NOTE

ON THE NON-EXISTENCE OF PERFECT AND NEARLY PERFECT CODES

Peter HAMMOND

Department of Computing and Control, Imperial College of Science and Technology, London SW7 2AZ, England

Received 2 July 1980
Revised 17 March 1981

Abstract

The main result of the paper is the proof of the non-existence of a class of completely regular codes in certain distance-regular graphs. Corollaries of this result establish the non-existence of perfect and nearly perfect codes in the infinite families of distance-regular graphs $J(2 b+1, b)$ and $J(2 b+2, b)$.

1. Introduction

The setting for this paper is the class of distance-regular graphs. The reader should consult Biggs [2] for the various concepts of distance-regularity used. Throughout the paper I ' denotes a distance-regular graph with distance function ∂, diameter d, vertex set $V \Gamma$ and intersection array

$$
\left\{\begin{array}{ccccc}
* & 1 & c_{2} \cdots & c_{d-1} & c_{d} \\
0 & a_{1} & a_{2} \cdots & a_{d-1} & a_{d} \\
k & b_{1} & b_{2} \cdots & b_{d-1} & *
\end{array}\right\}
$$

Let $[k]_{i}=k_{i}$ denote the number of vertices in Γ at distance: irom a particular vertex of $\Gamma(0 \leqslant i \leqslant d)$.

In the next section we state some preliminary results and in Section 3 we prove the main result of the paper. The objective is to eriablish a purely combinatorial proof for the non-existence of certain completely regular codes in the subclass of distance-regular graphs which satisfy both $a_{d}>0$ and $k_{d}<k$. Corollaries of the main theorem establish the non-existence of perfect and nearly perfect codes in the infinite families of distance-regular graphs $J(2 b+1, b)$ and $J(2 b+2, b)$.

2. Definitions and preliminary results

Suppose that C is an e-code $(\partial(u, v) \geqslant 2 e+1$ for all $u, v \in C)$ in the graph $\Gamma . C$ is non-trivial if $|C| \geqslant 2$ and we shall assume throughout that $d \geqslant 2 e+1$. We say
that C has external distance e^{\prime} if the maximal distance of any vertex of Γ from C is e^{\prime}. For each $j \in\left\{0,1, \ldots, e^{\prime}\right\}$ we choose z_{j} in $V \Gamma$ such that $\partial\left(z_{i}, C\right)=j$ and we call C locally regular if, for $0 \leqslant i \leqslant e^{\prime}$ and $0 \leqslant j \leqslant e^{\prime}$, the number

$$
p_{i j}\left(C, z_{j}\right)=\left|\left\{c \in C \mid \partial\left(c, z_{j}\right)=i\right\}\right|
$$

depends on the values of i and j and not on the choice of z_{j}. We say that C is completely regular if the same condition holds for $0 \leqslant i \leqslant d$. In either case we write $p_{i j}\left(C, z_{j}\right)$ as $p_{i j}(C)$ for the relevant ranges of i and j. It is shown in [3] that a locally regular code is completely regular. The following two Lemmas, also from [3], were originally stated for antipodal distance-regular graphs. However, it can be seen from their proofs that they are also valid for an arbitrary distance-regular graph.

Lemma. If C is a locally regular e-code with external distance $e+m$, then there exist rational numbers $\gamma_{e+i}, \ldots, \gamma_{e+m}$ such that

$$
\begin{equation*}
\sum_{j=0}^{e} k_{j} p_{i j}(C)+\sum_{q=1}^{m} \gamma_{e+q} p_{i, e+q}(C)=k_{i} \tag{*}
\end{equation*}
$$

for $e+1 \leqslant i \leqslant \varepsilon+m$.
Lemma 2. If also $m \leqslant e$, then (*) holds for $0 \leqslant i \leqslant d$.

3. General results

We are now in a position to prove the main result of the paper.
Theorem. If $n \leqslant e, k_{d}<k$ and $a_{d}>0$, then Γ cannot contain a non-trivial completely regular e-code with external distance $e+m$ and with parameters which satisfy $\gamma_{e \div s}=k_{d}(1 \leqslant s \leqslant m)$.

Proof. Suppose that Γ contains such an e-code. The \bar{d} th component of the result of Lermma 2 gives

$$
k_{d}=p_{d 0}(C)+k p_{d 1}(C)+\cdots+k_{e} p_{d e}(C)+\sum_{s=j}^{m} \gamma_{e+s} p_{d, e+s}(C)
$$

But $d \geqslant 2 e+1$ and so $k_{i} \geqslant k>k_{d}(1 \leqslant i \leqslant e)$ and if $\gamma_{e+s}>k_{d}(1 \leqslant s \leqslant m)$, then $p_{d 0}(C)=k_{d}$. However, $a_{d}>0$ now implies that \mathbb{C} contains adjacent vertices, an obvious contradiction.

A perfect e-code is a completely regular e-code witb external distance e and a unifomly packea' e-code (first investigated in [5]) is a completely regular e-code with external distance $e+1$. Associated with a uniformly packed e-code are the
parameters $\lambda=p_{e+1, e}(C), \mu=p_{e+1, e+1}(C)$. If $\lambda=\left[b_{e} / c_{e+1}\right]$ and $\mu=\left[k / c_{e+1}\right]$, then C is called nearly perfect [4]. Before we investigate the existence of perfect and nearly perfect codes in particular families of distance-regular graphs, we prove two general results derived from the theorem above. Throughout the rest of the paper we shall assume that $a_{d}>0$ and $k_{d}<k$.

Corollary 1. Γ cannot contain a non-trivial perfect e-code for $e \geqslant 1$.
Proof. The result follows immediately fron the theorem with $m=0$, since the conditions on the γ 's are vacuous.

Corollary 2. If Γ contains a non-trivial uniformly packed e-code vith parameters λ and μ, then

$$
\mu k_{d}+\lambda k_{e} \geqslant k_{e+1} .
$$

Proof. Suppose that C is a non-trivial uniformly packed e-code with parameters λ and μ. Then $p_{e+1, j}(C)=0$ for $j \leqslant e-1$ and Lemma 1 with $i=e+1$ gives

$$
k_{e+1}=k_{e} \lambda+\mu \gamma_{e+1} \leqslant k_{e} \lambda+k_{d} \mu
$$

by the theorem abcve.

4. The graphs $J(a, b)$

The graph $J(a, b)$ has $\left(\begin{array}{l}\binom{a}{b} \text { vertices indexed by the subsets of cardinality } b \text { of the set }\end{array}\right.$ $\{1, \ldots, a\}$. Two vertices of $J(a, b)$ are adjacent if and only if they have $b-1$ elements in common and the distance function ∂ is defined

$$
\partial(u, v)=\dot{b}-|u \cap v| .
$$

$J(a, b)$ is distance-regular for $a \geqslant 2 b$ and has intersection array

$$
\left\{\begin{array}{ccccc}
* & \cdots & i^{2} & \cdots & b^{2} \\
0 & \cdots & i(a-2 i) & \cdots & b(a-2 b) \\
b(a-b) & \cdots & (b-i)(a-b-i) & \cdots & *
\end{array}\right\}
$$

4.1. Perfect codes in $J(a, b)$

In [1] Bannai proves the non-existence of perfect e-codes in $J(2 b+1, b)$ for $e \geqslant 2$. The proof in [1] uses an analogue of Lloyd's theorem [3] and also some nurnber-theoretic results. We illustrate a purely combinatorial proof of Bannai's result and at the same time prove the non-existence of perfect 1 -codes in $J(2 b+1, b)$ and perfect e-codes in $J(2 b+2, b)$ for $\epsilon \geqslant 1$.

Corollary 3. $J(a, b)$ cannot contain a non-trivial pcrfect e-code for $e \geqslant 1$ and $2 b+1 \leqslant a \leqslant 2 b+2$.

Proof. For the graph $J(a, b)$ we have $k=b(a-b), k_{d}=\binom{a-b}{b}$ and $a_{d}=b(a-2 b)$. Obviously $a_{d}>0$ for $a>2 b$ and it is easy to check that $k_{d}<k$ for $2 b+1 \leqslant a \leqslant$ $2 b+2$. The result follows from Corollary 1 .

4.2. Neari! perfect codes in $J(a, b)$

A near: perfect e-code in Γ is perfect if and only if $b_{e} \equiv 0\left(\bmod c_{e+1}\right)$. In [4] it is shown that $J(a, b)$ does not contain a non-trivial nearly perfect 1 -code with $b_{1} \neq 0\left(\bmod c_{2}\right)$. For the cases $2 b+1 \leqslant a \leqslant 2 b+2$ we can extend this to the following.

Corollary 4. $J(a, b)$ cannot contain a non-trivial nearily perfect e-code for $e \geqslant 1$ when $a \in\{2 b+1,2 b+2\}$.

Proof. We can immediately assume that $e \geqslant 2$. Let $a=2 b+r$. If $b_{e} \neq 0\left(\bmod c_{e+1}\right)$, then

$$
\gamma_{e+1}=\frac{k_{e}}{\left[k / c_{2+1}\right]}\left(b_{e} / c_{e+1}-\left[b_{e} / c_{e+1}\right]\right) \geqslant k_{e} / k .
$$

Now, if $e \geqslant r+1$, then $b \geqslant 2 e+1 \geqslant 2 r+3$ and $k_{e} / k \geqslant k_{r+1} / k$. We need only prove that $k_{r+1} 1 k>k_{d}$ which is equivalent in this case to proving that

$$
\binom{b}{r+1}>(r+1)(b+r) .
$$

In fact, it is not difficult to see that this is true for all $b \geqslant 7$ with $r=2$ and for all $b>5$ with $r=1$. When $r=1$ and $b=5$, and hence $e=2$, the non-integrability of $|C|([4, \mathrm{p} .44])$ rules out this case. When $e=2, a=2 b+2$ and $b_{2}=b(b-2) \equiv$ $\alpha(\bmod 9)$, where $\alpha \in\{3,6,8\}$, we have

$$
\gamma_{3} / k_{d}=\binom{b}{2}^{\alpha} / 9\left[\frac{b(b+2)}{9}\right] .
$$

It is a simple, but tedious, task to verify that $\gamma_{3} / k_{d}>1$ for $b \equiv \beta(\bmod 9)$ with $\beta \in\{1,3,4,5,6,7,8\}$.

5. Conctusion

We have shown that the proof of the non-existerice of perfect and nearly perfect codes in the families $J(2 b+1, b)$ and $J(2 b+2, b)$ can be derived from the theorem in Section 3. We mention one further example in the infinite family of distance-regular graphs \bar{Q}_{m}. The graph Q_{m} is the generalised cube of dimension m and \bar{Q}_{m} is obtained from Q_{m} by joining vertices at distance 2 in $\mathrm{Q}_{m} . \overline{\mathrm{Q}}_{m}$ is distance-regular with diameter $\left[\frac{1}{2} m\right]$ and Bannai has proved that \bar{Q}_{m} does not
contain a non-trivial perfect e-code for $e \geqslant 1$. Unfortunately our Corollary 1 guarantees the non-existence of perfect e-codes in \bar{Q}_{m} oniy wher m is odd, otherwise $a_{d}=0$. However, we can derive the following for nearly perfect e-codes: \bar{Q}_{m} (m odd) cannot contain a non-trivial nearly perfect e-code with $e \geqslant 2$ and $m \geqslant 17$.

It seems likely that other non-existence results can be obtained just as simply from the main theorem.

References

[1] E. Bannai, Codes in bi-partite distance-regular graphs, J. London Math. Soc. (2) 16 (1977) 197-202.
[2] N.L. Biggs, Algebraic Graph Theory, Cambridge Math. Tracts, No. 67 (Cambridge University Press, London, 1974).
[3] P. Hammond and D. H. Smith, An analogue of Lloyd's Theorem for completely regular codes, Proceedings of the British Combinatorial Conference, Aierdeen 1975 (Utilitas Math., Winnipeg, 1976).
[4] P. Hammond, Nearly perfect codes in distance-regular graphs, Discrete Math. 14 (1976) 41-56.
[5] N.V. Semakov, V. A. Zinovjev and G.V. Zaitzev, Unifomly packed codes, Problemy Peredachi Informatsii 7 (1971) 38-50.

