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Abstract

A semi-classical model for wobbling motion is presented as an extension to the Bohr—Mottelson model of wobbling motion. Using the resultant
wobbling potential, a quantum mechanical equation is derived for anharmonic wobbling motion. We then attempt to explain the anharmonicity
observed in the excited bands of two wobbling phonons iMthe160 region.

0 2006 Elsevier B.VOpen access under CC BY license.

Significant progress has been made in a last couple of yeagested that this “phase transition” from principal-axis rotation
with regard to the understanding of nuclear wobbling motion(PAR) to tilted-axis rotation (TAR) causes the anharmonicity,
This phenomenon was first predicted theoretically by Bohr an@lthough they did not explicitly demonstrate a mechanism for
Mottelson thirty years agfl], but it was not observed until the excited bands to acquire the anharmonic character.
experimental techniques advance such asgamma-ray de- The aim of this Letter is to present an analytical model to ex-
tectors. Finally in 2001, the first experimental report was pubplain the anharmonicity observed in the nuclear wobbling mo-
lished on the evidence for wobbling motioniffLu [2]. Sub-  tion. Two steps are required to derive the anharmonic wobbling
sequently, possible wobbling excitations were reported also imodel proposed in this work. First, we consider a semi-classical
165,161 , [3,4]. These wobbling bands (of one-phonon excita-treatment of the Bohr—Mottelson model to derive the wobbling
tion) were analyzed first by the particle-rotor model (PHR1)  potential energy. Then, the re-quantisation is made using the
5] and then by the random phase approximation (RBR) potential, so as to obtain the quantum mechanical equation for

Evidence for two-phonon bands has also been reported ithe anharmonic wobbling motion.

163,169 ) [4,7]. Despite much experimental evidence imply-  In the Bohr—Mottelson model, the Hamiltonian reads

ing that the bands consist of two-phonon excitations, a serious 3
discrepancy with the original Bohr—Mottelson model was ob-g — ¥~ i (1)
served in the experimental energy spectrum: it shows strong ;5 27;

anharmonicity. Currently, neither PRM nor RPA are successfuypis is the Hamiltonian of a triaxial quantum rotor without

to explain this anharmonicity, but Matsuzaki and Ohtsubo projyinsic structure. Classically, the dynamics of this rotor can
posed an interesting idea with the tilted-axis cranking mode},e yescribed by the three Euler angles and three components
(TAC) to account for this anharmonicifig]. They calculated ¢ the total angular momentum vector. The angular momen-
the energy surface with respect to the tilt angles of the tota),, operatorsfi in the Hamiltonian are those in the body-
angular momentum vector, and found that the curvature of thﬁ)feq frame, so that their commutation relations are given as
energy SL_Jrface around the origin becomes flat.tt_ar as angular me7 [;1=—i€;jx i, wheree;j; denotes the Levi-Civita symbol.
mentum increases. At (and beyond) some critical angular mOrpe Hamiltonian commutes with the total angular momentum
mentum, the local minimum at t.he origin dlsappears and new2 _ 2?21 12, but each componerit does not commute when
minima emerge as a manifestation of tilted rotation. They sugg,e system lpossesses triaxialitiy & J» > Ja, for instance)
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with (i, j, k) being cyclic. In the Bohr—Mottelson model, the Heren is an eigenvalue of the number operafoe ¢tc and
gquantization axis is chosen along the 1-axis. The above northe wobbling excitation energy is given as, = (I/J1) X
commutation relation implies that the eigenvaluefp{denoted (T = )T — T3) /(T2 T3).

in this Letter asK) is not a good quantum number. Therefore, It looks as if the Hamiltonian is fully quantised, but it is the
it is convenient to introduce here the following expression forresult of the approximation for the bosonic commutation rela-

the wobbling state, which is generally described as tion,
1 T 7
a,a' |=L/I>1, 11
wobble 1) = Y~ Ck|IK). 3) [aa]=1/ (A)
K=—I which is based on the conditio@). The exact form ofH,,
In order to allow the classical analogy, the high-spin condi-Should be,
tion is applied in the Bohr—Mottelson model. Classically, this i
condition is expressed as~ I >»> 1. Considering the non- Hw = ww(ﬁ + 5)' (12)

conservation of th& quantum number, this classical condition
should be interpreted as Because we can easily prove thand/; do not commute with

I~ (i) >1 (@) each othern cannot be treated as a quantum number without
-V : the approximation irf11).
where the expectation value is taken with respect to the state This approximation is a little drastic from a quantum me-
given in Eq.(3). To satisfy this condition, we require now chanical point of view, not only because the operdias sim-
9 2 ply replaced by a c-numbek(), but also because the c-number
1Cr1=> Z ICk " ®)  isa non-conservell -quantum number in this model. However,
k#l this approximation can be totally justified when we consider the
Due to the normalisation conditioy , |Cx|2 = 1, the above expectation values of the relevant quantities. That is, instead of
equation also impliefC;|? ~ 1. Egs.(11) and (12)we have
Now, the Hamiltonian is decomposed into two terms <[a’ aT]) — (i1 ~1, (13)
~ I +1) .
H=——"1H,. 6 ~ o ()
27, Ot = o1 + 3 (14
where the Dirac constant is set to be uniy=£ 1). The first 1
term is a c-number becauges the quantum number (the total ~ a)w<(ﬁ) + —), (15)
angular momentum). The second term contains g-numbers, 2
1/1 1 1/1 1 where the expectation value is taken with respect to the wob-
N o ~ . _ . S . o .
==|=-—= +=-l=-—= I35 7 bling state given in Eq(3). This “semi-classical” approxima-
w 2(j2 jl)z 2(j3 jl)g () g 9 a3) PP

tion cannot be compared with the experimental energy spec-
In the Bohr—Mottelson model, bosonic operators of creation an¢tum at low-lying states directly because the number of wob-
annihilation are introduced so as to diagonaktg Two steps  bling phonons can now take any real number which gives a
are necessary for this aim. First, the creation and annihilatiogontinuous spectrum. In other words, the current model is set

operators are respectively defined as back to the classical theory due to the semi-classical approxi-
A mation.
at = L+ils and a= (aT)T. (8) To re-quantise the system, let us introduce a dynamical vari-
vaI abled which is defined as
Second, to eliminate so-called “dangerous terms” (sueH a5 (f1)
and aa), the canonical transformation is performed to intro-6 = COS_l(—) (16)
duce a new representation of the creation—annihilation opera-
tors(c, ¢T) This dynamical variable physically means the wobbling angle
+ + ) s of the total angular momentum vector. If the high-spin condi-
¢ =xa —ya, with x°—y“=1 (9)  tion1 ~ (f1) > 1isvalid, is very small ¢ < 1), which is the

Herex andy are written in terms of the moment of inertig;j ~ €ase considered in the original wobbling model. The average
and are determined so as to make the dangerous terms in t4glue for the number operator is calculated as,

new representation vanish. The commutation relation is invari 1 1 1 (f)
ant with respect to the canonical transformation. The pair 0<f1 + —> ~ (ZK[ + 5) (1 — Tl) a7)
operators{, ¢') therefore follows the same commutation rela-

tion as the original. The resultant Hamiltonian can be written bywhere the term R&;C;_>) is neglected due to the condition
only c-numbers. The corresponding energy spectrum now readS) andx is given as
II+1 1 1 1/73—2
Erll= I+ )+ww(n+_>' (10) k= /T2 +1/T3 -2/ .
271 2 VAT -1/70)A/ T3 - 1/71)

(18)
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In this way, the mean value of the wobbling Hamiltonian is nowour anharmonic wobbling spectrum gives, at most, 10% reduc-

expressed as tion (at I = 30k), from the result of our numerical calculation
. . where the rigid body moment of inertia is used ¥fLu with
<If]W) — ww[ﬁ {1_ @(1_ })} + }(1 _ @)} (B,y) = (0.4, -20°). (The degree of triaxiality is_ here mea-
4 I 1 2 1 sured byy [10]. In this study, we employ the Hill-Wheeler
ol 1 (1) coordinates, which gives the opposite sign convention to the so-
~ ww<7 5)( - T) (19)  called Lund convention.) The mass parameies positive for

B _ the rigid-body moment of inertia witlr < 35°, which applies
Because it is expected that the orderos of O (1), we may  tothe present case. Owing to this fact, we consider only the case

justify writing (Hw) as that the mass parameter is positive £ 0), in the following
. <l discussions. According to the spin-dependence in(#4), the
(Hw) =~ wa(l — C0s9) mass parameter becomes increased at higher spih=A80%
2 and 4G, m is calculated as: = 6.7 and 11.9 (MeV'1), respec-
- %(1/j2+ 1/T5 — 2/ J1)(1 — cosh). (20) ftively. Consequently, the higher the total angular momentum,

the less anharmonicity. For instance, the reduction is less than
Let us consider the classical motiontbby treating this en- 5% at = 404. In addition, with irrotational-flow moment of
ergy expectation value as the potential energy for the classic@hertia, we found that the anharmonicity turns out to be much
wobbling motion. The associated Lagrangian is now introducedkess substantial. This is because the moment of inertia is pro-

as portional toB? in the case of irrotational flow, which gives rise
] 1 . to one order of magnitude smaller in comparison to the rigid
L@®,0)= Emez — mwgc(l— C0s9). (21)  body case. As a result; tends to be one order of magnitude
larger in accordance with E¢R4).
The semi-classical oscillator frequeneyc is introduced here In the rest of this Letter, we attempt to explain the discrep-
as

ancy between the above model and observed spectrum, which
) 72 shows very strong anharmonicity. One possibility for the dis-
Mmwge= §(1/52 +1/J3—2/ 7). (22)  crepancy could be the evolution of nuclear structure originating

_ L . , ) from microscopic degrees of freedom, which is neglected in
This interpretation is possible because under the high-spin CORRe model. For example, such an effect can be attributed to the

dition given in Eq(4), thatis, when the wobbling angle is small - iqis force in the rotating frame. Not only can the stretch-

(6 < 1), the potential is approximated that of a simple harmonlqng effect of the nuclear shape cause a change of the moment of

oscillator, that 'S'V(Q,) :_%mwg‘:@z. , . _inertia, but also the quasi-particle excitations due to rotational
Therefore, qugnﬂsanon fo'r the yvobblmg r?olnon IS Cam,edalignment cause a kind of “phase transition” from the BCS (or
out through the simple one-dimensional Schrédinger equat'onsuperfluid) phase to the normal fluid phase. Therefore, in or-
1 42 5 der to investigate further, we might need to go to microscopic
{_E 702 + mwg (1 — cosd) } v(0)=Ew¥(9). (23)  theories such as the 3D-cranked Hartree—Fock—Bogoliubov ap-
proach and the generator coordinate mef@bdwhich demand
This equation can be considered as an extended wobblingassive numerical efforts.
model that can handle gven the Wobbling motion with Iarge The suggestion by Matsuzaki and Ohtsubo based on their
amplitude (that is/ > (/1)). It should be noted that we did microscopic calculations is useful in considering possible ef-
not use the first part of the approximati¢#) in the derivation.  fects originating from intrinsic structure without performing
(The high-spin conditiord >> 1 is used, however.) demanding numerical calculations. In the following, we focus
In this model, the mass parameteris the only free para- on a “phase transition” from PAR to TAR, as mentioned at the
meter. However, using experimental data, we can estimate thseginning of this Letter. In order to account for very strong an-
order ofm in the following way. First, wher® « 1, the en-  harmonicity, let us consider the following potential, which is
ergy spectrum is given @y (v) = wsc(v+ 3). The one-phonon  similar to the energy surface obtained by Matsuzaki and Oht-
excitation energy £ E1Phonon ohserved int%3Lu is approxi-  subo
Vn\;:tﬁ;)\//gSO keV, which should be equaldg.. Using Eq.(22), Vo(0) & 1— cosh — a(l B cosze). (25)
2 Fig. 1 shows the shape of the potential for difference choices
m= A/t T=2/7) (24)  of the parametey. Whenf « 1, the above potential reduces
8 (AE!-Phonon2 to V,(0) ~ (1 — 2a)62/2, which implies the effective mass
The anharmonic wobbling potential derived in our model,m* = (1 — 2a)m. From the simple analytical analysis of the
that is, V(0) « 1 — cosf, is not strong enough to reproduce above potential, one can tell that the critical point happens at
the anharmonicity observed in experiment. According to expera = 1/2 (seeFig. 1). Below the critical point £1/2 < a <
iment, the excitation energy from the first phonon state to thd/2), the classical ground state, that is, the minimunv ¢4),
second is reduced by nearly 50% in comparison to the excis found at® = 0. This solution corresponds to PAR. Whereas,
tation energy from the yrast to the first phonon state, whereaseyond the critical point« > 1/2), the classical solutions ap-
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are supposed to be included in the present model effectively,
through the control parameter, When the effective mass pa-
rametern* changes from a positive value to negative, one can
suppose that the spontaneous symmetry breaking occurs as an
analogy with the quantum field theory. A difference from the
¢* theory is that the broken symmetry in our model is a dis-
crete symmetryd — —6), so that no Nambu—Goldstone mode
[12] is created for the restoration of the symmetry. Instead,
guantum tunnelling plays the role of the symmetry restora-

‘a’(e)/mu)2

: tion.
-0.5 . . L.
r 0 T To examine how the strong anharmonicity is induced through
Wobbling angle (6) the spontaneous symmetry breaking, numerical calculations

are carried out for the potentidt,(¢) by varying the con-
trol parameter,a. The results are shown iRig. 2 Below
the critical point ¢ < 1/2), the energy difference between
the ground and the first excited state is of the ordek®f,

Fig. 1. The wobbling potential energy with strong anharmonidity(9), for
different control paramete,.

1.6 E— T T T T T T I . .
B . which is about 0.35 MeV in the present case. The anharmonic-
14 | .., n=0 —— . o
B n=1 ity can be seen, but they are very small (less than 10%), as
1.2 L S E'"'--"«E% [N J—— | already discussed earlier in connection to the original wob-
1r "‘* 'EL,,_,,_EL n=3 g | bling potential, Eq.(20). However, beyond the critical point,
0.8 | *""'ue.,_ "}, 1 the energy difference becomes extremely small due to the
*. B, : : :
0.6 - .. "B, tunnelling effect. As the ground state is bound deeper in

the potential, the energy splitting becomes smaller. Finally,
arounda >~ 1.1, the ground and the first excited states can
be regarded as almost degenerate, which implies an onset of
the spontaneous symmetry breaking in a quantum mechan-
ical sense. In other words, the quantised wobbling motion
: : : : ' ' ' aroundd = 0° (PAR) goes into a phase transition to TAR
02 o0 02 04 06 08 1 12 beyond the critical pointd ~ 1.1). Considering that the de-
Control parameter (a) generacy is perfect, the lowest three levels={ 1,2, and
_ _ _ 3) give rise to a very strong anharmonicity. In particular,
e ey e Co0io! arametee ot a = 11, the ratio is calculated {0 bAF; .1/ AF3-2 =
335 (keV)/167 (keV) >~ 2, where AE;_,; = E; — E;. This
result agrees well with the experimentally observed anhar-
pear ab = + cos 1(1/2a), which correspond to TAR. Namely, monicity.
the parametes has a physical meaning as a control parameter These ideas are based on the consideration that microscopic
of a (classical) phase transition between TAR and PAR. (Thelegrees of freedom bring further anharmonicity in addition to
domaina < —1/2 is not considered in this study because anthe wobbling potential derived in E¢R0). It is thus necessary
unphysical minimum appears@&t= +.) to check the ideas and models presented here by using micro-
The physical situation seen beyond the critical point(  scopic approaches, which has to be done in the future.
1/2) is similar to the mechanism of spontaneous symmetry In summary, a semi-classical wobbling model is presented
breaking in the linear sigma model, ¢f theory in quantum about an extension of the original wobbling model by Bohr and
field theory[11]. Unlike ¢* theory, however, the cause of the Mottelson to derive the wobbling potential energy. This poten-
“negative mass” in our case can be attributed to more specifitial is anharmonic and described by a wobbling argleshich
physical effects, that is, microscopic effects. It is widely knownis introduced as a dynamical variable to represent the semi-
that nuclear moment of inertia matches neither that of a rigictlassical wobbling motion. The re-quantisation is made with
body, nor of an irrotational flow. It takes, in fact, the value be-this potential and the dynamical variable. The quantum equa-
tween these two limiting cas¢$0]. The primary reason is the tion for the anharmonic wobbling motion is then derived. How-
presence of the pairing correlation between constituent particlesver, this anharmonic potential cannot reproduce the experi-
(nucleons). Because the mass parametén our rotor model mental spectrum. In order to explain the discrepancy, a further
is determined by the moment of inertia in such a way presentednharmonic model taking into account a phase transition going
in Eq.(24), the deviation of the realistic value of the moment of into TAR from PAR is proposed as a possible influences com-
inertia from the rigid-body or irrotational-flow values can influ- ing from the intrinsic microscopic degrees of freedom and the
ence the magnitude of the mass parameter. Itis therefore naturadsociated quantum tunnelling effect. With the proper choice of
that the microscopic effects, such as the pairing correlation, aréhe control parameter, it is demonstrated qualitatively that such
taken into account through the renormalisation of the mass pa strong anharmonicity seen in experiment can be well repro-
rameter, that ism*. In other words, the microscopic effects duced as a consequence of the spontaneous symmetry breaking.

Energy (MeV)
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