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Abstract 

Lipkin, E., On subset sums of r-sets, Discrete Mathematics 114 (1993) 3677377. 

A finite set of distinct integers is called an r-set if it contains at least r elements not divisible by 4 for 

each 4 > 2. Let f(n, r) denote the maximum cardinality of an r-set A c (1,2, , n} having no subset 

sum Caiai (ai= or 1, ateA) equal to a power of two. 

In this paper estimates for f’(n,r) are obtained. We prove that lim,_I x,=0, where 

r,=iG o_,~ f(n, r)/n. This result verifies a conjecture of Erdos and Freiman (1990). 

1. Introduction 

Let A c [l, n] and A* denote the set of all sums of subsets of A, i.e. 

A* = { ChEBb, B E A}. Given HEN, let f(n) denote the number of elements of a largest 

set A c [ 1, n] for which A* contains no power of 2. Erdos and Freiman [4] proved that 

,f(n)= [n/3] for n>n,, where no is a sufficiently large positive number. Note that this 

formula does not hold for all natural numbers n. The example of the set 

A = { 10, 1 1,12,13,14) shows that f( 14) 3 5; hence, no > 13. The upper bound 

f‘(n)dn/3 was obtained in [4] using analytical methods of number theory. The 

lower bound f(n)3 [n/3] was provided by Erdos’ example [3] of the set 

A = { 3.1,3.2, . . ,3.[n/3] }. 

We note that the extremal example of Erd6s is the subset of all multiples of 3. So, in 

the present paper we modify the problem and consider only those subsets in which not 

all the elements are divisible by a common number (see L4], p. 12). As a first example, 

we construct a set A c [2, n] which contains all multiples of 6 and an arbitrary integer 

congruent to 1 modulo 6. We observe in this example that 2S$A* for any s>O since 

2’~ 2 or 4 (mod 6) for all natural numbers s. 

Correspondence ro: E. Lipkin, School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel 

Aviv, Israel. 
* Research supported by the Fund of Basic Research administered by the Israel Academy of Sciences. 

0012-365X,‘93/$06.00 ;n 1993-Elsevier Science Publishers B.V. All rights reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82595447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


368 E. Lipkin 

Let f(n, 1) denote the number of elements of a largest set A c [l, n] such that not all 

its elements are multiples of some prime number and A* does not contain a power of 

2. The above example gives f(n, 1) >, [n/6] + 1 for n 3 7. In Theorem 1.1 it is shown that 

f(n, 1) = [n/6] + 2 for n > no. 

In general, we call a finite set of integers A an r-set if, for each integer q 2 2, the set 

A contains at least r elements which are not multiples of q. For example, { 1,2,3} is 

a 2-set. Let f(n, r) denote the maximum cardinality of an r-set A c { 1,2, . . . , PI} having 

no power of 2 in A*. The function f(n) defined above is the special case of f(n, r) for 

r =O, i.e. f(n) =f(n, 0). The following examples give lower bounds for f(n, r). 
(1) Let A = {6.1,6.2, . . . ,6.[n/6]} u (7,5}. This gives the bound f(n, 2) > [n/6] + 2 for 

n37. 

(2) Let A={12.1,12.2 ,..., 12~[n/12]}u{a1 ,..., as}, where ai are distinct integers 

such that aiE [2, n] and ai 3 1 (mod 12) for i = 1,2,3, ai s - 1 (mod 12) for i = 4,5,6. 

Since 2” = + 4 (mod 12) for s 3 2,2”$ A* for each s 20. Thus, for 3 d r d 6 we obtain that 

f(n, r) b [n/12] + 6 provided n 3 37. 

(3) The condition 

2k-l<r<2h+‘-2 (1.1) 

for any rEN determines the natural number k. Set q=3.2k and let 

A={q,2q,...,q~C~lql) ( LJ a1,u2, . . . . a2k+ 1 _2}, where ai are distinct integers such that 

2k<Ui<Fln, ai = 1 (mod 4) for i= 1,2, ...,2k- 1 and ais-l(modq) for 

i = 2k, . . . , 2k+ ’ - 2. Since 2” = f 2k (mod 3.2k) for s >, k, 2”$ A* for all integers s > 0. We 

obtain the lower bound 

f(n,r))/ - 
[ I 3;k +2h+1 -2 for r=2k-l,...,2k+1-2, 

where k is determined by (l.l), and n a(2k - 1)q + 1. 

In Section 3 it is shown that, for small r, the estimate (1.2) is precise: 

Theorem 1.1. For r<30, 

n 
f(n,r)= __ +2k+1-2, 

[ 1 3.2k 

(1.2) 

(1.3) 

where k is determined by (1.1) and n>no, where no is a suficiently large positive 

constant. 

For general r > 30, (1.3) is not true. In fact, in Section 3 we prove the following 

theorem. 

Theorem 1.2. For 31 <r<38 and n>no(r), 

n 
f(n,r)= - 

[ 1 85 
+38. 
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In order to formulate the general result, we introduce a function q(r) as follows. Let 

r 2 1. First, we call a multiset A, of residues modulo q an r-multiset if, for each divisor 

q’ of q, q’ # 1, there are at least r elements in A, which are not divisible by q’. Also, let 

A,* denote the set of all sums of subsets of A,, A,* = {CbSB b (mod q), B G A}. Now, for 

every fixed r 3 1, consider the numbers q such that 

(1) q is not a power of two, and 

(2) there exists an r-multiset A, such that At does not contain 2”(mod q) for s 3 sO, 

where s0 is derived from the condition that 2”” 1 q, but 2”“‘lj’q. 

The smallest q satisfying the above criteria is denoted by q(r). For example, q(2) = 6. 

Indeed, consider the 2-multiset A, = { 1, - 1) (mod 6). The set A: = { l,O, - 1) does not 

contain 2”(mod 6) for s 2 1 (the inequality s 3 1 is coming from the condition that 2 16, 

2*x6), because 2’~ 2 or - 2 (mod 6). Thus, q(2) < 6. Also, q = 6 is the minimal modulus 

satisfying the definition of q(2). Indeed, q=2 and q=4 are powers of 2; further, since 

2 is a primitive root modulo q = 3 then, for any multiset A3 of nonzero residues mod 3, 

AZ contains a power of 2. The same argument shows q(2) > 5. 

Using the function q(r), we can find f(n,r). 

Theorem 1.3. Let reN. For every n>nO, where no = no(r), there exists C = C(n, r), 

satisfying r < C < q(r), such that 

f(n,r)= & +C [ 1 
(1.4) 

holds. 

The lower bound 

q(r)>r+ 1 (1.5) 

will follow from Proposition 2.2. Combining the bound (1.5) and Theorem 1.3, we 

obtain the following theorem. 

Theorem 1.4. For n > no(r), 

n 
f(n, r) < ~ 

r+l 
(1.6) 

holds, where no(r) is some large positive number. 

Since 3.2k<3(r+ l), (1.2) implies that f(n,r)>n/3(r+ 1). Let @(r)=lim,,,,f(n,r)/n 

and fi(r)=l@.,,f(n,r)/n. We obtain 

1 1 
a(r)<- 

r+l’ 
B(r)>- 

3(r+ 1)’ 
(1.7) 
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Finally, from (1.7) we have the following result. 

Theorem 1.5. lim,,, a(r)=O. 

This theorem verifies the conjecture of Erdos and Frieman [4]. 

Theorem 1.3 reduces the study of f(n, r) to the study of q(r). This theorem as well as 

the bound (1.5) are proved in Section 2. We compute q(r) and C for small r in 

Section 3, where Theorems 1.1 and 1.2 are proved. In Section 3 we also obtain the 

following estimates of q(r): 
(1) q(r) <(85/32).2k < 2.7.2k for rE[2k - 1, 2k - 1 + (2k/4)), where k > 5; 

(2) q(r)<(4681/2048).2k<2.3.2k for rE[2k- 1,2k- 1 +(2k/12)), where k> 11. 

These bounds improve, for some r, the estimate following from (1.2): 

q(r) d 3.2k, where rE[2k-l,2k+1-2] (1.8) 

Improving the lower bounds for q(r) is is a difficult problem. 

In Section 4 we study the structure of locally optimal sets. We call a set of 

integers A c [l, n] locally optimal if A* does not contain a power of two, but, 

for any larger set A’ 3 A, A’c [l, n], A’ has 2” as a subset sum for some s. We show 

that a locally optimal set is a union of an arithmetic progression and a small set, 

possibly empty. We prove that, for sufficiently large n, the only subset of (1, . . . . n> of 

maximum cardinality, having no subset sum equal to a power of 2, is Erd&’ set 

{3,6, . . . . 3.[n/3]}. 

2. The proof of Theorem 1.3 

To prove Theorem 1.3, we need two preliminary results from [l], [2]. 

Lemma 2.1 (Alon and Freiman [l] Lemma 3.4). Suppose E >O, n > n(e) and let 
A c (1, . . , n} be a set of distinct integers of cardinality x, where x > 3nZi3+‘iog n. Then 

there exists a subset BE A of cardinality t and an integer q 2 1 sastisfying the following 

conditions: 
(i) t>x-nn(2+e)i3, 

(ii) 4 d n/t, 

(iii) bj-0 (mod q) for each bjEB> 

(iv) if S=Cf=i bj, h t en every integer N which is divisible by q and satisfies 
N,<N<N2, where 

n2/3 +E n2/3 +E 

N1 =-. 

t 
S + n413 log n, N2=S-p. t S-n4’3 logn, (2.1) 

belongs to B* c A*. 



The second assertion follows from Proposition 3 in [2], which is given below. 

Proposition 2.2. Let A, be a multiset of nonzero residues modulo q. Suppose that 

) A,\ > q - 1 and ) A,,\ > q’ - 1 for each divisor q’ of q, q’ # 1. Then the set AZ includes 

elements from all residue classes modulo q, except possibly 0. 

Recall now that f(n, r) is the maximum cardinality of an r-set Ac { 1,. . ., n} with no 

power of 2 in A*. We want to prove that f(n, r) = [n/q(r)] + C for sufficiently large n, 

when C= C(n, r) satisfies r < C<q(r), by way of estimating f(n, r) from above and 

below by the same bound. 

(1) We will obtain the upper bound for f(n, r). Suppose that the cardinality of an 

r-set A c { 1, . . . , n} satisfies 

IA13 n +q(r). 
[ 1 4(r) 

(2.2) 

We will show that, for sufficiently large n, there exists EN such that ~“EA*. By 

Lemma 2.1, there exists q 3 1 such that every integer N satisfying NE 0 (mod q) and 

N1 <N d Nz belongs to A*. We start with the case q = 2” for some integer u 20. In 

view of (2.1), Nz > 4N, provided n is sufficiently large. Thus, we can find a natural 

number s such that N 1 < 2” < Nz. Let N = 2”. Since N = 0 (mod q), we conclude that 

~“EA*, as needed. 

Assume now that the number q of Lemma 2.1 is different from any power of 2 and 

q # 1. We note that the inequality q>q(r) never holds. Indeed, Lemma 2.l(ii) implies 

that t < n/q and (i) implies that x = I AJ <n/q + n(’ +E)/3. In view of (2.2), we have 

n/q +PI(*+‘)/~ >n/q(r)+q(r), which cannot be satisfied if q>q(r) and n is sufficiently 

large. Thus, we may assume q d q(r) and q is not a power of 2. 

Consider a multiset A, of nonzero residues modulo q of elements of the set A. 

Because A is an r-set, A, is an r-multiset. Assume that AZ contains 2”’ (mod q) for some 

s1 >s0, where so is determined by 2”” I q and 2”““j’q. Then A* contains a power of 2. 

Indeed, let 6 be the index of 2 modulo q1 =q/2”“. Then 2”~ 1 (mod ql) and 

26t+so = 2”” (mod q) for every integer t 30, and also 26*+s1 = 2”’ (mod q) since s1 > so. In 

view of our assumption, there exist m elements of A such that 

M=ai,+~~~+ai~~2S’(modq),andai,~O(modq),k=1,...,m.AddMtotheelements 

of B* from Lemma 2.1. We obtain that all numbers N satisfying N = 2”’ (mod q) and 

N1 + M d N d N2 + M belong to A*. Moreover, one of these numbers is a power of 2. 

Indeed, (N2+ M)/(N, +M)>2” holds for sufficiently large n. Take t= tl be the 

smallest number such that N1+M<2s’1+S1. Since 26(t1-1)fs1<N1+M, 

26r1 +‘I 6 2”(N 1 + M) < NZ + M. Clearly, N = 26t1 +‘I is a desired number. 

To complete the proof of Part 1 we need only show that At contains 2”’ (mod q) for 

some s1 > so, assuming q <q(r). It is true if q <q(r), because of the definition of q(r). Let 

q = q(r). In this case we will try to apply Proposition 2.2 to the multiset A, and obtain 

that A,* contains all nonzero residue classes modulo q, including a power of 2. The 



312 E. Lipkin 

number of elements in A, which are divisible by q(r), does not exceed [n/q(r)]. 
Therefore, I A, 13 q, in view of (2.2). Let us check that also 1 A,, I> q’ - 1 holds for each 

divisor q’ of q, q’ # 1. This is correct for q’ d q/3. Indeed, by definition of r-multiset and 

using (1.8) we have I A,, I 3 r 3 2k - 13 q/3 - 13 q’ - 1. Finally, assume that q is even 

and consider q’=q/2. If q/2$A,, then I F&,~[ = lA,I aq >q/2- 1 and the conditions of 

Proposition 2.2 are satisfied. Otherwise, suppose there exists UEA such that 

a = (q/2) (mod q). The set B* u (B* + a) is contained in A*; so, all numbers N satisfying 

N = O(mod q/2) and N1 + a < N d N2 + a belong to A*. Because q(r) is the smallest 

q for which there exists an r-multiset A, without a power of 2 in A$, the multiset 

A& contains a power of 2 modulo q/2. Part 1 is now completely proved. 

(2) Now we obtain the lower bound for f(n, r). By the definition of q(r), there exists 

an r-multiset AyCrj such that 2”(mod q(r))$A,$,, for all s B so. Thus, f(n, r) > [n/q(r)] + r. 
The proof of Theorem 1.3 is complete. 

Now we show that the lower bound (1.5) holds. Suppose that q(r) > r + 1 is not true. 

By the definition of q(r), there exists an r-multiset of residues AqCrj such that A& does 

not contain 2”(mod q(r)) for s >so. But our assumption r 3 q(r) - 1 implies that the 

conditions of Proposition 2.2 for A4(*) are satisfied. Hence, A& contains all nonzero 

residues modulo q(r). This contradicts the definition of q(r). 

3. Computation of q(r) for small r 

For 1 drd30, we can obtain the precise value of q(r). 

Proposition 3.1. If 1 <r < 30 then q(r)= 3.2k, where k is defined by the condition 

rE[2k-l,2k+1-2]. 

To prove this, we use the following lemma. 

Lemma 3.2. Assume thut for some natural number r and an odd prime p, every multiset 
A, of r nonzero residues module p satisfies 2”(mod p)eA,* for some s>,O. Then every 

multiset AZUp containing 2‘9 + 2” - 1 residues modulo 2”p satisjes 2”(mod 2”p)~ A&, for 

some s > a, provided ai $0 (mod p) for all aiE Azap. 

Proof. Suppose that the multiset Azap contains r nonzero residues divisible by 2”, call 

these residues 2aa1, . . , 2aa,.. Then their subset sum gives a power of two modulo 2”~. 

Indeed, by the assumption of the lemma, xr= 1 aiais2”(modp) holds for some s and 

some Ei = 1 or 0. Hence, LIE i ai.2”ai E 2”+” (mod 2” p). 
Note that if ai, aj, uk are three residues mod 2”p, none of which is divisible by p, then 

we can always choose two of them such that their sum is not divisible by p. Indeed, if 

ai+ ajrO(mod p), Ui+ak ~O(mod p), aj+ak=O(modp), then add the first two con- 

gruences and subtract the third. We obtain 2ai z 0 (mod p) and ai E 0 (mod p), which 

contradicts that p ,j’ ai. 
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Assume that the multisset AZnp contains 2”r + 2” - 1 residues modulo 2”p, not divisible 

by p, and suppose x of them are odd residues and y of them are even. We can choose 

[(x - 1)/2] pairs such that the sum of each pair is an even residue not divisible by p. We 

obtain the number [(x- 1)/2] + y of even residues in A$,, which is minimal if y=O. 

Thus, we have at least [(2”~+2”-2)/2] =2”-‘r+2”~’ - 1 residues divisible by 2. 

Suppose that x of them are not divisible by 4, and y of them are divisible by 4. In 

a similar way, we obtain 2”P2r+2a-2- 1 residues in Azn, divisible by 4 and not 

divisible by p. On the sth step we obtain 2”-“r+2”P”- 1 residues divisible by 2” and 

not divisible by p. On the ath step we obtain r residues divisible by 2” and not divisible 

by p, thus proving the stated lemma. 0 

Proof of Proposition 3.1. The proposition claims that q(r)= 3.2k for rE[2k- 1, 

2k+1-2],i.e.q(r)=6forr~[1,2],q(r)=12forr~[3,6],q(r)=24forr~[7,14],q(r)=48 

for rE[15,30]. 

The estimate (1.Q q(r)< 3.2k, where k is derived from 2k- 1 <r <2kf’ -2, was 

obtained in Section 1. Let k, r and 4 be integers such that 1 < k 6 4, rE [2k - 1, 2k+ 1 - 21, 

3.2k- ’ <q < 3.2k and JJ is not a power of 2. We will show that every r-multiset A, of 

residues modulo q satisfies 

2”(mod q)EA,* 

for some s. It suffices to check the statement for the worst case r = 2k - 1. 

(3.2) 

Case k = 1. Since q < 6 and q # 2k, we are considering q = 3 and q = 5; so, r = 1. 

For q= 3, (3.2) holds since 2 is a primitive root modulo 3. The same argument 

applies when q=5. 

Case k = 2. In this case 6 < q < 12 and q # 2k; so, r = 3. Then we need to verify for 

q=6,7,9, 10,ll that, for an arbitrary r-multiset A,, with lAyl 23, (3.2) holds. 

In view of Lemma 3.2, the statement is true for q = 6 and q = 10. 

Let q = 7. Assume that, for a multiset A, = {a,, a2, a3 ) of nonzero residues modulo 7, 

2”(mod 7)4A,* holds for all ~20. Denote by k(Ui) a multiplicity of Ui in A,. Since 

2”(mod7)= 1 or 2 or 4, we see that k(l)=k(2)=k(4)=0. Also, k(3)<2, k(5)62, 
k(6)<2. If k(3)>0 then k(5)=0, k(6)=0 and we have IA,1 62, which is contrary to the 

assumption. Thus, k(3)=0. If k(5)>0 then k(6) =0 and we have IA,( ~2. Therefore, 

k(3)= k(5)=0 and we obtain lAel <2 again, which contradicts the assumption that 

I A, I = 3. Thus, the statement for q = 7 is proved. 

Let q = 9. Assume that, for a multiset A, = {ai, u2, as} of nonzero residues modulo 9, 

2”(mod9)$.4,* holds for all natural s. Since 2”(mod 9) is congruent to one of the 

numbers 1,2,4,5,7,8, Ui = 3 or 6 (mod 9) which contradicts that A, is an r-multiset. 

Let q = 11. Since 2 is a primitive root modulo 11, (3.2) holds. 

Cases k = 3 and k = 4 are verified similarly. 0 

For r > 30, we have for q(r) the upper bound (1.8): q(r) < 3.2k, where k is defined by 

the condition rE[2k- 1,2k+1 -21. For r’s in the first quarter of each interval 
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[2k- 1,2k+i - 21 starting with k= 5, we obtain a more precise estimate, as given by the 

following proposition. 

Proposition 3.3. q(r) d (85/32).2k = 2.65625.2k holds for re(2k - 1, 2k - 1 + 2k/4) and k 2 5. 

Proof. Let k = 5. In the same way as in Section 1, where we obtained the upper bound 

q(r)<6 for re[1,2], here the estimate q(r)<85 for re[31, 381 is given by the multiset 

Ai=(al,...,a,,, b, , b2} of residues ai = 7 (mod 85) bi = - 7 (mod 85). Indeed, the 

smallest positive x which sastisfies the congruence ax E 2” (mod 85) for some s > 0 is 

.x,~” = 37 when a E 7 (mod 85) and X,in = 3 when a = - 7 (mod 85). For k > 5, we use 

a similar example. Let ma 1. The minimal positive solution of the congruence 

ax 3 2” (mod 85.2”) where s 3 m, is Xmin=37’2m when a=7(mod 85.2”) and 

X,in=3’2m when a- -7(mod85.2”). Note that 2”(mod85.2”)$[1,2”) for s>m. 

Thus, the set A c [l, n] having 2S4A* for any s is the union of three sets: (1) the 

arithmetic progression of all multiples of 85.2”; (2) the set of 37.2” - 1 distinct 

numbers aiE[2”‘, n], ai=7 (mod 85.2”); (3) the set of 3.2”- 1 distinct numbers 

biE[2m,n], bi= -7(mod85.2”). SO, IA,I=40.2m-2=(5/4).2k-2=2k-2+2k/4. The 

conditions ai>2”, bi>2m ensure that 2’$A* for s=O, 1, . . ..m- 1. q 

Proposition 3.4. q(r)=85 fir r= 31, . . . . 38. 

Proof. We checked for r = 3 1 that every r-multiset A, of nonzero residues modulo q, 

48 <q < 85, q #2”, satisfies 2”(mod q)eA,* for some s 3 0. With the estimate q(r) d 85 

for re[31,38] from Proposition 3.3, it implies the stated equality. 0 

For r=39 and q=85, every r-multiset A, sastisfies 2”(modq)~A,* for some ~20; 

therefore, q(39) > 85. 

The next improvement of the upper bound for q(r) is given by the following example 

[7]. The estimate q(r)<4681 for rE[2047,2222] is provided by the multiset A, of 

residues modulo q=4681, ai-15(modq) for l<i<2184, bi=-15(modq) for 

1 d i < 38. For this, set1 A, ( = 2222 and 2”(mod q)#A,* for s > 0 holds. Continuing as in 

Proposition 3.3, we have the following result. 

Proposition 3.5. q(r)<(4681/2048).2k for rg[2k- 1, (2224/2048).2k-2], k> 11. 

This implies that q(r)<2.3 .2k for rE[2k- 1,2k-2+2k/12], k> 11. 

Two more series of upper bounds for q(r) are provided by the following sets A, [7]: 

(1) q=1285, 1.4,[=598, ai-127(modq), bi--127(modq); 

(2) q=1365, IA,l=670, ai-31(modq), big-31(modq). 

Table 1 lists the exact values of q(r) for 1 <rQ 38, and Table 2 lists our upper 

bounds of q(r) for 38<r<2’“- 2. Different columns of the tables correspond to 

different sequences 3 2k, 85 .2j and so on, where k, j = 1,2, . . . 
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Table 1 
Values of q(r) 

k rQ-l,2n+‘-l) q(r) 

1 11>21 6 
2 I33 61 12 
3 c7,141 24 
4 c15.301 48 
5 131,381 85 

Table 2 
Upper bounds of q(r) 

k rE[2’-1,2X+‘-1) q(r) 

5 139,621 96 

6 163,781 170 
[79,126] 192 

7 [127,158] 340 
[159,254] 384 

8 [255,318] 680 
[319,510] 768 

9 [Sll, 5981 1285 
[599,638] 1360 
[639,670] 1365 
[671,1022] 1536 

10 [1023,1198] 2570 
[1199,1278] 2720 
[1279,1342] 2730 
[1343,2046] 3072 

11 [2047,2222] 468 I 
[2223,2398] 5140 
[2399,2558] 5440 
[2559,2686] 5460 
12687.40941 6144 

Now we can prove Theorem 1.1, which states that, for sufficiently large n, 

f(n, r) = [n/3.2k] + 2k + 1 -2 if 1 <r<30 and k is defined by r~[2~-1,2~+~-2]. The 

lower bound for f(n, r) is given by (1.2). The same bound estimates f(n, r) from above. 

Indeed, by Proposition 3.1, q(r) = 3. 2k if r as above. Then, by Theorem 1.3, 

f(n, r)= [~/3.2~] + C, where r < C < q(r). In Proposition 3.1 we checked that, for 

rsatisfying 1<r<30,rE[2k-l,2k+1 - 21, and q = 3. 2k, each r-multiset A, has a power 

of 2 in 4:. This implies that C = 2k+ ’ -2, which proves Theorem 1.1. In a similar way, 

we obtain Theorem 1.2. 

4. Structure of locally optimal Sets 

As in Section 1, consider again the set A = { 3,6, . . . , 3. [n/3] }, where n is sufficiently 

large. Its cardinality is maximum among the sets with no power of 2 as a subset 
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sum. By adding a single element, A becomes a set having 2” as a subset sum. We 

can characterize the optimality of a set A not by maximality of its size but by maxim- 

ality of A with respect to a certain property. Let us call a set Ac { 1,. . . , n} a locally 

optimal set if 2S$A* for ~30, but if we enlarge A even by a single integer from the 

range [ 1, n] then there will be a subset sum of the form 2”. By inspection, the following 

are locally optimal sets for sufficiently large n: B = { 5t ( 5t d n), C = { 11 t ( 1 It < n}, 

D = (6t j 6t d n} u {a,, a2}, where al = 1 (mod 6), a2 = - 1 (mod 6), etc. 

Similarly, we call a multiset A, of nonzero residues module q locally optimal if 

2”(mod q)$A,* for ~20, but if we enlarge A, by any residue x$O(mod q) then we 

obtain 2”(mod q) as a subset sum for some s>,O. If q is a prime such that 2 is 

a primitive root modulo q, then locally optimal multisets of residues modulo q are 

necessarily empty. For an arbitrary q, the number of elements in a locally optimal 

multiset is bounded by (q- 1)2, as shown by the following proposition. 

Proposition 4.1. Let A, be a locally optimal multiset of residues modulo q. Then 

lAgI d(q- l)2. 

Proof. Denote by k(x) the multiplicity of a residue x in A,. We will show that 

k(x)<q- 1, which implies the assertion. Suppose that k(x)=v, that is, xi=,x(mod q) 
for i= 1, . . . , v. Enlarge A, by one more element x0=x (mod q); then there will 

be a subset sum of the form 2” (mod q). So, there exist s > 0 and a,, . . , al f x (mod q) 

such that al + ... +a1 +x1 + ... +x,+x0 -2”(mod q). Clearly, u=v; otherwise, we 

replace x0 by x,+ 1 in the last congruence and obtain a contadiction to the definition 

of A,. Thus, a,+ ... +a,+~,+ ... +x,+x0-2”(modq). Suppose v>q. Note 

that xi + ... +x,-xq=O(modq); therefore, a, + ... +ar+x,+i + ... +x,+x1 ~2’ 

(mod q), which contradicts that A, is locally optimal. Thus, v <q. The proof is 

complete. 0 

Now we will show that a locally optimal subset of { 1, . . . . n} has the following 

structure: it is the union of the arithmetic progression of multiples of q for some q # 2”, 

and a small number, at most (q- l)‘, of other integers. 

Proposition 4.2. Suppose E > 0, n > n(E), and let A c { 1, . , n} be a set of distinct integers, 

with IAl>n . 213+e A is a locally optimal set iff there exists an integer qf2” such that 

A=B(q)uC, where B(q)={q,2q,...,q.[n/q]), ICl<(q-1)2 and, corresponding to C, 

the multiset C, of nonzsero residues modulo q is locally optimal. 

Proof. (1) Let A be a locally optimal set. Clearly, a; # 2” for all aiE A, s 3 0. By Lemma 

2.1, there exists an integer q >, 1 and B c_ A such that all the elements of B are divisible 

by q and B* contains all multiplies of q in the range defined by (2.1). We use the 

notation C=A\B. The subset B consists of all multiples of q in the range [l,n]. 

Indeed, suppose that qk$B for some 1 d k d [n/q]. By the definition of locally optimal 
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set, 2S$A* for s 3 0. Let us enlarge A by the element qk. Since qk = 0 (mod q), we still do 

not have a power of 2 as a subset sum, which contradicts the definition of A. Thus, 

> (4.1) 

Clearly, q #2”, ~30. For a subset C of nonmultiples of q in A, the corresponding 

multiset C, is locally optimal since A is locally optimal. By Proposition 4.1, 

lCld(q- 1p. 
(2) Suppose that A = B(q) u C, where B(q) is defined by (4.1) and, corresponding to 

C, the multiset C, of residues module q is locally optimal. 2S4A* for ~30; otherwise, 

2”(modq)EC,*. If we enlarge A by any integer xg[l,n], x$O(modq), then (Aux)” 

will contain a power of 2 because multiset C, u x (mod q) has a power of 2 modulo q as 

a subset sum. Thus, A is locally optimal. The proof is complete. 0 

The assertion above implies, in particular, that, for sufficiently large n, the only 

subset of [ 1, n] having no power of 2 as a subset sum and the cardinality [n/3] is 

Erdos’ set { 3,6, . . . , 3. [n/3]}. Indeed, as we mentioned in the beginning of Section 1, 

the maximum cardinality of A having no power of 2 in A* is [n/3]. A set A of 

maximum cardinality is locally optimal; therefore, A is a union of an arithmetic 

progression of multiples of q and a small set C. Clearly, q = 3 and C is empty, as 

needed. 

In this section we studied the structure of sets of integers A by a certain given 

property of a set of subset sums A *. This is a kind of Inverse Additive Problem which 

was introduced by Freiman [S, 61. 
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