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a b s t r a c t

There are verities of useful Krylov subspace methods to solve nonsymmetric linear system
of equations. GMRES is one of the best Krylov solvers with several different variants to
solve large sparse linear systems. Any GMRES implementation has some advantages. As
the solution of ill-posed problems are important. In this paper, some GMRES variants are
discussed and applied to solve these kinds of problems. Residual smoothing techniques
are efficient ways to accelerate the convergence speed of some iterative methods like
CG variants. At the end of this paper, some residual smoothing techniques are applied
for different GMRES methods to test the influence of these techniques on GMRES
implementations.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Iterativemethods for solving general, sparse linear systems of equations

Ax = b, (1.1)

where A ∈ Rn×n and x, b ∈ Rn, have been gaining popularity in many areas of scientific computing. Many scientists have
researched to solve (1.1) especially when the large sparsematrix A is severely ill-conditioned or is singular. Several different
methods have been introduced to solve this problem. Most of the current researches on iterative methods focus on two
sets of Krylov subspace methods and their variants [1]. Each set is based upon recursions which map the matrix A into a
family of projection matrices which are then used to obtain approximations to a solution of (1.1). The first set is based upon
the Arnoldi recursion and includes the Generalized Minimal Residual method (GMRES), the Full Orthogonalization method
(FOM) and their variants while the second set of methods is based upon nonsymmetric Lanczos recursion and includes
the Bi-Conjugate Gradient method (BiCG), the Quasi Minimal Residual method (QMR) and their variants [2–4]. The speed
of convergence and stability of these methods are important. Then many implementations have also been introduced to
improve these properties or create a simpler implementation for current iterative methods [5–10].

Some iterative methods like GMRES, LSQR and etc. are paying more attention to residual vector rk = b − A xk where
xk is the kth approximation solution of (1.1) by which the sequence of residual norms is decreased. GMRES is a popular
method [3] which is widely used for solving linear system of equations. There are several implementations for this method
that have been proposed for special goals with some advantages and disadvantages. Here, some GMRES implementations
for solving ill-posed linear problems are applied to know which GMRES algorithm, with what extent, is more applicable to
solve (nearly) singular problems and which one is not useful.
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This paper is organized as follows. In Section 2, some GMRES implementations and their properties are discussed. In
Section 3, smoothing techniques that may modify the accuracy of some iterative methods like CG variants and the effects
of residual smoothing on these methods are discussed. The solutions of ill-posed linear problems are applicable. But many
iterative solvers are not able to computemeaningful solutions. To have a good comparison among different GMRES variants,
in Section 4 they are applied to solve ill-posed problems.Moreover, some popular residual smoothing techniques are applied
on GMRES implementations to test the influences of these techniques over convergence speed of GMRES solvers.

For simplicity, the squarematrix A is assumed to be a real matrix and AT means the transpose of A. Throughout this paper
⟨·, ·⟩ is denoted for the inner product of two vectors and ‖·‖ is used for the associated norm.

2. Generalized minimal RESidual implementations

In 1986, Saad and Schultz proposed the well-known GMRES method for solving a nonsymmetric linear system of
equations [11]. They gave a practical implementation based on the Arnoldi process [12], the so called ‘‘Standard GMRES’’.
Next, many simple, stable or fast GMRES versions have been proposed and some of their implementations are discussed in
this section, briefly.

Generally, there are two main steps for GMRES implementations. The first generates an orthogonal basis thanks to the
Arnoldi process and the second solves a least squares problem tomodify last approximation by generated orthogonal vectors.
For solving (1.1), GMRES begins with an initial guess x0 ∈ Rn and characterizes the kth iterate as xk = x0 + zk where zk is
selected so the norm of corresponding residual rk is minimized over x0 + Kk (r0), then

‖rk‖ = ‖r0 − Azk‖ = min
z∈x0+Kk(r0)

‖r0 − Az‖ , (2.1)

where r0 = b − Ax0 and Kk(v) = span

v, Av, . . . , Ak−1v


.

To generate a set of basis vectors for Krylov subspace Kk (r0), GMRES usually uses Arnoldi process at the first step which
is as follows [11]:

Algorithm 1 (Arnoldi (Modified Gram–Schmidt) Process).

1. Given a vector v1 with ‖v1‖ = 1,
2. For j = 1, . . . , k do

a. vj+1 = Avj, For i = 1, . . . , j do hi,j =

vj+1, vi


, vj+1 = vj+1 − hi,jvi End.

b. hj+1,j =
 vj+1

 ; vj+1 =
vj+1
hj+1,j

;

End.

In brief, the steps 2a and 2b are shown with vj+1 = Π⊥

j Avj/
Avj

. From this algorithm, the following important relation

AVk = Vk+1H̄k, (2.2)

which GMRES depends on, is obtained which the columns of Vk, i.e. v1, v2, . . . , vk, are a set of orthonormal basis vectors for
Kk (r0) and upper Hessenberg matrix H̄k =


hi,j


∈ R(k+1)×k is the matrix representation of A on Kk (v1) with respect to Vk.

From (2.1) and (2.2) the basic formula of GMRES is obtained as

min
z∈x0+Kk(r0)

‖r0 − Az‖ = min
y∈Rk

‖r0 − AVky‖ ,

= min
y∈Rk

β e1 − H̄ky
 (2.3)

with β = ‖r0‖ [11]. Note that the Arnoldi process breaks down at step k if and only if hk+1,k = 0. In this case, matrix A is
singular. Now if yk minimizes the right hand side of least squares problem of (2.3), then zk = Vkỹ is the optimum solution
of left hand side of (2.3) among the Krylov subspace Kk (r0). Generally, the algorithm of GMRES is written as follows.

Algorithm 2 (Generalized Minimal RESidual Method).

1. Given x0, compute r0 = b − Ax0, v1 =
r0

‖r0‖
.

2. Create (k + 1) orthogonal vectors v1, v2, . . . , vk+1 as a basis for Kk+1 (r0).
3. Find ỹ ∈ Rk as solution of least squares problem (2.3).
4. Update xk = x0 + Vkỹ, if xk does not satisfy, set x0 = xk and go to 1.

According to this algorithm, GMRES is started with an initial guess x0, after that orthogonalizing the vector vk+1 with
v1, v2, . . . , vk and finding the solution of a least squares problem, leads us to the next GMRES approximation so that the
recursion of residual norms can be decreased.

Different GMRES methods have special properties, but they usually follow some regulations. For example two following
questions are significant for GMRES implementations to be answered.
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Question 1. How to compute a residual norm (without a computing solution at each step)?

Question 2. How to solve the least squares problem?

The answer of the first question leads us either to break the orthogonalization process or not, andwhether or not to generate
a new basis vector whenever the residual norm has an acceptable accuracy. Otherwise this new vector causes an ill-posed
least squares problem (according to (2.2), H̄k is singular) that does not modify our previous approximation, but may be
causes some unnecessary arithmetical computations or in some cases the exact solutionmay be computed. Then the answer
of Question 1 is the key of choosing to continue or break the Arnoldi process [13]. The following theorem confirms this
statement, theoretically.

Theorem 1. Suppose k steps of the Arnoldi process have been taken, and assume that H̄k is singular (i.e. k is the lowest positive
integer which hk+1,k = 0). Then

min
y∈Rk

β e1 − H̄ky
 = min

y∈Rk−1

β e1 − H̄k−1y
 .

Proof in [13].
On the other hand, one least squares problemwithdimension k should be solved, and computing the solutionquicklywith

enough accuracy is a considerable task. In the usual way, Givens rotations transfers Hessenberg least squares into an upper
triangular problem which is easier and these two problems are equal. However some different methods (like GMRESwG)
have been proposedwhich apply various techniques. Then any proposed implementation of GMRES uses especial techniques
to answer the above questions. Some of these algorithms are discussed below.

To know more about the solution xk obtained by GMRES in different cases, two following theorems are applicable.

Theorem 2. Apply GMRES to (1.1) and suppose that dim Kk (r0) = k for k ≥ 0. Then exactly one of the following happens:

(a) dim A Kk(r0) = k − 1 and A(x0 + z) ≠ b for every z ∈ Kk(r0);
(b) dim A Kk(r0) = k and dim Kk+1(r0) = k, xk is uniquely defined and A xk = b;
(c) dim A Kk(r0) = k and dim Kk+1(r0) = k + 1, xk is uniquely defined and A xk ≠ b.

Proof in [14].
The following theorem explains when GMRES breaks down or not when the matrix A is (nearly) singular.

Theorem 3. Apply GMRES to (1.1). Then, in some steps, either

(a) GMRES breaks down through rank deficiency of the least squares problem (2.1) without determining a solution or
(b) GMRES determines a solution without break down and then breaks down at the next step through degeneracy of the Krylov

subspace.

Proof in [14].
Let linear problem (1.1) be an ill-condition. From the last theorem, it is concluded that the computed solution is

meaningless whenever the matrix A has rank deficiency or the solution is correct if the next basis vector Vk+1 can not
be generated (because hk+1,k = 0). Then the GMRES approximation xk in some cases is not applicable. For simplicity,
GMRES like other iterative methods can not solve all problems. Anyhow it is one of the best solvers that has several various
implementations. Below, some of the GMRES implementations are discussed.

2.1. Standard GMRES

This is the first implementation introduced by Saad and Schultz [11]. It is a popular, simple and powerful method among
current researchers so they have used this method in their works [5,6,10, and etc.] To find the solution of least squares
problem (2.3), it was suggested to use Givens rotations to transfer (2.3) into an upper triangular linear system of equations
with order k(k ≪ n). For simplicity, Givens rotations are used to decompose H̄k into QkR̃k factorization where Qk is an
(k + 1) × (k + 1) orthonormal matrix obtained by the product of k Givens rotations and R̃k =


Rk

0 · · · 0


in which Rk = (ri,j) is

an upper triangular matrix that is obtained by omitting the last row of R̃k. Then Givens rotations are applied to decompose
H̄k into its QR factorization. A Givens rotation is an identity matrix with order k+ 1 that only four components are replaced
by ci, si scalars as follows

Ji =

1 0
ci si

−si ci
0 1

 where c2i + s2i = 1, i = 1, . . . , k.
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The ith Givens rotation Ji is constructed so that


ci si
−si ci

 
hi,i

hi+1,i


=


∗

0


. The byproduct of k first Givens rotations (i.e. Qk =

JkJk−1 · · · J1) from the left hand side of H̄k and β e1 (β = ‖r0‖& e1 ∈ Rk+1), upper triangular system

Rkyk = gk (2.4)

and corresponding residual norm γk are obtained as follows.


H̄kβe1


=


∗ ∗ ∗ ∗ ∗ β
∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ 0
∗ ∗ ∗ 0

∗ ∗ 0
∗ 0

 Apply Givens
−−−−−−→
Rotations Qk


+ + + + + ×

0 + + + + ×

0 + + + ×

0 + + ×

0 + ×

0 γk

 =


Rk gk
0 γk

 
s.t. gT

k ∈ Rk .

If yk is the solution of (2.4), it will be the solution of (2.3). Then the new approximation is computed as xk = x0 + Vkyk while
γk (it is the answer of Question 1) is a controller of the outer loop of the Arnoldi process, see [11]. Algorithm 1 usually breaks
when γk < ε or k is equal to a restart number.

Here the algorithm of Standard GMRES is briefly as follows.

Algorithm 3 (Standard GMRES with Modified Gram–Schmidt Process (GMRES)).

1. Give x0 and compute r0 = b − Ax0, β = ‖r0‖ , v1 =
r0
β
.

2. For j = 1, . . . , k
a. vj+1 = Π⊥

j Avj/
Avj

, Jj Jj−1 · · · J1H̄j


=


Rj
0


and Jj


Jj−1 · · · J1 (β e1)


=


gj
γj


,

b. If γj < eps set k = j and go to 3,
End

3. yk = R−1
k gk and xk = x0 + Vkyk, if xk does not satisfy set x0 = xk and go to 1.

Due to the above narrative, standard GMRES transfers the equation Ax ≃ b into a triangular system and the approximate
solution is computed as follows

Ax ≃ b
AVk=Vk+1H̄k
−−−−−−→ H̄ky ≈ βe1

H̄k=QkR̃k
−−−−→ Rky = gk

−→ ỹ = R−1
k gk −→ xk = x0 + Vkỹ.

Now let the matrix A be (nearly) singular. Then the triangular matrix Rk is singular and the new ill-posed problem Rky = gk
should be solved by some simple and routine methods to modify the last approximation. Many scientists have focused on
this method and ran it for their computations, because it has a supple and simple implementation with fast convergence.

The following theories describe more details about standard GMRES.

Theorem 4. Let the characters Vk, H̄k etc. be followed as they are used, then the following results can be obtained from standard
GMRES.

(a) The rank of AVk is equal to the rank of Rk, in particular, if rk,k = 0 then A must be singular.
(b) The vector yk which minimizes

β e1 − H̄ky
 is given by yk = R−1

k gk.
(c) The residual norm at step k satisfies ‖b − A xk‖ = |γk|.

Proof in [3, p. 162].
This theorem generally summarizes the standard GMRES. Then let orthonormal matrix Vk be full rank, then the ranks of

A and Rk are equal and whenever Rk is rank deficiency, the problem (1.1) is ill-posed which for xk, one of the two cases of
Theorem 3 has happened.

2.2. GMRES with Householder transformations

The Arnoldi process has been originally devised as an orthogonal projection method to approximate a subset of the
spectrumof a nonsymmetricmatrix [12]. Special algorithms for computing theArnoldi basis vectors are available. They differ
in the way in which the orthogonalization of the Arnoldi process is carried out. Standard GMRES depends on the Arnoldi
process based on the orthogonalization on Gram–Schmidt but this implementation, which was proposed by Walker [15],
applies Householdermatrices to generate orthonormal basis vectors. Now the Arnoldi recurrence based on the Householder
transformations is demonstrated. In this algorithm, vk+1 is obtained as the (k + 1)st column of the product of k + 1
Householder matrices, i.e.

vk+1 = P1P2 · · · Pk+1ek+1, v1 =
r0
β

, β = ‖r0‖ , (2.5)
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where the matrix P1 is computed by

P1 = I − 2 s1 sT1, ‖s1‖ = 1, P1 v1 = e1, (2.6)

and for i = 1, . . . , k the matrices Pi+1 are determined by

Pi+1 = I − 2 si+1 sTi+1, ‖si+1‖ = 1, si+1 =

0 · · · wi+1 · · · wn

T
,

Pi+1 (Pi · · · P1 Avi−1) =

h1,i · · · hi+1,i 0 · · ·

T
.

(2.7)

By processing the k steps of this orthogonalization algorithm, Arnoldi recurrence can be described in the following matrix
form

AVk = Vk+1H̄k,

where the extra zero elements of matrices have been omitted so that H̄k = (hi,j) is an (k + 1) × k upper Hessenberg matrix
and columns of Vk ∈ Rn×k are orthonormal basis vectors for the Krylov subspace Kk(r0). To compute an approximating
solution for (1.1) by this implementation, the upper Hessenberg least squares problem miny∈Rk

β e1 − H̄ky
 should be

solved (similar to standard GMRES) by using Givens rotations. Now the Householder execution of GMRES which sums up
the above statements is illustrated by the following algorithm.

Algorithm 4 (GMRES with Householder Transformations (HGMRES)).

1. Give x0, compute r0 = b − Ax0, β = ‖r0‖ , v1 =
r0
β
.

2. P1 = I − 2s1sT1 where ‖s1‖ = 1 and P1r0 = β e1, v1 = P1 e1.
3. For j = 1, . . . , k

a. Pj+1 = I − 2sj+1sTj+1 where
sj+1

 = 1 and Pj+1(Pj · · · P1Avj−1) =

h1,j · · · hj+1,j 0 · · ·

T .
b. vj+1 = P1P2 · · · Pj+1ej+1, Jj


Jj−1 · · · J1H̄j


=


Rj
0


and Jj


Jj−1 · · · J1 (β e1)


=


gj
γj


.

c. If γj < eps set k = j and go to 4,
End

4. yk = R−1
k gk and xk = x0 + Vkyk, if xk does not satisfy set x0 = xk and go to 1.

In the above algorithm, the jth Givens matrix Jj, j = 1, . . . , k, is chosen to have

Jj

Jj−1 · · · J1(h1,j, h2,j, . . . , hj+1,j)

T 
= (r1,j, . . . , rj,j, 0)T ,


s.t. Rj = (ri,j) ∈ Rj×j .

So Rj is an upper triangular matrix. As the least squares problem min
β e1 − H̄ky

 and the transferred upper triangular
Rky = gk acquired by Householder transformations and the Gram–Schmidt process are alike, the properties and notations
(like Theorem 4), which were discussed in previous subdivision, are pursued by Householder GMRES.

This Householder algorithm uses slightly less storage than the Gram–Schmidt process; anyhow, it requires additional
arithmetic [15]. Rozloznik in [16] proved that this implementation is numerically backward stable. Drkosova et al. have
shown [17] that if the Arnoldi basis is computed via Householder orthogonalization and the transformed least squares
problem is solved using Givens rotations, then the computed GMRES approximation xk has a guaranteed backward error
of size at worst O


k5/2


ε. This means that the backward error and the final residual norm guaranteed by Householder

GMRES are essentially the same as those guaranteed by direct solving of the system A x = b via Householder or Givens QR
decomposition. Walker in [15] suggested applying this method in parallel computations because of its greater efficiency.
For more information relating to this algorithm and properties of Householder matrices, refer to [17,16,18,15].

2.3. Simpler GMRES

This algorithm was proposed by Walker and Zhou [9]. The more important property of this method is to solve upper
triangular linear systemwith order k instead of finding the solution of the least squares problemwith (2.3) form. Thismethod
has simpler implementation and requires less arithmetic cost than standardGMRES. So it is called Simpler GMRES (SGMRES).
By shifting the Arnoldi orthogonalization it begins with Ar0 instead of r0. If w1 = Ar0/ ‖Ar0‖, the Arnoldi process is used to
generate an orthonormal basis {w1, w2, . . . , wk−1} of the Krylov subspace AKk−1 (r0) = span


A r0, A2r0, . . . , Ak−1r0


.

Define

Wk−1 = (w1, w2, . . . , wk−1) and Wk = (Wk−1, wk) .

Then the popular relation AWk−1 = WkH̃k−1 is obtained where H̃k−1 is an k × (k − 1) upper Hessenberg matrix. From the
above,

Kk (r0) = span {r0} ⊕ AKk−1 (r0) = span {v1, w1, w2, . . . , wk−1}

where v1 = r0/ ‖r0‖ and the symbol ⊕ denotes the direct sum.
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By writing Fk = (v1, w1, w2, . . . , wk−1) = (v1,Wk−1), it satisfies that

A Fk = (A r0/ ‖A r0‖ , AWk−1) =


A r0/ ‖A r0‖ ,WkH̃k−1


.

If Rs
k =


A r0/ ‖A r0‖

0 H̃k−1


then Rs

k is upper triangular and A Fk = WkRs
k. Now the simpler GMRES approximation xk is as

xk = x0 + Fkỹ where ỹ is the solution of triangular linear problem Rs
ky = W T

k r0, see [9,19]. Now, the SGMRES is denoted in
the following algorithm.

Algorithm 5 (Simpler GMRES (SGMRES)).
1. Give x0, compute r0 = b − Ax0, ρ0 = ‖r0‖ , ρ = 1, r0 =

r0
ρ0

(=v1).
2. For j = 1 : k

a. (wj =)vj = Π⊥

j−1Avj−1/
Avj−1

 , (v1 = Ar0), hj,j =
vj

 , vj =
vj
hj,j

, ζj =

r0, vj


.

b. ρ = ρ sin

cos−1


ζj
ρ


. If ρ.ρ0 < eps set k = j and go to 3, else r0 = r0 − ζjvj.

3. a. y =

η1 · · · ηk

T
= H−1

k


ζ1 · · · ζk

T where

RS
k =


Hk =


hi,j


,

b. xk = x0 + ρ0zk where zk =


η1r0 if k = 1

η1r0 +

−k−1
i=1


ηi+1 + η1ζi


vi if k > 1.

If xk does not satisfy r0 = (r0 + ξkvk) /ρ, ρ0 = ρ, ρ = 1 and go to 2.

In the SGMRES algorithm, if ρρ0 < eps (in step 2b), Arnoldi orthogonalization is stopped. It means that ρρ0 is the
corresponding residual norm (before computing the approximation solution) and whenever ρρ0 < eps, the corresponding
upper triangular problem should be solved (i.e. it is the answer to Question 1).

SGMRES is mathematically equivalent to standard GMRES, but the numerical behavior of SGMRES is not as robust as
GMRES. Therefore it is preferable to use GMRES in practical experiments. Anyhow, the SGMRES algorithm is simpler to run
andneedsO


k2


fewer arithmetic operations over an iteration cycle of k steps than the usual Gram–Schmidt implementation

of GMRES(k) [9]. Boojhawon and Bhuruth [20] proposed an augmented simpler GMRES method and Liu [21] proposed a
simpler hybrid GMRES method that will be useful for readers who want to know more about SGMRES.

2.4. Range restricted GMRES

The Range Restricted GMRES (RRGMRES) method was proposed by Calvetti et al. [22] as a version of GMRES to solve an
inconsistent linear system of equations.Many steps of RRGMRES andGMRES are equivalent. Thenmost of the properties and
notations of GMRES for RRGMRES are pursued. In this algorithm, the Arnoldi process is startedwith Ar0 (like Simpler GMRES)
inwhich the other steps of this implementation are similar to the standardmethod. Then the kth iterate xk = x0+zk (k > 1)
is obtained from the offine subspace x0 + Kk(A r0) such that

‖rk‖ = ‖r0 − Azk‖ = min
z∈x0+Kk(Ar0)

‖r0 − Az‖ . (2.8)

In fact, RRGMRES is looking for the solution of above least squares among the range of A (i.e. ℜ (A)).
Let xk = x0 + zk, (zk = Vkȳ) be the solution of (2.8) and

rk = r0 − Azk = r0 − AVkȳ
be the corresponding residual. As a byproduct of V T

k+1 from the left hand side of the last equation, it can be seen that

V T
k+1rk = V T

k+1 (r0 − Azk) ,

which by setting ḡk = V T
k+1r0 and using the important relation AVk = Vk+1H̄k the following relation is obtained

V T
k+1rk = V T

k+1r0 − V T
k+1Vk+1H̄kȳ = ḡk − H̄ky, (2.9)

and
‖rk‖ =

 V T
k+1rk


=

V T
k+1 (r0 − Azk)


= min

z∈x0+Kk(Ar0)

V T
k+1 (r0 − Azk)


= min

y∈Rk

ḡk − H̄ky


= γk+1. (2.10)
Then, (2.8) is transformed into an upper Hessenberg least squares problem with dimension k (k ≪ n) by Arnoldi
orthogonalization. γk+1 is also the answer of Question 1 which makes certain the corresponding residual norm before
computing the kth approximate xk. Then an upper Hessenberg least square (2.3) should be solved by using Givens
transformations like standard implementation. Now, the RRGMRES algorithmwhich is approximately similar to Algorithm3,
is written below.
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Algorithm 6 (Range Restricted GMRES (RRGMRES) Method).

1. Given x0, compute r0 = b − Ax0, v1 =
Ar0

‖Ar0‖
.

2. For j = 1, . . . , k
a. vj+1 = Π⊥

j Avj/
Avj

, Jj Jj−1 · · · J1H̄j


=


Rj
0


and Jj


Jj−1 · · · J1


ḡj


=


gj
γj


.

b. If γj < eps set k = j and go to 3,
End

3. ȳ = R−1
k gk and xk = x0 + Vkȳ, if xk does not satisfy set x0 = xk and go to 1.

Similar to GMRES, Arnoldi orthogonalization of RRGMRES is stopped when γk < ε and the corresponding least square is
solved. RRGMRES was proposed to solve ill-posed linear problems which the following theorem explains in some more
detail, relating to the RRGMRES approximation of the ill-posed problem.

Theorem 5. Apply the RRGMRES method to system (1.1) until breakdown at step k. If rank(A) = k− 1 and dim A Kk−1 (A r0) =

k − 1, then the RRGMRES method produces a least square solution of (1.1).

Proof in [23].
To know more about this algorithm and its properties refer to [22,24].

2.5. GMRES implementation without using Givens rotations

This implementation was proposed by Ayachour in [25]. In this algorithm, the method of computing the solution of
least square (2.3) is changed so that the Givens rotations do not need to be used. Let x0 be the initial guess and the Arnoldi
algorithm is started with r0 = b−A x0 to generate the orthonormal basis vectors and H̄k =


hi,j


∈ R(k+1,k) is the coefficient

matrix, constructed by Gram–Schmidt orthogonalization. This implementation separates the upper Hessenberg matrix H̄k

into the row-vector wk and upper triangular matrix Hk ∈ Rk×k where H̄k =


wk
Hk


with wk =


h1,1 · · · h1,k


.

GMRESwG defines some differentiable functions and looks for the minimization solutions of functions by their
differential properties such that the computed solutions could modify the last approximation of (1.1). It means that the
solution of least square (2.3) is computed by somedifferentiable functions instead of usingGivens rotations. For a description
of this method, at first (2.3) is written as ‖rk‖ / ‖r0‖ = miny∈Rk

e1 − H̄ky
. By applying the definition of inner product of

two vectors a, b ∈ Rn as ⟨a, b⟩ = aTb, a new function Lk : Rk
→ R is defined as

Lk (y) =
e1 − H̄ky

2
= 1 −


wT , y


−


y, wT 

+

wT , y

 
y, wT 

+ ⟨Hky,Hky⟩ (2.11)

for arbitrary vector y ∈ Rk where wT designates the transpose of w. To minimize Lk (y), two possible cases are
considered [25].

At first, supposeHk is nonsingular, so by setting t = Hky and u = H−T
k wT , the relation (2.11) is changed as a new function

fk : Rk
→ R as

fk (t) = 1 − ⟨u, t⟩ − ⟨t, u⟩ + ⟨u, t⟩ ⟨t, u⟩ + ⟨t, t⟩ . (2.12)

Now, let t ′ be the global minimizing of fk then t ′ = u/

1 + ‖u‖2 minimizes (2.11) so that the optimum solution of Lk (y) is

yk = H−1
k t ′ and Lk (yk) =


1/


1 + ‖u‖2.

In the second case, letHk be singular and k be the lowest integer for which hk+1,k = 0. ConsiderH ′

k = Hk +ekeTk (ek means
the kth column of identity matrix Ik) which is nonsingular. So by setting t = H ′

ky and u = H ′

k
−T

wT the function gk : Rk
→ R

similarly is described as

gk (t) = 1 − ⟨u, t⟩ − ⟨t, u⟩ + ⟨u, t⟩ ⟨t, u⟩ + ⟨t, t⟩ − ⟨t, ek⟩ ⟨ek, t⟩ (2.13)

where ek is the kth column of Identity matrix Ik. It is proved [25] that

t ′ =


0 · · · 0

1
u(k)

T

, (2.14)

is the global minimizing solution of gk and yk = H ′

k
−1t ′ is the absolute solution of Lk (y) where u(k) is the kth component of

u.
By gathering the results of two mentioned cases and grouping them, another implementation of GMRES is obtained that

is described as the next algorithm [25].

Algorithm 7 (GMRES without using Givens Rotations (GMRESwG)).

1. Give x0, set α = 1, compute r0 = b − Ax0, ρ0 =, ‖r0‖ , v1 =
r0
ρ0
.
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Table 2.1
Computational requirements of GMRES implementations to complete the kth step of the orthogonalization process.

Standard HGMRES SGMRES RRGMRES GMRESwG

Sums n2
+ (2k + 1)n 3n2

+ (n − k)2 n2
+ (2k + 1)n n2

+ (3k + 2)n n2
+ (2k + 1)n

Products n2
+ k(2n − 1) 3n2

+ O(n) n2
+ k(2n − 1) n2

+ (3k + 1)n + O(n) n2
+ k(2n − 1)

Table 2.2
Required flap costs for finding the solution of projected problem with order k obtained by various GMRES methods.

Standard HGMRES SGMRES RRGMRES GMRESwG

Sums nk +
5
2 k

2
+ O(k) nk +

5
2 k

2
+ O(k) nk +

3
2 k

2
+ O(k) nk +

5
2 k

2
+ O(k) nk + k2 + O(k)

Products n(k + 1) +
1
2 k

2
+ O(k) n(k + 1) +

1
2 k

2
+ O(k) nk +

1
2 k

2
+ O(k) n(k + 1) +

1
2 k

2
+ O(k) nk+

1
2 k

2
+O(k)

Table 2.3
Total storage cost of GMRES implementations.

Standard HGMRES SGMRES RRGMRES GMRESwG

Storage n2
+ (k + 4)n + O(k2) n2

+ (k + 3)n + O(k2) n2
+ (k + 4)n + O(k2) n2

+ (k + 4)n + O(k2) n2
+ (k + 2)n + O(k2)

2. For j = 1 : k
a. vj+1 = Avj, w(j) = h1,i =


vj+1, v1


, vj+1 = vj+1 − w(j)v1,

b. For i = 2 : j do hi,j = λi−1 =

vj+1, vi


, vj+1 = vj+1 − λi−1vi, End.

c. hj+1,j =
vj+1

 , vj+1 =
vj+1
hj+1,j

, g =

λ1, . . . , λj−1

T , Rj =


Rj−1 −Rj−1g

1


, uj =


Rj (:, j) , wT


,

d. γj = 1/


β2 + (u(j) α0)
2, sin θj = γjhj+1,j, α1 = α0 sin θj, ‖ri‖ = ρ0α1,

e. If
rj < eps or |u(j)| < eps set k = j and go to 3, u(j) =

u(j)
hj+1,j

, Rj (:, j) =
1

hj+1,j
Rj (:, j) , α0 = α1.

End
3. z =


sin2 θku(1), . . . , sin2 θku(k − 1), γ 2

k u(k)
T , yk = Rkz


i.e. yk = H ′

k
−1z


, xk = x0 + ρ0α

2
0Vkyk, if xk does not satisfy

set x0 = xk and go to 1.

In the above algorithm, Rk is considered as the inverse of triangular matrix H ′

k and R (:, j) means the jth column of matrix R.
This implementation is very fast and mathematically equivalent to GMRES. To comprise GMRES and GMRESwG based
on Algorithm 2, the first, the second and the fourth steps of two implementations are the same and only the third step
differs. GMRESwG requires fewer arithmetic computations and storage costs comparedwith other GMRES implementations.
Numerical results also prove that this method converges to the solutions quickly. The following theorem shows, when the
orthogonalization process is stagnated which to avoid from this stagnation, and GMRESwG is restarted.

Theorem 6. GMRESwG stagnates at the kth iteration if and only if the kth component uk of the vector u = H ′

k
∗−1

w∗ is equal to
zero.

Proof in [25].
For more information about this implementation refer to [25,26].
Now, to know more about these algorithms and to have a more reasonable comparison, the required flaps of these

methods have been mentioned in the following tables. In Table 2.1, the required flaps to perfect the kth step of the Arnoldi
process by different methods have been shown.

In the above table, HGMRES needs more flaps rather than other methods to generate the (k + 1)st orthonormal basis
vector of Krylov subspace Kk(A, r0) such that its computational cost is around three times more. RRGMRES also uses more
arithmetic computations but this addition is neglectful. Generally, RRGMRES requires one more matrix–vector product at
each outer cycle of the iteration because it starts the Gram–Schmidt process by Ar0 instead of r0. The rest of the methods
apply to the same Arnoldi algorithm and their flaps are equal to normalize the (k + 1)st Krylov basis vector. The Table 2.2
displays the required arithmetic operators for solving the least squares problem (2.3) by these methods.

HGMRES, RRGMRES and standard algorithms solve the least squares problem by using Givens rotations similarly. Then
they need equal flaps. SGMRES and GMRESwG require less arithmetic costs because SGMRES solves an upper triangular
linear problem and GMRESwG computes the solution of (2.3) by differentiable functions.

In some cases, the amount of storage cost of an iterativemethod is one important factor to apply thatmethod for scientific
computations. Table 2.3 is about the storage rate of GMRES algorithms.

HGMRES and GMRESwG run with at least two and one less n-vectors of storage than the others respectively. Sometimes
using a smaller amount of n-vectors when the dimension of square matrix A is too large is more efficient. Other methods
are similar in this point of view.
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GMRES is so popular among scientists that several other implementations and modifications have been proposed to
have better stability or to obtain a better convergence speed with fewer storage costs. Interested readers can find some
more algorithms related to GMRES in [27–31,10].

3. Residual smoothing technique

Any iterative method produces a recurrence of iterates {xk} with associated residuals {rk} for solving (1.1). Residual
Smoothing Techniques (RST) generate an auxiliary sequence {yk} to reduce the residual norms [32]. Then this technique
is calledMinimal Residual Smoothing (MSR). Here, some important MSR techniques are considered. For the approximations
{xk}, one smoothing technique is applied to generate a secondary sequence {yk} via a simple relation

y0 = x0 and yk = (1 − ηk) yk−1 + ηkxk (k ≥ 1) (3.1)

where ηk minimizes ‖b − A ((1 − η) yk−1 + ηxk) ‖ over η ∈ R. Then

ηk = −
sTk−1 (rk − sk−1)

‖rk − sk−1‖
2 (3.2)

with sk = b − Ayk, see [33,34].
In practice, there are several MSR methods [33,34,32, and etc.] to decrease the residual norms of some especial iterative

methods. Here two popular smoothing techniques from [32] are introduced. The below algorithm was proposed by Walker
and Zhou to extend the past algorithm which Weiss and Schonauer [33] suggested to obtain results with higher accuracy.

Algorithm 8 (Minimal Residual Smoothing (MRS)).

1. Set y0 = x0, s0 = r0 and u0 = v0 = 0.
2. For k = 1, 2, 3, . . .

a. pk = xk − xk−1, Apk, vk = vk−1 + pk and uk = uk−1 + Apk,
b. ηk = sTk−1uk/uT

kuk, yk = yk−1 + ηkvk and sk = sk−1 − ηkuk,
c. uk = (1 − ηk) uk and vk = (1 − ηk) vk.

This algorithm depends on the parameter ηk. The second MSR implementation that was also proposed by Walker and Zhou
is based on two scalars τk and ρk instead of ηk in which ρk = ‖rk‖ and τk is computed by the relation

1
τ 2
k

=
1

τ 2
k−1

+
1
ρ2
k
. (3.3)

This selection leads us to the following MSR algorithm [32] which is named Quasi Minimal Residual Smoothing (QMRS).

Algorithm 9 (Quasi Minimal Residual Smoothing (QMRS)).

1. Set y0 = x0, s0 = r0 and u0 = v0 = 0.
2. For k = 1, 2, 3, . . .

a. pk = xk − xk−1, Apk, vk = vk−1 + pk, uk = uk−1 + Apk and ρk = ‖sk−1 − uk‖.
b. Obtain τk by 1

τ2
k

=
1

τ2
k−1

+
1
ρ2
k
. yk = yk−1 + (τk/ρk)

2 vk and sk = sk−1 − (τk/ρk)
2 uk.

c. uk =

1 − (τk/ρk)

2 uk and vk =

1 − (τk/ρk)

2 vk.

Theoretically, it was proved that the results of two popular iterative methods QMR (Quasi Minimal Residual) and
BCG (BiConjugate Gradient) are similar in which the following relations between their recurrence of iterates and their
corresponding residuals are given.

1
τ 2
k
rQk =

1
τ 2
k−1

rQk−1 +
1
ρ2
k
rBk ,

1
τ 2
k
xQk =

1
τ 2
k−1

xQk−1 +
1
ρ2
k
xBk .

(3.4)

From (3.3), it is concluded that theQMRmethod is obtained from theBCGmethod by a smoothing technique like Algorithm9.
It was shown in [35] that there are some interesting and simple relations between FOM/CG/BiCG and GMRES/MINRES/QMR
respectively. In GMRES the projected matrix H̄k is transformed into an upper triangular matrix (with last row equal to zero)
by Givens rotations. So the major difference between FOM and GMRES is that the last row of FOM ((k + 1)th row) is simply
discarded, while in GMRES this is rotated to a zero vector. By characterizing the Givens rotation on rows k and k+1, in order
to zero the element hk+1,k, the following relation between FOM and GMRES residuals is given [36,37,35]
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rFk  =

rGk 
1 −

rGk  /
rGk−1

2 . (3.5)

There are some more QMR approaches to modify iterative methods for solving a linear system of equations. Zhou and
Walker [32] have shown that the QMR approach can also be followed for other methods such as CGS and BiCGSTAB. The
main idea is to update the approximate solution as xk+1 = xk + αkpk and the corresponding residual by rk+1 = rk − αkApk
to modify the computed solution of one iterative solver. In [38] a QMRS approach for the CGS method introduced while in
[39,37] and other QMR techniques for BiCGSTAB were proposed.

4. Numerical tests

In this section, different GMRES implementations are comparedwith each other and thesemethods are also smoothed by
theMRS and QMRS techniques. The numerical results are tested with the approximation iterates of these iterative methods.
For this comparison, a well-known ill-posed problems of ‘‘Regularization Tools’’ package [40] was used. In ill-conditioned
problemsusually somenoise, obtained by the discretization of problems (like the first kind of integral equationswith smooth
kernel, PDE equations and etc.) or other sources of arising error, are contaminated with the solutions. So computing the
answers of these problems directly by iterative methods is difficult or impossible or their solutions may be irrelevant. There
are some methods such as regularization techniques that can reach a meaningful solution. Tikhonov regularization is one
popular way that transfers ill-posed linear systems into the following least squares

min
x∈Rn


‖Ax − b‖2

+ λ ‖L‖2 (4.1)

where λ is a nonnegative real scalar so called regularization parameter and L is a regularization operator [41]. For simplicity,
the equivalent linear system

ATA + λL

x = ATb, (4.2)

instead of (4.1) is solved. Then ill-posed problems with the form (1.1) are transformed into (4.2), and later on they are
answered by iterative methods. As the dimensions of sparse matrices are large, it is reasonable to use the restarted GMRES
variants (i.e. GMRES(k)) in which k is the restarted number.

Some researches by GMRES versions focused on solving singular or ill-conditioned problems [14,24,30]. In these
experiments L = In (identitymatrixwith order n) as a regularization operator and λ = 10−8 as a regularization parameter in
(4.2) are set. The dimension of matrix A (i.e. n) and the condition number of A (i.e cond (A) = ‖A‖

A−1
) have been written

below of each problem name to display more about the sensitivity and ill-conditioning of problems. In the whole of this
experimental work, ε = 10−12 as the tolerance, k = 25 as the maximum dimension of Krylov subspace Kk and kmax = 200
for the maximum cycle of outer iterations are considered.

To have a more reasonable comparison, the backslash operator of Matlab is also used to compare the accuracy and
convergence speed of iterative methods. Numerical results of smoothed GMRES variants by MSR and QMSR algorithms
have been shown in the second and third inner rows of each problem. The numerical results are shown in Tables 4.1 and
4.2.

The whole test problems that are used in the above tables include ill-conditioned square matrices of which iterative
methods can never find a meaningful solution. But in general, GMRES variants approximately solve themmeaningfully. The
above problems were tested by some other parameters such as n = 100, 200, 500, . . . and k = 15, 20, 30, . . . and obtained
results were approximately similar.

Among the GMRES variants of Section 2, standard GMRES and GMRESwG are the fastest implementations which in
some cases (e.g. Baart, Foxgood, Wing), these methods approach the solution of (1.1), with enough accuracy, faster than
the MATLAB operator. Walker and Rozloznik separately proved that HGMRES is a robustness method which converges
faster than other methods for some examples, such as from Phillips. Generally, HGMRES is a firm iterative method for
solving a linear system of equations. Unfortunately, the convergence speed of RRGMRES is not as quick as other variants.
If these GMRES algorithms want to be arranged, Standard GMRES and GMRESwG are set as the first level while SGMRES
and HGMRES are located in the second level with moderate convergence and RRGMRES is in the last one. Among these
implementations, SGMRES and RRGMRES are less stable. According to our numerical results, residual smoothing techniques
are not good modification methods for any GMRES implementation while in [7] it was shown that residual smoothing
methods theoretically do not improve the convergence speed of the GMRES method.

5. Conclusion

GMRES is a popular iterative method that is widely used for solving nonsymmetric linear system of equations. There are
different variants of GMRES, yet any GMRES version has some specific properties or has been created for special goals. In
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Table 4.1
Numerical results obtained by backslash operator of MATLAB, standard GMRES and HGMRES.

MATLAB OPERATOR GMRES HGMRES
Error Time Iter. Error Time Iter. Error Time Iter.

Baart n = 1000 3.1428e+019 2.6639e−14 4.5313e−01 1 1.9041e−13 7.8125e−02 2 1.9025e−13 3.7500e−01 2
1.9042e−13 4.6875e−02 2 1.9025e−13 3.7500e−01 2
1.9041e−13 4.6875e−02 2 1.9025e−13 3.9063e−01 2

Blur n = 1024 3.0788e+001 7.8923e−15 1.5625e−02 1 4.5432e−13 7.8125e−02 5 4.5469e−13 4.1250e+00 5
4.5408e−13 7.8125e−02 5 4.5438e−13 4.1406e+00 5
4.5903e−13 7.8125e−02 5 4.5932e−13 4.1406e+00 5

Deriv2 n = 1000
1.2159e+006

4.2968e−17 3.2813e−01 1 4.9874e−13 1.3891e+01 102 4.9950e−13 1.3480e+02 103

4.9874e−13 1.4438e+01 102 4.9950e−13 1.3548e+02 103
5.2721e−13 1.5313e+01 200 5.5599e−13 1.3933e+02 200

Foxgood n = 1000
3.0324e+020

8.3600e−14 3.9063e−01 1 4.9233e−13 1.0938e−01 2 4.9217e−13 7.9688e−01 2

4.9236e−13 9.3750e−02 2 4.9214e−13 8.1250e−01 2
4.9233e−13 7.8125e−02 2 4.9217e−13 7.9688e−01 2

Gravity n = 1000
4.2341e+021

4.7624e−12 3.9063e−01 1 4.6694e−13 2.5156e+00 19 4.8606e−13 2.6266e+01 21

4.7087e−13 2.5625e+00 19 4.9588e−13 2.6359e+01 21
4.9906e−13 2.7500e+00 38 5.0084e−13 3.3359e+01 200

Heat n = 1000 1.5030e+232 8.0506e−16 2.8125e−01 1 4.9497e−13 7.7500e+00 49 4.9906e−13 6.6500e+01 50
4.9499e−13 7.8906e+00 49 4.9910e−13 6.6625e+01 50
5.0489e−13 9.3906e+00 200 5.3572e−13 7.3406e+01 200

i_Laplace n = 1000 Inf NaN 4.0625e−01 1 1.4483e−11 5.4750e+01 200 1.7328e−11 2.9206e+02 200
1.4483e−11 5.6859e+01 200 1.7327e−11 2.9423e+02 200
2.1637e−11 5.6906e+01 200 2.0880e−11 2.9436e+02 200

Phillips n = 1000
2.6415e+010

1.1557e−14 3.5938e−01 1 5.0364e−09 2.7484e+01 200 4.7577e−09 2.6505e+02 200

5.0364e−09 2.8563e+01 200 4.7577e−09 2.6597e+02 200
7.0536e−09 2.8578e+01 200 6.6643e−09 2.7047e+02 200

Shaw n = 1000 3.1818e+020 1.7068e−12 3.9063e−01 1 9.0220e−14 1.4063e−01 2 9.3006e−14 9.0625e−01 2
8.9009e−14 9.3750e−02 2 9.3006e−14 9.0625e−01 2
9.0220e−14 1.0938e−01 2 9.3006e−14 9.0625e−01 2

Spikes n = 1000 1.7581e+022 5.4277e−11 4.5313e−01 1 3.9915e−10 2.7813e+01 200 4.6551e−10 2.6434e+02 200
4.4010e−10 2.8438e+01 200 4.6959e−10 2.6575e+02 200
5.0859e−10 2.8391e+01 200 6.0882e−10 2.6591e+02 200

Tomo n = 1024 1.9844e−11 3.5938e−01 1 1.2168e−03 3.5422e+01 200 1.4138e−03 2.8530e+02 200
1.2168e−03 3.4844e+01 200 1.4138e−03 2.8541e+02 200
1.8181e−03 3.5063e+01 200 2.1100e−03 2.9114e+02 200

Ursell n = 1000 1.8195e+013 1.6918e−11 3.7500e−01 1 7.3953e−08 2.7359e+01 200 7.3370e−08 2.6533e+02 200
7.3953e−08 2.8406e+01 200 7.3370e−08 2.6659e+02 200
1.0290e−07 2.8250e+01 200 1.0231e−07 2.6647e+02 200

Wing n = 1000 5.7641e+021 7.1749e−14 4.5313e−01 1 3.0692e−14 7.8125e−02 2 3.0693e−14 3.7500e−01 2
3.0692e−14 4.6875e−02 2 3.0693e−14 3.9063e−01 2
3.0692e−14 4.6875e−02 2 3.0693e−14 3.7500e−01 2

this paper we introduced some of these implementations in Section 2 and compared them by some ill-posed problems in
Section 4 because ill-conditioned linear systems are challenging problemswhich some especial solvers can solve. It is shown
that standard GMRES is one of the faster GMRES variants. Experiences show that GMRESwG is also one of the fast GMRES
implementations and this GMRES version also needs slightly less storage than standard GMRES. Then this implementation
can be widely used for solving practical nonsymmetric linear problems as a fast GMRES variant. HGMRES produced
by Householder transformations is a robustness iterative method. Rozloznik proved this implementation is numerically
backward stable because its Arnoldi basis created by Householder matrices and the Householder orthogonalization process
is more stable than Gram–Schmidt. Experiences certify when standard GMRES converges to a meaningful solution of (1.1),
HGMRES also converges. In some cases, HGMRES converges to the solution but standard GMRES does not or converges
with more iterations. Then HGMRES is suggested to apply for solving a sensitive linear system of equations. HGMRES is
also suggested to apply for parallel computations because the accuracy of the method is usually more applicable in parallel
computations. On the other hand, residual smoothing methods are important techniques, because (at least in theory) the
solution of some iterativemethods can be computed by other iterativemethods (e.g. QMR by BiCG) via a residual smoothing
technique. Rozloznik andGutknecht theoretically proved thatMRS techniques donotmodify the solution of GMRES.Wehere
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Table 4.2
Numerical results computed by SGMRES, RRGMRES and GMRESwG.

SGMRES RRGMRES GMRESwG
Error Time Iter. Error Time Iter. Error Time Iter.

Baart 1.4602e−13 1.4063e−01 2 5.0088e−04 1.1391e+01 200 1.9041e−13 4.6875e−02 2
1.4602e−13 1.5625e−01 2 5.0088e−04 1.2438e+01 200 1.9042e−13 4.6875e−02 2
1.4602e−13 1.5625e−01 2 6.6632e−02 3.8750e+00 200 1.9041e−13 4.6875e−02 2

Blur 3.9095e−13 6.2500e−02 5 1.4917e−11 2.9688e−01 200 4.4662e−13 6.2500e−02 5
3.9128e−13 7.8125e−02 5 1.4918e−11 3.5938e−01 200 4.4655e−13 6.2500e−02 5
4.1133e−13 6.2500e−02 5 8.1962e−02 3.7500e−01 200 4.4718e−13 6.2500e−02 5

Deriv2 4.9992e−13 1.1438e+01 85 2.1574e−09 3.0094e+01 200 4.9839e−13 1.4016e+01 111
4.9992e−13 1.1828e+01 85 1.9493e−09 3.1266e+01 200 4.9839e−13 1.4625e+01 111
5.1757e−13 1.4016e+01 200 1.7762e−04 3.8438e+00 200 5.3194e−13 1.5906e+01 200

Foxgood 1.0027e−14 1.5625e−01 2 1.2486e−04 2.9750e+01 200 4.9234e−13 9.3750e−02 2
1.0202e−14 1.4063e−01 2 1.3458e−04 3.1078e+01 200 4.9229e−13 7.8125e−02 2
1.0027e−14 1.5625e−01 2 3.5656e−03 3.7969e+00 200 4.9234e−13 7.8125e−02 2

Gravity 8.5293e−13 2.7188e+01 200 8.8445e−08 3.0047e+01 200 4.9511e−13 5.0469e+00 41
8.5015e−13 2.8063e+01 200 8.8430e−08 3.1234e+01 200 4.9844e−13 5.1563e+00 40
1.2674e−12 2.8031e+01 200 1.7506e−01 3.8281e+00 200 5.0699e−13 7.5781e+00 200

Heat 4.9686e−13 6.1719e+00 39 3.0637e−10 3.5203e+01 200 4.9965e−13 9.6406e+00 66
4.9685e−13 6.4375e+00 39 3.2008e−10 3.6484e+01 200 4.9970e−13 1.0109e+01 66
4.9996e−13 9.3750e+00 169 5.4416e−03 4.5938e+00 200 5.1363e−13 1.2422e+01 200

i_Laplace 1.0190e−11 5.5500e+01 200 3.4176e−04 5.8313e+01 200 2.6896e−10 5.1609e+01 200
1.0191e−11 5.7688e+01 200 5.1410e−04 6.0703e+01 200 2.6897e−10 5.3750e+01 200
1.3195e−11 5.7734e+01 200 2.0742e+00 8.5938e+00 200 3.3604e−10 5.3844e+01 200

Phillips 3.5206e−09 2.9063e+01 200 3.5310e−09 3.1281e+01 200 4.6166e−09 2.5531e+01 200
3.5206e−09 2.9828e+01 200 4.1959e−09 3.1406e+01 200 4.6166e−09 2.6625e+01 200
4.8925e−09 2.9422e+01 200 7.6791e−03 3.8594e+00 200 5.7915e−09 2.6594e+01 200

Shaw 8.7797e−14 1.5625e−01 2 5.2165e−04 2.0766e+01 200 1.0330e−13 9.3750e−02 2
9.0609e−14 1.5625e−01 2 5.5084e−04 2.2313e+01 200 8.8820e−14 9.3750e−02 2
8.7797e−14 1.5625e−01 2 2.0159e−01 3.9531e+00 200 1.1303e−13 1.0938e−01 2

Spikes 3.0965e−10 2.7234e+01 200 7.1095e−01 3.0234e+01 200 1.6858e−09 2.5422e+01 200
4.7226e−10 2.8172e+01 200 8.0743e−01 3.1344e+01 200 1.5400e−09 2.6406e+01 200
5.5168e−10 2.8141e+01 200 5.2692e+01 3.8438e+00 200 1.7762e−09 2.6406e+01 200

Tomo 1.3261e−03 3.3281e+01 200 1.3902e−01 3.5953e+01 200 1.1221e−03 3.1141e+01 200
1.3261e−03 3.4797e+01 200 1.3871e−01 3.8422e+01 200 1.1221e−03 3.1984e+01 200
1.9830e−03 3.4484e+01 200 4.9873e+02 4.8750e+00 200 1.6608e−03 3.1844e+01 200

Ursell 6.3464e−08 2.7156e+01 200 6.8147e−08 2.9938e+01 200 8.1032e−08 2.5344e+01 200
6.3464e−08 2.8094e+01 200 6.8273e−08 3.1109e+01 200 8.1033e−08 2.6453e+01 200
8.9268e−08 2.8047e+01 200 2.1013e−02 3.8281e+00 200 1.1212e−07 2.6406e+01 200

Wing 7.8606e−16 1.5625e−01 2 1.2986e−07 8.1719e+00 200 3.0694e−14 3.1250e−02 2
7.8606e−16 1.4063e−01 2 1.2986e−07 9.1406e+00 200 3.0691e−14 4.6875e−02 2
7.8606e−16 1.5625e−01 2 6.5967e−03 3.8594e+00 200 3.0694e−14 4.6875e−02 2

numerically tested it on various GMRES implementations. Results of Section 4 show that MRS algorithms are not effective
when applied on different GMRES implementations.
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