 105 cells per
100 mm dishes in triplicates and 18 h later were exposed to 2 Gy.
The cell were harvested 24 h post-irradiation, snap-frozen in li-
quid nitrogen and stored at �80 °C until HPLC analysis. Nicoti-
namide adenine dinucleotide (NADþ) and dihydronicotinamide
adenine dinucleotide (NADH); nicotinamide adenine dinucleotide
(NADPþ) and dihydronicotinamide adenine dinucleotide (NADPH)
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were measured as described [51] utilizing a Dionex UltiMate 3000
HPLC-UV system (Dionex Inc., Sunnyvale, CA). C18 Gemini column
(5 mm, 3�150 mm; Phenomenex, Torrance, CA) at 254 nm wave-
length. Concentrations were calculated from peak areas of stan-
dard calibration curves using HPLC software. Results are expressed
per mg protein using BCA Protein Assay Kit (Pierce Inc., Rockford,
IL, USA).

For quantification of intracellular free GSH, glutathione dis-
ulfide (GSSG), methionine and cysteine, thawed cells were lysed
by sonication in 112.5 ml ice-cold PBS followed by the addition of
37.5 ml ice-cold 10% meta-phosphoric acid. This mixture was in-
cubated for 30 min on ice followed by centrifuging for 15 min at
18,000� g at 4 °C. The metabolites were eluted using a Shimadzu
Solvent Delivery System (ESA model 580; ESA Inc., Chelmsford,
MA) and a reverse-phase C18 column (3 mm, 4.6�150 mm; Shi-
seido Co., Tokyo, Japan). A 20 ml aliquot of cell extract was directly
injected onto the column using an ESA Inc. Autosampler (model
507E), and the metabolites were quantified using a model 5200A
Coulochem II and CoulArray electrochemical detection system
(ESA) equipped with a dual analytical cell (model 5010), a
4-channel analytical cell (model 6210), and a guard cell (model
5020) as described previously [52].
Fig. 1. Cebpd-KO MEFs show increased apoptosis and decreased clonogenic survival a
6 h and 24 h post-irradiation (10 Gy), for (A) Annexin V staining and (B) cleaved caspas
escence intensity 7 SEM. (C) KO and WT MEFs were exposed to 0–8 Gy and re-seeded 3
The data are presented as an average of 3 dishes seeded per treatment group, ns-not si
2.3.1.10. Statistical analyses
Statistical analysis was performed using GraphPad Prism 7.0

(GraphPad Software, San Diego, California). Data were expressed
as average7standard error mean (S.E.M.) unless otherwise spe-
cified. One-way ANOVA with Tukey's post-analysis was used to
study the differences among 3 or more means. Po0.05 was con-
sidered statistically significant.
3. Results

3.1. Cebpd-deficiency increased IR-induced cell death in MEFs

We have shown that Cebpd plays an important role in the post-
radiation survival of mice [43], so we first examined whether KO
MEFs were also sensitive to IR exposure. Under basal conditions
and at 6 h post-irradiation at 10 Gy, there were slightly more
Annexin V positive KO MEFs than WT MEFs, but these differences
were not significant. However, at 24 h post-irradiation, the num-
ber of Annexin V-positive KO MEFs was 1.8-fold higher than the
respective WT MEFs (Fig. 1A).

We then examined the production of cleaved caspase-3,
a marker of late apoptosis under basal conditions and 24 h
fter exposure to IR. WT and KO MEFs were seeded in triplicates and harvested at 0,
e-3 staining and analyzed by flow cytometry. Data are represented as mean fluor-
h later in triplicates. Colonies were scored 2 weeks later after staining with Giemsa.
gnificant.



Fig. 3. PEG-SODþCAT treatment prior to irradiation show a slight increase in
post-radiation clonogenic survival of WT and KO MEFs. WT and KO MEFs were
treated with PEG alone, PEG-SOD, PEG-CAT and or PEG-SODþCAT for 2 h prior to
irradiation at 2 Gy. The cells were re-seeded 3 h post-irradiation in triplicates and
colonies were counted two weeks later and normalized to respective unirradiated
dishes. The data are presented as an average of 2 biological relicates 7 S.E.M. of
3 dishes seeded per treatment group.
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post-10 Gy exposure. Under basal conditions, there were no sig-
nificant changes in cleaved caspase-3 expression between WT and
KO MEFs. However 24 h post-irradiation, there was a robust in-
crease in the amount of cleaved caspase-3 positive cells in both
WT (3.4-fold) and KO MEFs (3.8-fold) compared to unirradiated
WT controls. Irradiated KO MEFs expressed about 1.2-fold higher
cleaved caspase-3 positive cells compared with irradiated WT
MEFs (Fig. 1B), thus confirming that these cells undergo IR-induced
apoptosis.

Next, we utilized the clonogenic survival assay to determine
the effect of increasing doses of radiation on recovery and survival
of MEFs and whether C/EBPδ-deficiency resulted in a differential
response. While there were no significant differences in the
number of clones in the unirradiated group between the geno-
types (data not shown), KO MEFs showed a remarkable dose-de-
pendent decline in survival of clones with increasing doses of IR
compared to respective WT MEFs (Fig. 1C). These results suggest
that C/EBPδ is essential to promote post-radiation survival which
may be dependent upon its role in the modulation of radiation-
induced oxidative stress.

3.2. Cebpd-deficiency promotes increased levels of intracellular
oxidants

In order to investigate whether the increased sensitivity of KO
MEFs to IR was due to the increased levels of oxidants, we first
compared the cellular ROS levels at steady state levels and 24 h
post-2 Gy exposure in WT and KO MEFs. WT and KO MEFs were
stained with MitoSOX at 0 and 24 h post-2 Gy exposure and Mi-
toSOX oxidation was analyzed by flow cytometry. Irradiated WT
MEFs did not show a significant increase in MitoSOX oxidation
compared to unirradiated WT MEFs (Fig. 2A-B). In contrast, we
found that the basal levels of MitoSOX oxidation in KO MEFs were
1.8-fold higher compared to that of WT MEFs. At 24 h post-irra-
diation, KO MEFs showed 2.2-fold higher levels of MitoSOX oxi-
dation compared to the WT MEFs (Fig. 2A-B). Although the basal
levels of ROS are elevated in the KO MEFs, they are able to pro-
liferate normally. However in response to an external stressor such
as IR, KO MEFs show increased production of IR-induced ROS le-
vels suggestive of an impaired oxidant/anti-oxidant balance as
well as impaired mitochondrial function, since mitochondria are a
Fig. 2. Cebpd-KO MEFs express increased ROS levels. WT and KO MEFs were exposed t
The data is presented as an average of 3 dishes seeded per treatment group and repres
significant source of superoxide.

3.3. Pre-treatment with exogenous antioxidant enzymes increased
post-radiation clonogenic survival of Cebpd-KO MEFs

Based on our MitoSOX data, we hypothesized that KO MEFs are
more radiosensitive than WT MEFs because they are unable to
modulate the IR-induced oxidative stress. To determine whether
impaired oxidative stress modulation is the underlying cause of
the increased radiosensitivity of KO MEFs, we examined the clo-
nogenic survival of WT and KO MEFs in the presence of exogen-
ously added antioxidant enzymes. Since IR is known to induce
O2

�� and H2O2, we utilized superoxide dismutase which dis-
mutates O2

�� to form H2O2 and catalase that catalyzes the
breakdown of H2O2 to water and molecular oxygen. WT and KO
MEFs were pre-treated with PEG-SOD or PEG-CAT alone or in
combination prior to irradiation.

Interestingly, pre-treatment of MEFs with PEG-SOD prior to IR
exposure led to a 0.82-fold reduction in survival of WT MEFs and a
0.63-fold reduction in clonogenic survival of KO MEFs compared
with PEG alone. These results suggest that the IR-induced O2

��
o 0 and 2 Gy, and 24 h later stained with MitoSOX and analyzed by flow cytometry.
ented as mean fluorescence intensity 7 S.E.M.



Fig. 4. Cebpd-KO MEFs showed decrease in mitochondrial bioenergetics after IR exposure. (A) Mitochondrial bioenergetics profiles were measured by seahorse XF-
analyzer in sham and irradiated WT and KO MEFs. The arrows indicate the time of addition of mitochondrial inhibitors: oligomycin (1 mm), FCCP (5 mm) or rotenone and
antimycin A (10 mm). (B) basal respiration; (C) ATP-dependent respiration; (D) Maximal respiration rate; (E) Reserved respiratory capacity; (F) non-mitochondrial respiration
and (G) proton leakage between WT and KO MEFs. The data are presented as average 7 S.E.M. of n¼4–8 wells per treatment group.
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species are converted to H2O2. The endogenous catalase in the ir-
radiated WT and KO MEFs is not effective in catalyzing the in-
creased H2O2 levels and thus leads to reduced clonogenic survival
when compared to respective PEG-alone controls.

In contrast pre-treatment with PEG-CAT alone prior to IR ex-
posure did not show any significant change in clonogenic survival
in both irradiated WT and KO MEFs compared to their respective
PEG alone groups. These results suggest that the IR-induced cell
death that occurs in both WT and KO MEFs is perhaps due to the
increased IR-induced O2
�� and that the endogenous Cu-Zn SOD

and Mn-SOD are not efficient in dismutation of O2
�� or may be

inactivated by IR-induced oxidative stress.
However PEG-SODþCAT combination treatment prior to IR

exposure showed a modest but significant increase in clonogenic
survival of both WT and KO MEFs compared to respective PEG
alone groups (Fig. 3). Thus these data indicate that the underlying
sensitivity of KO MEFs to IR may be in part via an impaired ability
to control IR-induced oxidative stress.



Fig. 5. Cebpd-KO MEFs showed significant reduction in ATP levels at 24 h post-
irradiation. WT and KO MEFs were harvested at 0 and 24h post-irradiation (2 Gy)
and whole cell extracts were prepared and analyzed for ATP levels. The data is
plotted as an average of three biological replicates 7 S.E.M.
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3.4. Cebpd-KO MEFs show mitochondrial dysfunction after exposure
to IR

Several studies have demonstrated that the exposure of cells to
IR adversely affects the mitochondrial electron transport chain and
respiration [21,53]. The cellular bioenergetics and cellular re-
spiration in unirradiated versus irradiated WT and KO MEFs were
measured using the Sea-horse XF flux analyzer (Fig. 4A). There
were no significant differences between the WT and KO MEFs in
their basal, ATP-linked, maximal, reserved respiratory capacity,
non-mitochondrial respiration and proton leakage. However, at
24 h post-irradiation, KO MEFs showed significant reductions in
basal respiration (0.63-fold), ATP-linked respiration (0.6-fold),
maximal respiration (0.66-fold), reserved respiratory capacity
(0.69-fold), proton leakage (0.76-fold) and non-mitochondrial re-
spiration (0.67-fold) compared to respective WT MEFs (Fig. 4B-G).
These results suggest that the mitochondria in the KO MEFs dis-
play severe dysfunction and are unable to cope up with the IR-
induced oxidative stress.

3.5. Cebpd-KO MEFs express significantly reduced ATP levels after IR
exposure

It is well known that mitochondrial dysfunction and IR-induced
oxidative stress leads to reduction in ATP synthesis due to dis-
ruption of the proton gradient across the mitochondrial mem-
brane [20]. We next investigated whether the mitochondrial dys-
function led to alterations in ATP production. KO MEFs showed a
0.8-fold decrease in ATP levels under basal conditions which
showed a further 0.56-fold decrease at 24 h post-2 Gy exposure
compared to unirradiated WT MEFs (Fig. 5). The reduced ATP le-
vels could arise due to oxidation of the coenzymes NADH/NADPH
of the mitochondrial electron transport chain.

We therefore examined whether there was increased oxidation
of the coenzymes NADH/ NADPH. Contrary to our expectation, we
found no significant differences in the levels of oxidized to
reduced forms of the coenzymes NADH and NADPH between both
the genotypes (Supplementary Fig. 1).

3.6. Cebpd-deficient MEFs expressed low levels of GSH, Cysteine and
Methionine

Although we saw that ATP levels were significantly reduced in
KO MEFs post-2 Gy exposure, we did not find any significant
changes in the oxidation of the coenzymes NADH/NADPH of the
mitochondrial electron transport chain. We next investigated
whether the expression of the cellular antioxidant GSH, which is
known to protect against radiation-induced oxidative damage [28]
is impaired in the KO MEFs.

Interestingly, we found that KO MEFs expressed significantly
lower levels of reduced GSH and GSSG compared to WT MEFs in
irradiated as well as unirradiated conditions (Fig. 6A-B), which
correlated with the increased ROS levels as shown by MitoSOX
oxidation (Fig. 2). While the total GSH levels and GSH/GSSG were
lower in KO MEFs, than WT MEFs (supplementary Fig. 2A, B). The
decreased levels of GSH further correlated with reduced levels of
its precursor amino acid-cysteine as well as methionine (Fig. 6C-
D). Particularly the essential amino acid methionine is a precursor
for cysteine, a rate limiting amino acid for GSH synthesis.

3.7. Cebpd-deficient MEFs accumulate high levels of 4-HNE protein
adducts

It is known that increased oxidative stress results in increased
chemical modifications of cellular proteins namely protein carbo-
nylations and formation of 4-HNE adducts [54]. GSH plays a critical
role in detoxification of 4-HNE and thus protects the cellular
components from oxidative damage. Therefore, the expression of
HNE-protein adduct formation as a marker of oxidative damage to
the cellular proteins was examined in KO and WT MEFs at various
timepoints post-irradiation. WT and KO MEFs express similar
HNE-protein adduct formation under basal conditions, which was
significantly elevated in KO MEFs after irradiation as compared to
respective WT MEFs (Fig. 7). These results demonstrate an im-
paired ability to modulate endogenous ROS levels in irradiated
cells leading to increased oxidative damage of the cellular proteins
in KO MEFs.

3.8. Post-radiation survival of Cebpd-KO MEFs was rescued by pre-
treatment with NAC and inhibited by BSO

To determine whether decreased GSH was the underlying
cause of decreased post-radiation survival and increased radio-
sensitivity of KO MEFs, we assessed the effect of the GSH pre-
cursor- NAC on IR-induced cell death. We found that treatment
with NAC (5 mM) for 2 h prior to irradiation and 3 h post-irra-
diation did not have any significant effects on cell death measured
by Annexin V staining in WT MEFs under basal condition or after
exposure to 10 Gy (Fig. 8A). In contrast, unirradiated KO MEFs
showed a 0.63-fold decrease when compared with respective WT
MEFs. Compared to irradiated WT MEFs, irradiated KO MEFs
showed a 0.43-fold decrease in cell death when treated with NAC
which was significant (Fig. 8A).

Further we wanted to determine whether treatment of NAC led
to improved clonogenic survival of WT and KO MEFs after ex-
posure to IR. We found that treatment with NAC (5 mM) for 2 h
prior to irradiation and 3 h post-irradiation showed a robust res-
cue of clonogenic survival of both irradiated WT and KO MEFs
(Fig. 8B).

We also verified whether NAC treatment led to significant in-
crease in GSH levels and was the underlying basis of increased
clonogenic survival and decreased cell death in KO MEFs. NAC



Fig. 6. Cebpd-KO MEFs show reduced expression of GSH and its precursor amino acid –cysteine as well as methionine. WT and KO MEFs were harvested at 0 and 24 h post-
irradiation (2 Gy) and analyzed for the (A) GSH; (B) GSSG; (C) Cysteine and (D) Methionine and normalized to protein content. The data is plotted as an average of three
biological replicates 7 S.E.M.

Fig. 7. Cebpd-KO MEFs display increased oxidative damage after IR exposure.
WT and KO MEFs were harvested at 0, 2, 4 and 24 h post-IR (2 Gy) and probed with
an antibody specific for 4-HNE. This is a representative blot showing the increased
4-HNE–protein adduct formation in KO MEFs at various timepoints post-irradiation.
Ponceau S staining of the blot serves as a loading control.
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treatment led to 1.35-fold increase in WT MEFs and 1.46-fold in-
crease in GSH levels in the KO MEFs compared to respective irra-
diated WT and KO MEFs (Fig. 8C).

To further confirm the role of reduced GSH levels in the in-
creased sensitivity of KO MEFS to IR exposure, we examined the
effect of inhibition of the gamma-glutamate cysteine ligase, the
rate limiting step of GSH biosynthesis by BSO on clonogenic sur-
vival of irradiated and unirradiated WT and KO MEFs. Here, pre-
treatment with BSO stimulated the survival of unirradiated WT
MEFs by 1.3-fold compared to KO MEFs (Fig. 8D). In the irradiated
groups, BSO pre-treatment further decreased the survival of KO
MEFs by 1.6-fold compared to that of WT MEFs and by 1.9-fold
compared to that of KO MEFs. These data demonstrate that the
underlying sensitivity of KO MEFs to IR is in part via the reduced
GSH levels.
4. Discussion

In this study we describe a novel role for C/EBPδ in regulating
IR-induced oxidative stress and induced mitochondrial dysfunc-
tion and thereby promoting post-radiation survival. The major
findings of this study are that a loss of C/EBPδ results in increased
basal as well as IR-induced ROS levels and mitochondrial dys-
function which led to increased apoptosis. Further we showed that



Fig. 8. The GSH-precursor NAC rescues post-radiation survival but the GSH inhibitor-BSO reduces survival of Cebpd-KO MEFs. WT and KO MEFs were treated with NAC
(5 mM) for 2 h prior to IR exposure (10 Gy) and analyzed at indicated timepoints for (A) apoptosis using FITC Annexin V; (B) WT and KO MEFs were treated with NAC (5 mM)
for 2 h prior to irradiation at 2 Gy and re-seeded for clonogenic assay 3 h post-irradiation and (C) cells were also harvested for GSH measurements; (D) KO and WT MEFs
were treated with BSO (10 mM) for 24 h prior to irradiation at 2 Gy and re-seeded for clonogenic assay 3 h post-irradiation. The data for A and C are plotted as an average of
2–3 dishes7S.E.M. The data for B and D are plotted as an average of 6 dishes each for the 2 biological replicates 7 S.E.M.
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C/EBPδ-deficiency led to decreased levels of GSH and its precursor
amino acid-cysteine and its precursor-methionine. Thus our stu-
dies point to a novel role of C/EBPδ in redox regulation via mod-
ulation of GSH levels.

C/EBPδ is a transcription factor that has been implicated in the
regulation of gene targets involved in inflammation, DNA damage
response and oxidative stress, processes that also play a critical
role in response of cells or tissues to IR exposure [32,36,39–42].
Survival of cells in response to IR exposure is dependent upon
their ability to recover from IR-induced oxidative stress, DNA da-
mage and inflammation [32,36,39–42]. A previous study has
shown a role for C/EBPδ in detoxification of cisplatin-induced ROS
levels by transcriptional upregulation of SOD1 [39]. Cells that
overexpress SOD1 are known to be protected from IR-induced
apoptosis [55–57]. It is possible that Cebpd-WT MEFs may upre-
gulate antioxidant response genes which are perhaps impaired in
the KO MEFs, thereby making them more susceptible to IR-in-
duced cell death. Similar to the anti-apoptotic role of CEBPδ de-
scribed in mammary epithelial cells and pancreatic beta cells
[58,59], we found that Cebpd-WT MEFs protected from IR-induced
apoptosis and promoted clonogenic survival compared to KO MEFs
(Fig. 1), which correlated with decreased ROS levels (Fig. 2).
The clonogenic survival of WT and KO MEFs upon pre-treat-

ment with PEG-CAT prior to irradiation did not show significant
change compared to the respective PEG-alone group, suggesting
that the increased IR-induced cell death may be due to the in-
creased O2

�� levels. In contrast, PEG-SOD pre-treatment led to a
further decrease in post-radiation clonogenic survival of both WT
and KO MEFs compared to PEG-alone group. These results suggest
that the cells accumulate increased H2O2 due to dismutation of IR-
induced increased O2

�� levels and points to a contributory role of
IR-induced mitochondrial superoxide in promoting cell death. KO
MEFs as well as WT MEFs showed a partial rescue of clonogenic
survival, when treated with a combination of PEG-SODþCAT, ra-
ther than individual treatment of PEG-SOD or PEG-CAT alone
(Fig. 3). Overall these results suggest that both O2

�� and H2O2 may
contribute to the decrease in post-radiation survival in Cebpd-KO
MEFs.

We also further investigated whether the increased ROS levels
led to alterations of mitochondrial function in KO MEFs in re-
sponse to IR. Although unirradiated KO MEFs show elevated ROS
levels as shown by MitoSOX oxidation, there were no significant



Fig. 9. Schematic model depicting the increased oxidative stress, mitochondrial
dysfunction and reduced GSH levels that lead to IR-induced apoptosis of C/EBPδ-
deficient cells.
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differences in the mitochondrial function compared to that of WT
MEFs as measured by OCR (Fig. 4A-B). This could be due to the
robust induction of antioxidant genes under basal conditions in
the KO MEFs but not after exposure to IR (data not shown). How-
ever post-irradiation, KO MEFs showed significant decreases in
basal, ATP-dependent, maximal and reserved respiratory capacity
as well as a decrease in proton leakage, indicative of mitochondrial
dysfunction compared to WT MEFs (Fig. 4) which correlated with
reduced ATP levels (Fig. 5). The decrease in reserved respiratory
capacity of KO MEFs points to a deficiency in energy demanding
bioenergetics response against IR-induced stress as described for
Sirt3-knockdown cells [60].

In contrast WT MEFs showed an increase in the basal, ATP-
dependent, maximal, reserved respiratory capacity and non-mi-
tochondrial respiration, which is indicative of an adaptive re-
sponse to IR-induced oxidative stress. The increased ROS levels in
KO MEFs however did not show any impairment in the NADþ/
NADH and NADPþ/NADPH ratios, both under irradiated and uni-
rradiated conditions, which led us to investigate the role of the
cellular antioxidant GSH (Supplementary Fig. 1).

GSH plays a key role in maintaining the redox state that is
critical for cellular activities [28,29]. It is known that the cellular
antioxidant GSH protects against radiation-induced oxidative da-
mage and the oxidation of GSH is an indicator of oxidative stress.
Increased levels of GSH are known to suppress apoptosis [25,28].
We found that the KO MEFs express reduced levels of GSH
compared to WT MEFs (Fig. 6A-B). In addition to reduced GSH
levels, we also found that KO MEFs expressed reduced cysteine
and methionine content (Fig. 6C-D).

Apart from its role in maintaining redox state of the cells, GSH
is also involved in detoxification of ROS/RNS by direct interactions
with enzymes like GSH-peroxidase and GSH-S-transferase [25,27].
4-HNE is a lipid peroxidation-derived product, highly associated
with the generation of ROS, hence used as a marker of oxidative
stress [54]. 4-HNE is rapidly removed from the cells by phase II
pathway using glutathione-S-transferases which use GSH as one of
the substrates leading to its short half-life. We investigated whe-
ther the reduced GSH levels led to increased oxidative damage in
the irradiated KO MEFs. The increased accumulation of 4-HNE
protein adducts in the irradiated KO MEFs could be due to de-
creased clearing of 4-HNE protein adducts and correlates with the
reduced GSH levels (Fig. 7). These studies suggest that reduced
GSH levels contribute to the increased oxidative stress and in-
creased sensitivity of KO MEFs post-IR exposure.

To further confirm the role of reduced GSH in promoting IR-
induced cell death, we investigated the effects of the GSH pre-
cursor-NAC on IR-induced cell death of WT and KO MEFs. Although
unirradiated and irradiated WT MEFs did not show significant
reductions in apoptosis with NAC treatment, they showed a sig-
nificant increase in GSH levels and rescue of clonogenic survival
(Fig. 8A-C). These results suggest that GSH-independent pathways
may also play a role in the post-radiation survival of WT MEFs.

In contrast, KO MEFs showed significant reductions in cell
death in both unirradiated and irradiated groups, and significant
increases in GSH levels compared to respective radiation alone
treatment groups which explain the robust rescue of clonogenic
survival (Fig. 8A-C). These results confirm the reduced GSH levels
as one of the major players in the increased radiosensitivity of
Cebpd-KO MEFs.

As expected we found that upon inhibiting GSH biosynthesis by
BSO treatment for 24 h prior to irradiation, KO MEFs were further
sensitized to IR and showed a decline in clonogenic survival
compared to irradiated WT MEFs (Fig. 8D). While unirradiated WT
and KO MEFS did not show any effect of BSO treatment, post-ir-
radiation there was a significant decrease in post-radiation survi-
val of BSO treated KO MEFs compared to radiation alone, but not in
respective WT MEFs groups.

We speculate that Cebpd-KO MEFs may have defects in either
GSH biosynthesis pathways or the GSH regeneration pathways
similar to the Nrf2-/- MEFs [61]. This phenotype needs further
investigation. Studies are currently underway utilizing a pro-
teomics approach to identify the C/EBPδ-targets that may be
downregulated in KO MEFs, leading to increased radiosensitivity.
Overall, this study demonstrates a novel role of C/EBPδ in mod-
ulating oxidative stress via regulating the mitochondrial functions
and maintaining the cellular levels of GSH (Fig. 9). Further studies
are needed to investigate whether C/EBPδ may regulate genes
involved in mitochondrial biogenesis and GSH metabolism.
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