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Abstract

A semi-classical model for wobbling motion is presented as an extension to the Bohr–Mottelson model of wobbling motion. Using the
wobbling potential, a quantum mechanical equation is derived for anharmonic wobbling motion. We then attempt to explain the anha
observed in the excited bands of two wobbling phonons in theA � 160 region.
 2006 Elsevier B.V.Open access under CC BY license.
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Significant progress has been made in a last couple of y
with regard to the understanding of nuclear wobbling mot
This phenomenon was first predicted theoretically by Bohr
Mottelson thirty years ago[1], but it was not observed unt
experimental techniques advance such as 4π gamma-ray de
tectors. Finally in 2001, the first experimental report was p
lished on the evidence for wobbling motion in163Lu [2]. Sub-
sequently, possible wobbling excitations were reported als
165,167Lu [3,4]. These wobbling bands (of one-phonon exc
tion) were analyzed first by the particle-rotor model (PRM)[2,
5] and then by the random phase approximation (RPA)[6].

Evidence for two-phonon bands has also been reporte
163,165Lu [4,7]. Despite much experimental evidence imp
ing that the bands consist of two-phonon excitations, a ser
discrepancy with the original Bohr–Mottelson model was
served in the experimental energy spectrum: it shows st
anharmonicity. Currently, neither PRM nor RPA are succes
to explain this anharmonicity, but Matsuzaki and Ohtsubo p
posed an interesting idea with the tilted-axis cranking mo
(TAC) to account for this anharmonicity[8]. They calculated
the energy surface with respect to the tilt angles of the t
angular momentum vector, and found that the curvature o
energy surface around the origin becomes flatter as angula
mentum increases. At (and beyond) some critical angular
mentum, the local minimum at the origin disappears and
minima emerge as a manifestation of tilted rotation. They s
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gested that this “phase transition” from principal-axis rotat
(PAR) to tilted-axis rotation (TAR) causes the anharmonic
although they did not explicitly demonstrate a mechanism
the excited bands to acquire the anharmonic character.

The aim of this Letter is to present an analytical model to
plain the anharmonicity observed in the nuclear wobbling m
tion. Two steps are required to derive the anharmonic wobb
model proposed in this work. First, we consider a semi-class
treatment of the Bohr–Mottelson model to derive the wobb
potential energy. Then, the re-quantisation is made using
potential, so as to obtain the quantum mechanical equatio
the anharmonic wobbling motion.

In the Bohr–Mottelson model, the Hamiltonian reads

(1)Ĥ =
3∑

i=1

Î2
i

2Ji

.

This is the Hamiltonian of a triaxial quantum rotor witho
intrinsic structure. Classically, the dynamics of this rotor c
be described by the three Euler angles and three compo
of the total angular momentum vector. The angular mom
tum operatorsÎi in the Hamiltonian are those in the bod
fixed frame, so that their commutation relations are given
[Îi , Îj ] = −iεijk Îk , whereεijk denotes the Levi-Civita symbo
The Hamiltonian commutes with the total angular momen
Î2 = ∑3

i=1 Î2
i , but each component̂Ii does not commute whe

the system possesses triaxiality (J1 > J2 > J3, for instance)

(2)[Ĥ , Îi] = i

2

(
1

J − 1

J

)
(2Îj Îk + iÎi ) �= 0,
j k
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with (i, j, k) being cyclic. In the Bohr–Mottelson model, th
quantization axis is chosen along the 1-axis. The above
commutation relation implies that the eigenvalue ofÎ1 (denoted
in this Letter asK) is not a good quantum number. Therefo
it is convenient to introduce here the following expression
the wobbling state, which is generally described as

(3)|wobble; I 〉 =
I∑

K=−I

CK |IK〉.

In order to allow the classical analogy, the high-spin con
tion is applied in the Bohr–Mottelson model. Classically, t
condition is expressed asI � I1 � 1. Considering the non
conservation of theK quantum number, this classical conditi
should be interpreted as

(4)I � 〈Î1〉 � 1,

where the expectation value is taken with respect to the
given in Eq.(3). To satisfy this condition, we require now

(5)|CI |2 �
∑
K �=I

|CK |2.

Due to the normalisation condition
∑

K |CK |2 = 1, the above
equation also implies|CI |2 � 1.

Now, the Hamiltonian is decomposed into two terms

(6)Ĥ = I (I + 1)

2J1
+ Ĥw,

where the Dirac constant is set to be unity (h̄ = 1). The first
term is a c-number becauseI is the quantum number (the tot
angular momentum). The second term contains q-numbers

(7)Ĥw = 1

2

(
1

J2
− 1

J1

)
Î2
2 + 1

2

(
1

J3
− 1

J1

)
Î2
3 .

In the Bohr–Mottelson model, bosonic operators of creation
annihilation are introduced so as to diagonaliseĤw. Two steps
are necessary for this aim. First, the creation and annihila
operators are respectively defined as

(8)a† = Î2 + iÎ3√
2I

and a = (
a†)†

.

Second, to eliminate so-called “dangerous terms” (such asa†a†

and aa), the canonical transformation is performed to int
duce a new representation of the creation–annihilation op
tors(c, c†)

(9)c† = xa† − ya, with x2 − y2 = 1.

Herex andy are written in terms of the moment of inertia (Ji )
and are determined so as to make the dangerous terms
new representation vanish. The commutation relation is inv
ant with respect to the canonical transformation. The pai
operators (c, c†) therefore follows the same commutation re
tion as the original. The resultant Hamiltonian can be written
only c-numbers. The corresponding energy spectrum now r

(10)EI
n = I (I + 1)

2J1
+ ωw

(
n + 1

2

)
.

n-

-

te

d

n

a-

he
i-
f

ds

Here n is an eigenvalue of the number operatorn̂ ≡ c†c and
the wobbling excitation energy is given asωw = (I/J1) ×√

(J1 −J2)(J1 −J3)/(J2J3).
It looks as if the Hamiltonian is fully quantised, but it is th

result of the approximation for the bosonic commutation re
tion,

(11)
[
a, a†] = Î1/I � 1,

which is based on the condition(4). The exact form ofĤw
should be,

(12)Ĥw = ωw

(
n̂ + Î1

2I

)
.

Because we can easily prove thatn̂ andÎ1 do not commute with
each other,n cannot be treated as a quantum number with
the approximation in(11).

This approximation is a little drastic from a quantum m
chanical point of view, not only because the operatorÎ1 is sim-
ply replaced by a c-number (K), but also because the c-numb
is a non-conservedK-quantum number in this model. Howeve
this approximation can be totally justified when we consider
expectation values of the relevant quantities. That is, instea
Eqs.(11) and (12), we have

(13)
〈[
a, a†]〉 = 〈Î1〉/I � 1,

(14)〈Ĥw〉 = ωw

(
〈n̂〉 + 〈Î1〉

2I

)

(15)� ωw

(
〈n̂〉 + 1

2

)
,

where the expectation value is taken with respect to the w
bling state given in Eq.(3). This “semi-classical” approxima
tion cannot be compared with the experimental energy s
trum at low-lying states directly because the number of w
bling phonons can now take any real number which give
continuous spectrum. In other words, the current model is
back to the classical theory due to the semi-classical app
mation.

To re-quantise the system, let us introduce a dynamical
ableθ which is defined as

(16)θ = cos−1
( 〈Î1〉

I

)
.

This dynamical variable physically means the wobbling an
of the total angular momentum vector. If the high-spin con
tion I � 〈Î1〉 � 1 is valid,θ is very small (θ � 1), which is the
case considered in the original wobbling model. The aver
value for the number operator is calculated as,

(17)

〈
n̂ + 1

2

〉
�

(
1

4
κI + 1

2

)(
1− 〈Î1〉

I

)
,

where the term Re(CICI−2) is neglected due to the conditio
(5) andκ is given as

(18)κ = 1/J2 + 1/J3 − 2/J1√
(1/J2 − 1/J1)(1/J3 − 1/J1)

.
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In this way, the mean value of the wobbling Hamiltonian is n
expressed as

〈Ĥw〉 = ωw

[
κI

4

{
1− 〈Î1〉

I

(
1− 1

I

)}
+ 1

2

(
1− 〈Î1〉

I

)]

(19)� ωw

(
κI

4
+ 1

2

)(
1− 〈Î1〉

I

)
.

Because it is expected that the order ofκ is of O(1), we may
justify writing 〈Ĥw〉 as

〈Ĥw〉 � κI

4
ωw(1− cosθ)

(20)= I2

8
(1/J2 + 1/J3 − 2/J1)(1− cosθ).

Let us consider the classical motion ofθ by treating this en-
ergy expectation value as the potential energy for the clas
wobbling motion. The associated Lagrangian is now introdu
as

(21)L(θ, θ̇) = 1

2
mθ̇2 − mω2

sc(1− cosθ).

The semi-classical oscillator frequencyωsc is introduced here
as

(22)mω2
sc= I2

8
(1/J2 + 1/J3 − 2/J1).

This interpretation is possible because under the high-spin
dition given in Eq.(4), that is, when the wobbling angle is sm
(θ � 1), the potential is approximated that of a simple harmo
oscillator, that is,V (θ) � 1

2mω2
scθ

2.
Therefore, quantisation for the wobbling motion is carr

out through the simple one-dimensional Schrödinger equat

(23)

{
− 1

2m

d2

dθ2
+ mω2

sc(1− cosθ)

}
Ψ (θ) = EwΨ (θ).

This equation can be considered as an extended wob
model that can handle even the wobbling motion with la
amplitude (that is,I � 〈Î1〉). It should be noted that we di
not use the first part of the approximation(4) in the derivation.
(The high-spin conditionI � 1 is used, however.)

In this model, the mass parameterm is the only free para
meter. However, using experimental data, we can estimat
order of m in the following way. First, whenθ � 1, the en-
ergy spectrum is given asEw(ν) = ωsc(ν + 1

2). The one-phonon
excitation energy (�E1-phonon) observed in163Lu is approxi-
mately 350 keV, which should be equal toωsc. Using Eq.(22),
we have

(24)m = I2

8

(1/J2 + 1/J3 − 2/J1)

(�E1-phonon)2
.

The anharmonic wobbling potential derived in our mod
that is,V (θ) ∝ 1 − cosθ , is not strong enough to reprodu
the anharmonicity observed in experiment. According to ex
iment, the excitation energy from the first phonon state to
second is reduced by nearly 50% in comparison to the e
tation energy from the yrast to the first phonon state, whe
al
d

n-

g

e

-
e
i-
s

our anharmonic wobbling spectrum gives, at most, 10% re
tion (at I = 30h̄), from the result of our numerical calculatio
where the rigid body moment of inertia is used for163Lu with
(β, γ ) = (0.4,−20◦). (The degree of triaxiality is here me
sured byγ [10]. In this study, we employ the Hill–Wheele
coordinates, which gives the opposite sign convention to the
called Lund convention.) The mass parameterm is positive for
the rigid-body moment of inertia withγ � 35◦, which applies
to the present case. Owing to this fact, we consider only the
that the mass parameter is positive (m > 0), in the following
discussions. According to the spin-dependence in Eq.(24), the
mass parameter becomes increased at higher spin. AtI = 30h̄
and 40̄h, m is calculated asm = 6.7 and 11.9 (MeV−1), respec-
tively. Consequently, the higher the total angular moment
the less anharmonicity. For instance, the reduction is less
5% at I = 40h̄. In addition, with irrotational-flow moment o
inertia, we found that the anharmonicity turns out to be m
less substantial. This is because the moment of inertia is
portional toβ2 in the case of irrotational flow, which gives ris
to one order of magnitude smaller in comparison to the r
body case. As a result,m tends to be one order of magnitu
larger in accordance with Eq.(24).

In the rest of this Letter, we attempt to explain the discr
ancy between the above model and observed spectrum, w
shows very strong anharmonicity. One possibility for the d
crepancy could be the evolution of nuclear structure origina
from microscopic degrees of freedom, which is neglected
the model. For example, such an effect can be attributed to
Coriolis force in the rotating frame. Not only can the stret
ing effect of the nuclear shape cause a change of the mome
inertia, but also the quasi-particle excitations due to rotatio
alignment cause a kind of “phase transition” from the BCS
superfluid) phase to the normal fluid phase. Therefore, in
der to investigate further, we might need to go to microsco
theories such as the 3D-cranked Hartree–Fock–Bogoliubo
proach and the generator coordinate method[9], which demand
massive numerical efforts.

The suggestion by Matsuzaki and Ohtsubo based on
microscopic calculations is useful in considering possible
fects originating from intrinsic structure without performin
demanding numerical calculations. In the following, we foc
on a “phase transition” from PAR to TAR, as mentioned at
beginning of this Letter. In order to account for very strong
harmonicity, let us consider the following potential, which
similar to the energy surface obtained by Matsuzaki and O
subo

(25)Va(θ) ∝ 1− cosθ − a
(
1− cos2 θ

)
.

Fig. 1 shows the shape of the potential for difference cho
of the parameter,a. Whenθ � 1, the above potential reduce
to Va(θ) � (1 − 2a)θ2/2, which implies the effective mas
m∗ = (1 − 2a)m. From the simple analytical analysis of th
above potential, one can tell that the critical point happen
a = 1/2 (seeFig. 1). Below the critical point (−1/2 < a <

1/2), the classical ground state, that is, the minimum ofV (θ),
is found atθ = 0. This solution corresponds to PAR. Where
beyond the critical point (a > 1/2), the classical solutions ap
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Fig. 1. The wobbling potential energy with strong anharmonicity,Va(θ), for
different control parameter,a.

Fig. 2. Wobbling spectrum as a function of the control parameter,a. The
rigid-body moment of inertia is employed with(β, γ ) = (0.4,−20◦).

pear atθ = ±cos−1(1/2a), which correspond to TAR. Namely
the parametera has a physical meaning as a control param
of a (classical) phase transition between TAR and PAR. (
domaina < −1/2 is not considered in this study because
unphysical minimum appears atθ = ±π .)

The physical situation seen beyond the critical point (a >

1/2) is similar to the mechanism of spontaneous symm
breaking in the linear sigma model, orφ4 theory in quantum
field theory[11]. Unlike φ4 theory, however, the cause of th
“negative mass” in our case can be attributed to more spe
physical effects, that is, microscopic effects. It is widely kno
that nuclear moment of inertia matches neither that of a r
body, nor of an irrotational flow. It takes, in fact, the value b
tween these two limiting cases[10]. The primary reason is th
presence of the pairing correlation between constituent part
(nucleons). Because the mass parameterm in our rotor model
is determined by the moment of inertia in such a way prese
in Eq.(24), the deviation of the realistic value of the moment
inertia from the rigid-body or irrotational-flow values can infl
ence the magnitude of the mass parameter. It is therefore na
that the microscopic effects, such as the pairing correlation
taken into account through the renormalisation of the mass
rameter, that is,m∗. In other words, the microscopic effec
r
e

y

c

s

d

ral
re
a-

are supposed to be included in the present model effecti
through the control parameter,a. When the effective mass pa
rameter,m∗ changes from a positive value to negative, one
suppose that the spontaneous symmetry breaking occurs
analogy with the quantum field theory. A difference from t
φ4 theory is that the broken symmetry in our model is a d
crete symmetry (θ → −θ ), so that no Nambu–Goldstone mo
[12] is created for the restoration of the symmetry. Inste
quantum tunnelling plays the role of the symmetry resto
tion.

To examine how the strong anharmonicity is induced thro
the spontaneous symmetry breaking, numerical calculat
are carried out for the potentialVa(θ) by varying the con-
trol parameter,a. The results are shown inFig. 2. Below
the critical point (a < 1/2), the energy difference betwee
the ground and the first excited state is of the order ofh̄ωsc,
which is about 0.35 MeV in the present case. The anharmo
ity can be seen, but they are very small (less than 10%
already discussed earlier in connection to the original w
bling potential, Eq.(20). However, beyond the critical poin
the energy difference becomes extremely small due to
tunnelling effect. As the ground state is bound deepe
the potential, the energy splitting becomes smaller. Fina
arounda � 1.1, the ground and the first excited states c
be regarded as almost degenerate, which implies an ons
the spontaneous symmetry breaking in a quantum mec
ical sense. In other words, the quantised wobbling mo
around θ = 0◦ (PAR) goes into a phase transition to TA
beyond the critical point (a � 1.1). Considering that the de
generacy is perfect, the lowest three levels (n = 1,2, and
3) give rise to a very strong anharmonicity. In particul
at a = 1.1, the ratio is calculated to be�E2→1/�E3→2 =
335 (keV)/167 (keV) � 2, where�Ei→j ≡ Ej − Ei . This
result agrees well with the experimentally observed an
monicity.

These ideas are based on the consideration that micros
degrees of freedom bring further anharmonicity in addition
the wobbling potential derived in Eq.(20). It is thus necessar
to check the ideas and models presented here by using m
scopic approaches, which has to be done in the future.

In summary, a semi-classical wobbling model is presen
about an extension of the original wobbling model by Bohr a
Mottelson to derive the wobbling potential energy. This pot
tial is anharmonic and described by a wobbling angleθ , which
is introduced as a dynamical variable to represent the s
classical wobbling motion. The re-quantisation is made w
this potential and the dynamical variable. The quantum eq
tion for the anharmonic wobbling motion is then derived. Ho
ever, this anharmonic potential cannot reproduce the ex
mental spectrum. In order to explain the discrepancy, a fur
anharmonic model taking into account a phase transition g
into TAR from PAR is proposed as a possible influences c
ing from the intrinsic microscopic degrees of freedom and
associated quantum tunnelling effect. With the proper choic
the control parameter, it is demonstrated qualitatively that s
a strong anharmonicity seen in experiment can be well re
duced as a consequence of the spontaneous symmetry bre
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