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Abstract

We study a Hamilton–Jacobi–Bellman equation related to the optimal control of a stochastic semilinear
equation on a Hilbert space X . We show the existence and uniqueness of solutions to the HJB equation and
prove the existence and uniqueness of feedback controls for the associated control problem via dynamic
programming. The main novelty is that we look for solutions in the space L2(X, µ), where µ is an invariant
measure for an associated uncontrolled process. This allows us to treat controlled systems with degenerate
diffusion term that are not covered by the existing literature. In particular, we prove the existence and
uniqueness of solutions and obtain the optimal feedbacks for controlled stochastic delay equations and for
the first order stochastic PDE’s arising in economic and financial models.
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1. Introduction

The aim of this paper is to study the following Hamilton–Jacobi–Bellman (HJB from now on)
equation
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∂v

∂t
(t, x)+

1
2

Tr (Qvxx (t, x))+ 〈Ax + F(x), vx (t, x)〉 − H0 (vx (t, x))+ f (x) = 0,

v(T, x) = ϕ(x), x ∈ X, T ≥ 0
(1)

on a real separable Hilbert space X with the norm | · |. We assume that A is a generator of the
strongly continuous semigroup

(
et A

)
on X , Q : X → X is a nonnegative and selfadjoint operator

(not necessarily nuclear), H0 : X → R is a suitable Lipschitz continuous function, F : X → X
is continuous with bounded Gateaux derivative.

We will show that, under some additional assumptions, this equation has a unique solution,
its gradient vx may be well defined and therefore the optimal feedback control can be found for
an associated stochastic control problem.

It is well known that the Hamilton–Jacobi–Bellman equation has no classical solutions in
general, even if dim(X) < ∞. This difficulty has been circumvented in the finite dimensional
case by introducing the concept of viscosity solutions, see [16,26] and the references therein. Due
to some basic measure theoretic problems (see [16, Appendix]) the viscosity solution approach
can not be easily adapted to an infinite dimensional case unless Q is of trace class; the first
work on this case is [43], see also [36,39,40,42,50] for more recent results. A first attempt to
deal with the case when tr (Q) = ∞ has been made in [35]. The viscosity method assures the
uniform continuity of the solution of the HJB equation and its identification as the value function
of a certain stochastic control problem. It does not provide however, at the present stage, the
existence of the gradient vx , hence the existence of optimal control in a feedback form needs
another approach.

Another approach to the HJB equation (1) has been initiated in [7,8] and studied later in [32,
33] by the second author of this paper (see also [9,10,18–20,25,30,34] for other results in this
direction). This approach (that we call the “strong solution approach” in the following) uses
perturbations of solutions of the associated linear equation and is based on the assumptions that

• the data ϕ and f are continuous and bounded,
• F is a bounded function,
• H0 is a Lipschitz function (or simply locally Lipschitz but with globally Lipschitz Fréchet

derivative),
• the solution to the linearized version of Eq. (1) obtained for F = H0 = f = 0 satisfies the

condition∫ T

0
|vx (t)| dt < ∞, (2)

for any bounded Borel ϕ. This means that the Ornstein–Uhlenbeck semigroup associated to

(A, Q) is strongly Feller and the minimum energy operator Γ (t) = Q
−

1
2

t et A (where Qt is
given as in (19) has integrable norm in a neighborhood of t = 0 (in the finite dimensional
setting this would imply the uniform ellipticity of the differential operator

Lv =
1
2

Tr [Qvxx ] + 〈Ax, vx 〉, (3)

see [22, Appendix B] for explanations).

These assumptions for the couple (A, Q) are quite restrictive as showed in [32,33] (we may
roughly say that Q cannot be very far from a boundedly invertible operator). This approach
allows us to find continuously differentiable solutions, to identify the solution with the value
function of a certain stochastic control problem and to provide optimal controls in the feedback
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form (9). However, the cases when Q is degenerate or when the Ornstein–Uhlenbeck semigroup
associated to (A, Q) is not strong Feller (or it does not satisfy (2)), are not covered by this
setting.

Let us note that in the two approaches discussed above the HJB equation is studied in the
space of continuous functions, thus imposing quite strong assumptions on the data of the HJB
equation.

The main goal of this paper is to develop an L2 theory for second order HJB equations in
Hilbert spaces by perturbation of solutions corresponding to the equation:{

∂v

∂t
(t, x) =

1
2

Tr (Qvxx (t, x))+ 〈Ax + F(x), vx (t, x)〉 ,

v(0, x) = φ(x).
(4)

We may say that we develop a “strong solution approach” but in a different underlying space. The
crucial assumption is that solutions to (4) generate a strongly continuous semigroup Ptφ(x) =

v(t, x) in the space L2 (X, µ), where µ is an invariant measure for (Pt ) that is∫
X

Ptφ(x)µ(dx) =

∫
X
φ(x)µ(dx).

This approach allows us to treat a large variety of stochastic optimal control problems with
irregular data and strongly degenerated operator Q. The price paid is lower regularity of
solutions, but we are still able to prove the verification theorem and to obtain the existence
of the optimal control in feedback form. The results obtained allow us to solve the optimal
control problem in many important cases not covered by the existing theory, like stochastic delay
equations, first order stochastic PDE’s arising in financial and economic models and stochastic
PDE’s in unbounded domains.

We would like also to emphasize that our approach can be adapted to treat more general
problems, including the case of nonlinear state dependent diffusion coefficients (but independent
of the control) and nonlinear state dependent control coefficients, or some boundary control
problems, provided the existence of an invariant measure for an uncontrolled system is assumed.

The only attempts to build a theory of HJB equations in spaces L2 (X, µ), we are aware of,
have been made in [15] and [1,2] under assumptions much stronger than ours. In particular, they
assume closability of the operator DQ (see Section 2.3) and therefore some interesting problems,
like the control of stochastic delay equations (see Section 6.1) are not covered by those papers.

We recall finally the works [4,6,17,37] where some results on strong solutions are proven in
the case of nuclear Q, [30,34] where the strong solution approach is extended to the elliptic case
(infinite horizon case). In [15] a first attempt to exploit the existence of the invariant measure was
made but without any connection with stochastic control. Let us note that formulations and results
similar to ours appear also in some works motivated by stochastic quantization, see e.g. [14].

Recently in a series of papers (see e.g. [27,28]) a deep application of Malliavin Calculus and
of the theory of forward–backward systems has been developed to obtain very general results on
the existence of smooth solutions to the HJB equation. Those papers cover our main examples,
(see Section 6.2) but under stronger conditions on the regularity of data. Indeed, they always
need to work with globally Lipschitz continuous data f and ϕ while we need square integrability
with respect to the invariant measure µ only. If µ is Gaussian then f and ϕ may be of exponential
growth.

In the remaining part of the introduction we will present the main motivation and features of
our approach.
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1.1. The motivation: Stochastic control problems

It is well known that the solution to (1) may be interpreted as the value function of the
following stochastic control problem with finite horizon T ≥ 0 and initial time t ∈ [0, T ].
Consider a controlled stochastic system{

dy(s) =

(
Ay(s)+ F(y(s))− Q1/2z(s)

)
ds + Q1/2dW (s), t ≤ s ≤ T,

y(t) = x ∈ X,
(5)

on X , driven by the white noise W , where z (·) stands for the control process and y(·) =

y(·; t, x, z) is the solution of (5). If

J (t, x; z) = E
{∫ T

t
[ f (y(s; t, x, z))+ h(z)]ds + ϕ(y(T ; t, x, z))

}
(6)

is a cost functional to minimize then the value function of the control problem above is given by

V (t, x) = inf
z∈M2

W (t,T ;X)
J (t, x; z), (7)

where M2
W (t, T ; X) stands for the set of all progressively measurable processes z : [t, T ] 7→ X

such that

E
∫ T

t
|z(s)|2 ds < +∞.

The classical argument of the Dynamic Programming Principle (see e.g. [26, p.137] for the finite
dimensional case) shows that, if the value function V is sufficiently regular, then it is a classical
solution of (1) with the Hamiltonian H0 given by

H0(p) = sup
z∈X

{〈
Q1/2z, p

〉
− h(z)

}
= h∗

(
Q1/2 p

)
(8)

where h∗ is the Légendre transform of h. Vice versa, if v is the unique classical solution of Eq.
(1) one can prove, by the so-called dynamic programming method (see Section 5) that v = V
and that there exists a unique optimal control z∗ given (when H0 is differentiable) by the formula

z∗(s) =
dH0

dp
(vx (s, y∗(s))) (9)

where y∗ is the optimal state given by the solution of the closed loop equation{
dy(s) =

[
Ay(s)+ F(y(s))− Q

1
2 z∗(s)

]
ds + Q1/2dW (s), t ≤ s ≤ T

y(t) = x, x ∈ X.
(10)

This fact turns out to be very useful for applications and is one of the main goals of this work. In
fact this result is obtained in the so-called relaxed control setting in Section 5.

1.2. The L2 approach

Our main assumption is that the uncontrolled system{
dy(s) = [Ay(s)+ F(y(s))] ds + Q1/2dW (s), t ≤ s ≤ T,
y(t) = x ∈ X, t ≤ T

(11)
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possesses an invariant measure µ which will be used as the reference measure. Under this
assumption we will study Eq. (1) in the space L2(X, µ) using the perturbation method. Then
quite general cases of data A, Q, F, ϕ, f , can be treated. More precisely:

• ϕ, f ∈ L2(X, µ), so they are not necessarily continuous and bounded;

• F is of linear growth so not necessarily bounded;

• we do not assume any smoothing properties of the linearized version of (1) and therefore
we do not impose any restrictions on Q; it is possible to take Q = I but it may be also a
one dimensional projection. This means that the Ornstein–Uhlenbeck semigroup associated
to (A, Q) need not to be strongly Feller (no “uniform ellipticity” of the operator L in (3)).

This generality comes at a price. We can deal only with a class of Hamiltonians of the form
H0 (p) = H

(
Q1/2 p

)
, which correspond to the control process in (5) taken in the form Q1/2z.

This assumption may seem restrictive but in fact it is quite natural in many control problems,
when the operator Q is degenerate. This condition says that the system should be controlled by
feedbacks taking values in the same space in which lives the noise disturbing the system (see
Section 6 for more detailed discussion and examples, see also the introduction of [18]). Let us
note that, if Q1/2

= 0, then both the control and the noise disappear. So, a possible, quite natural,
interpretation of Eq. (11) is that the uncontrolled system is in fact deterministic and the noise is
brought into the system by the control only.

Our main idea of solving Eq. (1) derives from a classical property of diffusion processes that
allows us to apply the perturbation method without using the strong Feller property of the linear
part and which we describe briefly below. Consider a Kolmogorov equation{

∂w

∂t
=

1
2

Tr[Qwxx ] + 〈Ax + F(x), wx 〉, t ∈ [0, T [, x ∈ D(A)

w(0, x) = ϕ(x), x ∈ X.
(12)

The solution to this equation may be identified as the transition semigroup (Pt ) of the process
y(·; x) defined by Eq. (11), i.e.

w(t, x) = Ptϕ(x) = Eϕ(y(t, x)) (13)

for a bounded continuous ϕ. If there exists an invariant measure µ for y then (Pt ) extends to a
strongly continuous semigroup of contractions on L2(X, µ) with the generatorN , which on nice
functions takes the form of the differential operator

Nφ(x) =
1
2

Tr[Qφxx ] + 〈Ax + F(x), φx 〉 . (14)

Moreover the following fundamental identity holds for every T > 0:

‖PTφ‖
2
µ +

∫ T

0

∥∥∥Q1/2 (Ptφ)x

∥∥∥2

µ
dt = ‖φ‖

2
µ, (15)

where ‖ · ‖µ stand for the norm in the space L2(X, µ). Identity (15) can be seen as an L2 version
of the smoothing property of the semigroup Pt which is used in the strong solution approach
to find Ck solutions. Identity (15) is well known and easy to obtain if we know an algebra of
functions which is a core for N (see Section 2.2 for precise references).
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Let us now take Eq. (1) with time reversal t 7→ T − t . We obtain the equation{
∂u

∂t
=

1
2

Tr[Quxx ] + 〈Ax + F(x), ux 〉 − H(Q1/2ux )+ f, t ∈ [0, T [, x ∈ D(A)

u(0, x) = ϕ(x), x ∈ X,

(16)

which can be seen as a perturbation of (12). By applying the formula for variation of constants,
the above Eq. (16) can be written in integral form as

u(t) = Ptφ +

∫ t

0
Pt−s

(
f − H

(
Q1/2ux (s)

))
ds.

Let W 1,2
Q (X, µ) denote the Sobolev space endowed with the norm

‖φ‖
2
1 =

∫
X

|φ|
2dµ+

∫
X

∣∣∣Q1/2φx

∣∣∣2
dµ. (17)

Now, and this is a key point, identity (15) allows us to use the Banach Fixed Point Theorem and
to prove the existence of a unique solution u : [0, T ] 7→ W 1,2

Q (X, µ) for the integral equation
(17). Then we identify the solution with the value function V of the stochastic control problem
and, by dynamic programming, we construct the optimal feedback control DH

(
Q1/2Vx

)
but

only for almost every (t, x) ∈ [0, T ] × X with respect to the measure Leb ⊗ µ. Imposing more
regularity on the data we can obtain more regular solutions. Equivalently, the original control
problem may be approximated by more regular problems converging in an appropriate sense to
the initial one (see Section 5).

We would like to emphasize the fact that the operator DQ = Q1/2 D need not to be closable.
In fact, DQ is not closable in our main examples (see Sections 6.1 and 6.2 and also [31]) and
gives rise to the unpleasant fact that in general W 1,2

Q (X, µ) 6⊆ L2 (X, µ). We deal with this
problem in Section 2.3.

The strategy sketched above gives a solution to a large class of Eq. (1) and a large class of
the optimal stochastic control problems with rather mild conditions on regularity of the data; the
functions ϕ, f : X 7→ R are merely square integrable with respect to the measure µ (we will
write ϕ, g ∈ L2 (X, µ)) while F : X → X and H : X → R are Lipschitz continuous. Moreover,
if F(x) ∈ Q1/2(X) then the noise in (5) may be arbitrarily degenerated.

To sum up, we propose a general procedure (obviously, it does not cover all interesting control
problems), which provides a well defined solution to (1) identified with the value function and
gives the optimal control in a feedback form. In some sense it is an L2-counterpart of the concept
of strong solution and of viscosity solution (which are useful mainly in the case of uniformly
continuous data, but see [39,50] for more refined concepts). Moreover, let us mention that the
Lipschitz property of F is not essential for our method. The identity (15) may be proved for a
much larger class of equations than (11). We made it to keep this paper to a reasonable size and
to present the main idea on a relatively simple system. Finally, the case of a locally Lipschitz
Hamiltonian is not treated here but will be a subject of forthcoming research (we recall that in
the special case H(p) = |Q1/2 p|

2/2 problem (1) can be solved by applying the Hopf transform,
see on this [18,33,25]).

The plan of the paper is the following. In Section 2 we give some notation (Section 2.1),
state the main assumptions and results on the uncontrolled problem (11) (Section 2.2) and give
some preliminary results (needed later but that may be interesting in themselves) on the gradient
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operator DQ (Section 2.3) and on the auxiliary operator K (Section 2.4). In Section 3 we prove
the main results about problem (1) while Section 4 is devoted to the approximation results for
the solution of (1) which are needed for the application to the control problem. In Section 5 we
show how to apply results of Sections 3 and 4 to the control problem (6) and in Section 6 we
apply the above techniques to selected examples.

2. Preliminaries

2.1. Some notation

The following notation will be used troughout the paper. X is a separable Hilbert space with
norm | · | and inner product 〈·, ·〉.

We denote by Cb(X) (respectively UCb(X)) the space of all continuous (respectively
uniformly continuous) and bounded functions φ : X 7→ R. The symbols Cb(X; X) (respectively
UCb(X; X)) will mean that such functions take values in X . Similar meanings hold for the spaces
Cb([0, T ] × X),UCb([0, T ] × X) and so on. Moreover Ck

b (X) denotes the space of of functions
φ : X → R, which are Fréchet differentiable up to order k, k ≥ 1, such that φ, Dφ, . . . , Dkφ

are continuous and bounded, where Dkφ denotes the k-th Fréchet derivative of φ. In the same
way we define the space Ck

b (X, X) of X -valued functions with continuous and bounded Fréchet
derivatives up to the k-th order.

In some case we will drop the subscript b, writing simply C(X),UC(X) and so on. This will
mean that the elements of such spaces may also be unbounded. Ck

0 (R
n) denotes the space of all

k-times differentiable, real-valued functions on Rn with compact support, k ≤ ∞, n ≥ 1.
Given a measure µ on X , L2(X, µ) stands for the space of all functions X 7→ R which

are square-integrable and L2(X, µ; X) will denote the space of X -valued square-integrable
functions. In both cases the norm of the function φ will be denoted in the same way:

‖φ‖ =

(∫
X

|φ(x)|2µ(dx)

)1/2

.

Let (Ω ,F, (Ft ) ,P) be a filtered probability space with the filtration satisfying the usual
conditions. We denote by M2

W (t, T ; X) the space of all progressively measurable processes
z : [t, T ] 7→ X such that

E
∫ T

t
|z(s)|2 ds < ∞.

The norms of operators acting in various spaces will be denoted by ‖·‖ with subscripts indicating
the spaces explicitly in cases the notation might be ambiguous.

2.2. The uncontrolled problem

We will study first some properties of Eq. (11). The following are standing assumptions for
the rest of the paper. The results will be enunciated without recalling these conditions.

Hypothesis 2.1. (A) The operator A generates a strongly continuous semigroup
(
et A

)
on X and

there exist M ≥ 1, and ω ∈ R such that∥∥∥et A
∥∥∥ ≤ Meωt , ∀t ≥ 0.
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(B) The process (Wt ) is a standard cylindrical Wiener process on X defined on a stochastic basis
(Ω ,F, (Ft ) ,P), where (Ft ) is a filtration satisfying the usual conditions. Moreover, the
operator Q = Q∗

≥ 0 is bounded on X .
(C) For every t > 0

tr (Qt ) < ∞, (18)

where

Qt =

∫ t

0
es A Qes A∗

ds. (19)

(D) The function F : X → X is Gateaux differentiable with

sup
x∈X

‖DF(x)‖ < ∞.

(E) There exists a nondegenerate invariant measure µ for Eq. (11). Moreover,∫
X

|x |
2µ(dx) < ∞.

If Hypothesis 2.1 holds then Eq. (11) has a unique solution (y(·; t, x)) (see [22, Chapter 7])
which satisfies the integral equation

y(s; t, x) = e(s−t)Ax +

∫ s

t
e(s−r)A F(y(r; t, x))dr +

∫ s

t
e(s−r)A Q1/2dW (r).

Moreover, part (E) of Hypothesis 2.1 allows us to extend the transition semigroup (Pt ) defined in
(13) to a strongly continuous semigroup of contractions on the space L2(X, µ)with the generator
N defined in (14) (see for example [23]).

Let Pn be an orthogonal projection in X such that dim im (Pn) = n and im (Pn) ⊂ dom (A∗).
We define the space

FC2
0

(
A∗

)
=

{
φ ∈ C2

0(X) : φ = f ◦ Pn, n ≥ 0, f ∈ C2
0

(
Rn)}

.

In the notation f ◦ Pn above we identify Pn x with the the vector (〈x, h1〉 , . . . , 〈x, hn〉) ∈ Rn ,
where h1, . . . , hn generate the space im (Pn).

Lemma 2.2. For each φ ∈ FC2
0 (A

∗) we have φ ∈ dom (N ) and

Nφ(x) =
1
2

tr
(

Q D2φ(x)
)

+
〈
x, A∗ Dφ(x)

〉
+ 〈F(x), Dφ(x)〉 . (20)

Proof. Applying the Ito formula to the process φ (y(t, x)) we find easily that for any x ∈ X

lim
t→0

Ptφ(x)− φ(x)

t
=

1
2

tr
(

Q D2φ(x)
)

+
〈
x, A∗ Dφ(x)

〉
+ 〈F(x), Dφ(x)〉 . (21)

It follows from the definition of FC2
0 (A

∗) that the function

x →
1
2

tr
(

Q D2φ(x)
)

+
〈
x, A∗ Dφ(x)

〉
is in L2(X, µ). Since Dφ is bounded by definition we obtain from Hypothesis 2.1∫

X
〈F(x), Dφ(x)〉2 µ(dx) ≤

∫
X

c
(

1 + |x |
2
)
µ(dx) < ∞,
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for a certain c > 0. Hence, using Dominated Convergence, we find that the convergence in (21)
takes place in L2(X, µ) and that (20) holds. Therefore, φ ∈ dom(N ) and (20) holds. �

Let ζ x,h
t , t ≥ 0, h, x ∈ X , denote the solution to the following differential equation (see [22,

Chapter 7] for details):

dζ x,h
t

dt
= (A + DF(y(t, x)))ζ x,h

t , ζ
x,h
0 = h. (22)

By Hypothesis 2.1 |ζ
x,h
t | ≤ aeαt

|h| for some α, a > 0 and therefore the solution to (22) defines,
for every t ≥ 0, x ∈ X and any path {y(s, x) : s ≤ t}, a bounded operator ζ x

t : X → X .
Moreover, for φ ∈ C1

b(X)

〈D Ptφ(x), h〉 = E
(〈(
ζ x

t

)∗ Dφ(y(t, x)), h
〉)
, h ∈ X. (23)

In particular, if φ ∈ C1
b(X) then Q1/2 D Ptφ(x) is well defined for every x ∈ X .

2.3. The gradient operator DQ

We define the operator

DQφ = Q1/2 Dφ, φ ∈ FC2
0

(
A∗

)
,

where Dφ denotes the Fréchet derivative of φ. For φ ∈ FC2
0 (A

∗) we define the norm

‖φ‖
2
1 = ‖φ‖

2
+

∥∥DQφ
∥∥2

and the completion of FC2
0 (A

∗) with respect to the norm ‖·‖1 will be denoted by W 1,2
Q (X, µ).

Since we do not assume that DQ is closable we will recall below for the reader’s convenience
a standard construction of W 1,2

Q (X, µ) which will be important in the following study of the HJ
equation.

The space W 1,2
Q (X, µ)may be identified as a subset of L2(X, µ)×L2(X, µ; X)which consists

of all pairs

(ψ,Ψ) ∈ L2(X, µ)× L2(X, µ; X)

such that there exists a sequence (φn) ⊂ FC2
0 (A

∗) with the property that,

φn → ψ, in L2(X, µ),

DQφn → Ψ , in L2(X, µ; X).

Closability implies that, for any two pairs (ψ1,Ψ1), (ψ2,Ψ2) ∈ W 1,2
Q (X, µ) such that ψ1 = ψ2

in L2(X;µ) we have also Ψ1 = Ψ2, so that W 1,2
Q (X, µ) is naturally embedded in L2(X, µ). If

DQ is not closable then we can find a sequence (φn) ⊂ FC2
0 (A

∗) such that

φn → 0 in L2(X, µ) and DQφn → Ψ 6= 0, in L2(X, µ; X).

Therefore, elements of W 1,2
Q (X, µ) cannot be identified, in general, with functions from

L2(X, µ) (e.g. the above element (0,Ψ)).
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We will show that even in the case when DQ is not closable, it still enjoys some useful
properties when applied to the semigroup (Pt ). Namely, we will show that DQ is closable in
a weaker sense that we define below. We will show that this weaker definition is satisfied in a
wide class of problems, including those satisfying our Hypothesis 2.1.

Definition 2.3. Let D ⊂ dom(N ) be a core of N and assume that D ⊂ C1
b(X). We say that the

operator
(
DQ,D

)
is closable on dom(N ) if the following condition is satisfied.

Let (φn) ⊂ D be such that

φn → 0, Nφn → 0 in L2(X, µ),

and

Q1/2 Dφn → ψ, in L2 (X, µ; X) .

Then ψ = 0.

Let us define an operator K as follows: given φ ∈ C1
b(X)Kφ is a function from [0, T ] to

C1
b(X; X) given by

Kφ(t) = DQ Ptφ.

The next proposition is closely related to the similar results in [24], but we present here a
completely different proof.

Proposition 2.4. For every φ ∈ C1
b(X)∫ T

0

∥∥DQ Ptφ
∥∥2 dt = ‖φ‖

2
− ‖PTφ‖

2 . (24)

Moreover, the operator K has a unique extension to dom(N ) and for each φ ∈ dom(N )∫ T

0
‖Kφ(t)‖2 dt = ‖φ‖

2
− ‖PTφ‖

2 .

Proof. Let us recall first the following result (see p. 181 of [52]).

Lemma 2.5. Assume that F ∈ UC2
b (X). Then for every φ ∈ UC2

b(X)

φ (y(t, x)) = Ptφ(x)+

∫ t

0

〈
Q1/2 D Pt−sφ(y(s, x)), dW (s)

〉
P- a.e. (25)

Step 1. We will show that (25) holds for any F which is Gateaux differentiable with l =

supx |DF(x)| < ∞ and any φ ∈ C1
b(X). Indeed, fix φ ∈ UC2

b(X) and let (Fn) be a sequence of
mappings Fn : X → X such that

sup
n

‖DFn‖∞ ≤ l,

and for all x ∈ X ,

lim
n→∞

Fn(x) = F(x), and lim
n→∞

DFn(x) = DF(x), x ∈ X.
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Existence of such a sequence is proved for example in [47] and Theorem A.1 in [47] implies that

lim
n→∞

sup
t≤T

E |yn(t, x)− y(t, x)|2 = 0, (26)

where yn(·, x) is a unique solution of the equation{
dyn = (Ayn + Fn (yn)) dt +

√
QdW,

y(0, x) = x .
(27)

Let Pn
t φ(x) = Eφ (yn(t, x)) be the corresponding transition semigroup. Then for every x ∈ X

lim
n→∞

Pn
t φ(x) = Ptφ(x) and lim

n→∞
D Pn

t φ(x) = D Ptφ(x) (28)

by (22), (23) and (26). We find easily that (28) yields (25) for any F which has uniformly bounded
Gateaux derivative and any φ ∈ UC2

b(X).
Assume now that F satisfies Hypothesis 2.1 and φ ∈ C1

b(X). Then, using the same
construction as in [47] we can find a sequence (φn) ⊂ UC2

b(X), such that for all x ∈ X

lim
n→∞

φn(x) = φ(x) and lim
n→∞

Dφn(x) = Dφ(x),

and moreover,

‖φn‖∞ ≤ ‖φ‖∞ and ‖Dφn‖∞ ≤ ‖Dφ‖∞ .

Then by (23)

lim
n→∞

Ptφn(x) = Ptφ(x) and lim
n→∞

D Ptφn(x) = D Ptφ(x).

This yields (25) for all φ ∈ C1
b(X).

Step 2. Let φ ∈ C1
b(X). Then (25) yields

Eφ2(y(t, x)) = (Ptφ(x))
2
+

∫ t

0
E

∣∣∣Q1/2 D Pt−sφ(y(s, x))
∣∣∣2

ds.

Integrating this identity with respect to µ and using the fact that µ is an invariant measure we
obtain (24) for all φ ∈ C1

b(X). Note that by (23) we have Pt : C1
b(X) 7→ C1

b(X) which gives that
(I −N )−1C1

b(X) ⊂ C1
b(X). Moreover (I −N )−1C1

b(X) is a core forN by a standard argument.
Hence, for any φ ∈ dom(N ) we can find a sequence (φn) ⊂ (I −N )−1C1

b(X) such that φn → φ

in L2(X, µ) and (24) implies that
(
DQ Ptφn

)
is a Cauchy sequence in L2

(
0, T ; L2(X, µ; X)

)
.

Therefore, the operator K can be extended to a linear operator

K : dom(N ) → L2
(

0, T ; L2(X, µ; X)
)
,

and ∫ T

0
‖Kφ(t)‖2 dt = ‖φ‖

2
− ‖PTφ‖

2 , φ ∈ dom(N ). (29)

In fact the extension could be done to the whole of L2(X, µ) but we will do that later. �

Remark 2.6. The crucial fact for the proof of Proposition 2.4 is the Gateaux differentiability
of F which is assured by Hypothesis 2.1. This condition can be relaxed in some situations. For
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example assume that F is Lipschitz, F(x) ∈ Q1/2(X) and

sup
x∈X

|Q−1/2 F(x)|

1 + |x |
< ∞.

By the result in [48] there exists a set Z ⊂ X such that ν(Z) = 0 for arbitrary Gaussian measure
ν on X and F is Gateaux differentiable at each point x ∈ X−Z . Since the above conditions imply
that the law of y(t, x) is absolutely continuous with respect to a Gaussian measure (see [22]) it
follows (22) and (23) still hold and then Proposition 2.4 can be proved in the same way. �

Remark 2.7. If F = 0 then the operator N reduces to the Ornstein–Uhlenbeck operator L
and the semigroup (Pt ) is called the Ornstein–Uhlenbeck semigroup. In this case the invariant
measure for (Pt ) is the Gaussian measure N (0, Q∞) (recall that Qt and Q∞ are defined in (19))
and the concept of closability as well as the smoothing properties of the semigroup (Pt ) have a
useful control theoretic interpretation in terms of the linearly controlled system

y
′

= Ay + Q1/2z, y(0) = 0, (30)

(see e.g. [22, Appendix B]). In fact (see [31]) the closability is equivalent to the fact that the set{
x ∈ X : Q1/2x ∈ Q1/2

∞ (X)
}

is dense in X.

Note that h ∈ Q1/2
∞ (X) if and only if the system (30) can be driven to h in an infinite time using

the square integrable control z.
Moreover D Ptφ is well defined for t > 0 if and only if

et A (X) ⊆ Q1/2
t (X)

i.e. every point of X is null controllable in time t (this is also equivalent to the strong Feller
property of the semigroup Pt ). In this case the singularity of ‖D Ptφ‖ at 0+ goes as the norm of
the operator

Q−1/2
t et A

= Γ (t) . (31)

Finally DQ Ptφ is well defined for t > 0 if and only if

et A Q1/2 (X) ⊆ Q1/2
t (X) (32)

i.e. every point of Q1/2 (X) is null controllable in time t . In this case the singularity of
∥∥DQ Ptφ

∥∥
at 0+ goes as the norm of the operator

Q−1/2
t et A Q1/2

(which is equal to Γ (t) Q1/2 when the strong Feller property holds). �

Remark 2.8. If DQ is closable in L2(X, µ) then Kφ(t) = DQ Ptφ(t) for all t > 0 and
φ ∈ L2(X, µ). In this case (24) is easier to obtain and all the machinery to study the HJ
equation and the associated control problem is much simpler. This is true in particular when
Q is boundedly invertible. Closability follows also, rather straightforwardly, if N is associated
to a nonsymmetric Dirichlet form on L2(X, µ), see [44]. In general the question of closability is
rather difficult. Let us note that there are interesting control problems for which the operator DQ
is not closable (see Section 6 or also [31]). This fact has been our main motivation for introducing
the weaker notion of closability in Definition 2.3. �
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2.4. The operator K

We will study here some properties of the operator K which will be a key tool in proving our
main results.

Proposition 2.9. The operator K extends to a bounded operator

K : L2(X, µ) → L2
(

0, T ; L2(X, µ)
)

with

‖Kφ‖
2
L2(0,T ;L2(X,µ))

= ‖φ‖
2
− ‖PTφ‖

2 . (33)

Proof. The proof follows immediately from (24). �

The next lemma is crucial for our study of the HJB equation (1).

Lemma 2.10. For f ∈ L2
(
0, T ; L2(X, µ)

)
let

G1 f (t) =

∫ t

0
Pt−s f (s)ds, t ≤ T,

and

G2 f (t) =

∫ t

0
K ( f (s)) (t − s)ds.

Then ∫ T

0
‖G1 f (t)‖2 dt ≤ T 2

∫ T

0
‖ f (t)‖2dt. (34)

Moreover, G2 f (t) ∈ L2(X, µ; X) for almost every t ∈ [0, T ] and∫ T

0
‖G2 f (t)‖2 dt ≤ T

∫ T

0
‖ f (t)‖2dt. (35)

Proof. The first estimate is obvious. We will prove only the second inequality. Assume first that
f ∈ C1

b([0, T ] × X) and f (t) ∈ FC2
0 (A

∗) for all t ≥ 0. Then DQ Pt−s f (s) is well defined for
s ≤ t and so is DQ G1(t). Moreover,∫ T

0
‖G2 f (t)‖2 dt ≤

∫ T

0

(∫ t

0

∥∥DQ Pt−s f (s)
∥∥ ds

)2

dt

≤

∫ T

0
t
∫ t

0

∥∥DQ Pt−s f (s)
∥∥2 dsdt ≤ T

∫ T

0

∫ T

s

∥∥DQ Pt−s f (s)
∥∥2 dtds.

Hence by (24)∫ T

0
‖G2(t)‖

2 dt ≤ T
∫ T

0
‖ f (t)‖2dt.
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If f ∈ L2
(
0, T ; L2(X, µ)

)
is arbitrary, then there exists a sequence fn ∈ C1

b([0, T ]×X), fn(t) ∈

FC2
0 (A

∗), which converges to f in L2
(
0, T ; L2(X, µ)

)
. Repeating the above arguments for

Gn
1(t) =

∫ t

0
Pt−s fn(s)ds

we find that∫ T

0

∥∥DQ
(
Gn

1(t)− Gm
1 (t)

)∥∥2 dt ≤ T
∫ T

0
‖ fn(t)− fm(t)‖

2 dt.

Hence the sequence DQ Gn
1 is convergent in L2

(
0, T ; L2(X, µ)

)
. Moreover, by the Fubini

Theorem∫ T

0

∥∥DQ Gn
1(t)− G2(t)

∥∥2 dt =

∫ T

0

∥∥∥∥∫ t

0

[
DQ Pt−s fn(s)ds −K ( f (s)) (t − s)

]
ds

∥∥∥∥2

dt

≤ T
∫ T

0
ds

∫ T

s

∥∥DQ Pt−s fn(s)−K ( f (s)) (t − s)
∥∥2 dt

= T
∫ T

0
ds

∫ T

s
‖K ( fn(s)− f (s)) (t − s)‖2 dt

which gives, by Proposition 2.9∫ T

0

∥∥DQ Gn
1(t)− G2(t)

∥∥2 dt = T
∫ T

0

[
‖ fn(s)− f (s)‖2

− ‖PT −s ( fn(s)− f (s))‖2
]

ds

≤ T
∫ T

0
‖ fn(s)− f (s)‖2 ds (36)

so that DQ Gn
1 is convergent in L2

(
0, T ; L2(X, µ)

)
to G and (35) holds. �

Remark 2.11. Let fn → f in L2
(
0, T ; L2(X, µ)

)
. Then, by (36), there exists a subsequence(

fnk

)
such that for a.e. s, t ∈ [0, T ] and s ≤ t ,

DQ Pt−s fnk (s) → K ( f (s)) (t − s) in L2(X, µ).

This fact will be useful in Section 5. �

Now we use the above to derive a useful approximation result. Let ϕ ∈ L2 (X, µ) and
f ∈ L2

(
0, T ; L2 (X, µ)

)
. Consider the Cauchy problem{

u′(t) = Nu(t)+ f (t) t ∈ ]0, T ]

u(0) = ϕ.
(37)

Define the mild solution of (37) as

u(t) = Ptϕ +

∫ t

0

[
Pt−s f (s)

]
ds. (38)

Then the following holds.

Proposition 2.12. Let (ϕn) ⊂ L2 (X, µ) and ( fn) ⊂ L2
(
0, T ; L2 (X, µ)

)
be such that

ϕn −→ ϕ in L2 (X, µ)

fn −→ f in L2
(

0, T ; L2 (X, µ)
)
.
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Then, setting

un(t) = Ptϕn +

∫ t

0

[
Pt−s fn(s)

]
ds (39)

and

D̃Qun(t) = Kϕn(t)+

∫ t

0
K ( fn (s)) (t − s) ds

D̃Qu(t) = Kϕ(t)+

∫ t

0
K ( f (s)) (t − s) ds

we have

un −→ u in C
(

[0, T ] ; L2 (X, µ)
)
, (40)

D̃Qun −→ D̃Qu in L2
(

0, T ; L2 (X, µ; X)
)
. (41)

Proof. We start with the first claim. By subtracting (38) from (39) we get

un (t)− u (t) = Pt (ϕn − ϕ)+

∫ t

0
Pt−s ( fn(s)− f (s)) ds

so that, by strong continuity of Pt ,

‖un (t)− u (t)‖2
≤ CT

[
‖ϕn − ϕ‖

2
+

∫ t

0
‖ fn(s)− f (s)‖2 ds

]
which gives (40), taking the supremum on [0, T ]. To prove (41) we apply Lemma 2.10. In fact

D̃Q (un (t)− u (t)) = K (ϕn − ϕ) (t)+

∫ t

0
K ( fn(s)− f (s)) (t − s) ds

so that, by (33) and (35)∫ T

0

∥∥∥D̃Qun (t)− D̃Qu (t)
∥∥∥2

≤ ‖ϕn − ϕ‖
2
+ T

∫ T

0
‖ fn(s)− f (s)‖2 ds

which gives (41). �

The above approximation results substantially tells us that for the mild solutions of Cauchy
problems like (37) an operator D̃Q , that extends DQ , can be well defined.

3. The HJB equation

In this section we study the existence and uniqueness of solutions to the following HJB
equation (where we set H

(
Q1/2 p

)
= H0 (p))

du

dt
(t) = Nu(t)− H

(
DQu(t)

)
+ f (t),

u(0) = φ ∈ L2(X, µ), t ≤ T .
(42)

We assume that the following conditions are satisified.
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Hypothesis 3.1. (A) The function H0 (the Hamiltonian) can be written as H0 (p) = H
(
Q1/2 p

)
,

where H : X → R is Lipschitz continuous with Lipschitz constant l.
(B) We assume that f ∈ L2

(
0, T : L2(X, µ)

)
and φ ∈ L2(X, µ).

Remark 3.2. Note that at the moment the HJB equation (1) is not related to any control problem
and therefore the Hamiltonian H0 need not to be of the special form (8). In fact our existence
and uniqueness results will hold under the above assumptions, even if no control problem is
associated to (1). �

Using the semigroup (Pt ) and the variation of constants formula we can rewrite Eq. (42) in
the following integral form

u(t) = Ptφ −

∫ t

0
Pt−s H

(
DQu(s)

)
ds +

∫ t

0
Pt−s f (s) ds, 0 ≤ t ≤ T . (43)

We will use this integral form (which is often called “mild form”) to define a solution and to state
our existence and uniqueness result. However, due to the nonclosability of the operator DQ , an
unpleasant problem arises in defining the concept of solution to (42). If DQ was closable, then
it would be natural to define the solution of Eq. (43) (that will be called the mild solution of Eq.

(42)) as an element of L2
(

0, T ; W 1,2
Q (X, µ)

)
such that (43) is satisfied for a.e. t ∈ [0, T ] and µ

a.e. But here DQ may be not closable, so elements of W 1,2
Q (X, µ) are not functions in general,

but pairs of functions belonging to the product space L2(X, µ) × L2(X, µ; X) as recalled in
Section 2.2. We will see that, thanks to Proposition 2.9 and Lemma 2.10 this difficulty can be
overcome.

The following definition of solution takes into account that we are dealing with pairs of
functions.

Definition 3.3. By a solution of Eq. (43) (or a mild solution of Eq. (42)) we mean a pair of
functions

(u,U ) ∈ L2
(

0, T ; W 1,2
Q (X, µ)

)
⊂ L2

(
0, T ; L2(X, µ)

)
× L2

(
0, T ; L2(X, µ; X)

)
such that, for a.e. t ∈ [0, T ] and µ a.e.

u(t) = Ptφ +

∫ t

0
Pt−s H (U (s)) ds +

∫ t

0
Pt−s f (s) ds, 0 ≤ t ≤ T (44)

and

U (t) = K(φ)(t)−

∫ t

0
K (H(U (s))) (t − s)ds +

∫ t

0
K ( f (s)) (t − s)ds. (45)

Remark 3.4. Note that the second Eq. (45) is an obvious consequence of (44) if the operator DQ
is closable and then U = DQu. �

We now introduce a suitable nonlinear operatorM which will allow us to use the fixed point
argument.

For v ∈ L2(0, T ; L2(X, µ)) such that v(t) ∈ C1
b(X)t-a.e. we define the norm ||| · ||| by the

formula
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|||v|||2 =

∫ T

0

(
‖v(t)‖2

+

∥∥∥Q1/2 Dv(t)
∥∥∥2

)
dt.

Next we define the operatorM1 as follows:

dom(M1) =

{
v ∈ L2

(
0, T ; L2(X, µ)

)
: v(t) ∈ C1

b(X) t-a.e. and |||v||| < ∞

}
,

and for v ∈ dom(M1)

M1v(t) = Ptφ +

∫ t

0
Pt−s H

(
DQv(s)

)
ds +

∫ t

0
Pt−s f (s) ds, t ≤ T .

Note that by Lemma 2.10 DQM1v ∈ L2(0, T ; L2(X, µ; X)) is well defined for every v ∈

dom(M1).

Lemma 3.5. Assume that Hypotheses 2.1 and 3.1 hold. Then M1 extends to a Lipschitz
mappingM1 : L2(0, T ; W 1,2

Q (X, µ)) → L2(0, T ; L2(X, µ)). Moreover, the mapping DQM1 :

dom(M1) → L2(0, T ; L2(X, µ; X)) also extends to a Lipschitz mapping

DQM1 : L2(0, T ; W 1,2
Q (X, µ)) → L2(0, T ; L2(X, µ; X)).

Proof. Since, for suitable b > 0, |H(x)| ≤ b(1 + |x |) it follows from Lemma 2.10 that
M1v ∈ L2

(
0, T ; L2(X, µ)

)
and DQM1v ∈ L2

(
0, T ; L2(X, µ)

)
for every v ∈ dom(M1).

Let v1, v2 ∈ dom(M1). Then

M1 (v1 − v2) (t) =

∫ t

0
Pt−s

(
H

(
DQv1(s)

)
− H

(
DQv2(s)

))
ds

and therefore, since ‖Pt‖ = 1,

|M1 (v1 − v2) (t)| ≤ l
∫ t

0

∣∣DQv1(t)− DQv2(t)
∣∣ dt.

Hence,∫ T

0
‖M1 (v1 − v2) (t)‖

2 dt ≤ l2T 2
∫ T

0

∣∣DQv1(t)− DQv2(t)
∣∣2 dt.

It follows that M1 may be extended to the whole of L2
(

0, T ; W 1,2
Q (X, µ)

)
by continuity and

the resulting mapping is Lipschitz with the constant lT . Similarly,

DQM1 (v1 − v2) (t) =

∫ t

0
DQ Pt−s

(
H

(
DQv1(s)

)
− H

(
DQv2(s)

))
ds

and using notation from Lemma 2.10 we obtain∫ T

0

∥∥DQM (v1 − v2) (t)
∥∥2 dt

=

∫ T

0

∥∥G2
(
H

(
DQv1

)
− H

(
DQv2

))
(t)

∥∥2 dt

≤ T
∫ T

0

∥∥H
(
DQv1(t)

)
− H

(
DQv2(t)

)∥∥2 dt ≤ l2T
∫ T

0

∥∥DQ (v1(t)− v2(t))
∥∥2 dt,



B. Goldys, F. Gozzi / Stochastic Processes and their Applications 116 (2006) 1932–1963 1949

and therefore DQM1 extends to a Lipschitz mapping on L2(0, T ; W 1,2
Q (X, µ)) with constant

lT . �

Remark 3.6. We observe that, in fact, the operators M1, DQM1 are defined on the space
L2

(
0, T ; L2(X, µ; X)

)
i.e. they depend only on the second component of elements of

L2
(

0, T ; W 1,2
Q (X, µ)

)
. It is convenient for us to define them on L2

(
0, T ; W 1,2

Q (X, µ)
)

to apply

the fixed point argument below. �

Now we define the operator

M : L2
(

0, T ; W 1,2
Q (X, µ)

)
→ L2

(
0, T ; W 1,2

Q (X, µ)
)

M(u,U ) = (M1(u,U ), DQM1(u,U )).

Using Proposition 2.9 and Lemma 2.10 we find that for a.e. t ∈ [0, T ]

M1(u,U )(t) = Ptφ −

∫ t

0
Pt−s H(U (s))ds +

∫ t

0
Pt−s f (s)ds,

and

DQM1(u,U )(t) = K(φ)(t)−

∫ t

0
K (H(U (s))) (t − s)ds +

∫ t

0
K ( f (s)) (t − s)ds.

Theorem 3.7. Assume that Hypotheses 2.1 and 3.1 hold. Then for every φ ∈ L2(X, µ) there
exists a unique mild solution (u,U ) to Eq. (42). Moreover u ∈ C

(
[0, T ]; L2(X, µ)

)
and

U = D̃Qu.

Proof. We will apply the Fixed Point Theorem to the mapping M in the space

L2
(

0, T ; W 1,2
Q (X, µ)

)
endowed with the norm ||| · ||| with T sufficiently small. We have

|||Mv −Mw||| ≤ l
√

T (T + 1)|||v1 − v2|||. (46)

Indeed, by Lemma 3.5∫ T

0

∥∥M1v1(t)−M1v2(t)
∥∥2

dt ≤ l2T 2
|||v1 − v2|||

2, (47)

and ∫ T

0

∥∥DQM1v1(t)− DQM1v2(t)
∥∥2

dt ≤ T l2
|||v1 − v2|||

2, (48)

for v1, v2 ∈ L2
(
0, T ; L2(X, µ)

)
. Clearly (47) and (48) yield (46), hence M is a strict

contraction for T sufficiently small. Since the constant in (46) is independent of φ, the solution
can be continued indefinitely and this concludes the proof of Existence and Uniqueness.
Finally, since H (U ) ∈ L2

(
[0, T ]; L2(X, µ)

)
and (Pt ) is a C0-semigroup, we find that u ∈

C
(
[0, T ], L2(X, µ)

)
. �

A stronger result can be proved if DQ is closable in L2(X, µ) in which case W 1,2
Q (X, µ) is

continuously embedded in L2(X, µ).
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Theorem 3.8. Assume that Hypotheses 2.1 and 3.1 hold. Assume moreover that DQ is closable.
Then there exists a unique mild solution u of (42) in the sense that the couple (u, DQu) satisfies

Definition 3.3. Moreover u belongs to L2
(

0, T ; W 1,2
Q (X, µ)

)
∩ C

(
[0, T ], L2(X, µ)

)
. Finally, if

f ∈ Cb
(
(0, T ], L2(X, µ)

)
then DQu ∈ Cb

(
[ε, T ]; L2(X, µ; X)

)
for every ε > 0.

Proof. By Theorem 3.7 there exists a unique solution u of (42) such that u ∈

L2
(

0, T ; W 1,2
Q (X, µ)

)
and since DQ is closable, W 1,2

Q (X, µ) ⊂ L2(X, µ) and the first part

of the Theorem follows. Assume that f ∈ Cb
(
(0, T ], L2(X, µ)

)
. Then we can repeat the

proof of Theorem 3.7 in the space of all u ∈ Cb
(
(0, T ]; L2(X, µ)

)
such that DQu ∈

Cb
(
[ε, T ]; L2(X, µ; X)

)
for every ε > 0. This yields easily the desired result. �

We finally give a regularity result.

Proposition 3.9. Assume that Hypotheses 2.1 and 3.1 hold. Let (u,U ) be the mild solution of
(42). If φ ∈ C1

b(X) and f ∈ C1,1
b ([0, T ] × X) then U ∈ C

(
[0, T ], L2(X, µ; X)

)
.

Proof. It is enough to observe that the terms Ptφ and
∫ t

0 Pt−s f (s) ds in (43), thanks to (22) and
Lemma 2.10, are such that DQ Ptφ and DQ

∫ t
0 Pt−s f (s)ds belong to C

(
[0, T ], L2(X, µ; X)

)
.

Then one can apply the fixed point theorem in a space of more regular functions getting the
required regularity. �

Remark 3.10. We note that the uniqueness of the solution stated in Theorem 3.7 has to be
understood with respect to the reference measure µ. It may happen that there are two different
classical solutions that are equal µ-a.e. In the case of HJB equations arising from stochastic
control problems, as in Section 5 we can identify (µ-a.e.) the mild solution with the value
function. In the case when the value function is continuous (which may be the case under
relatively mild assumptions) then we may say (thanks to the nondegeneracy of µ) that the value
function is the unique continuous mild solution (in the sense that any other solution is equal to it
at every point of X ). �

4. Approximation of mild solutions

We now show, following the approach of [32], that the mild solution of our equation can be
obtained as the limit µ-a.e. of classical solutions.

We start by defining the operator N0 as follows:
D(N0) = {η ∈ UC2

b(X) : ηxx ∈ UCb(X,L1(X)); A∗ηx ∈ UCb(X);
x → 〈F(x), ηx 〉 ∈ UC(X) ∩ L2(X, µ)
and x → 〈x, A∗ηx 〉 ∈ UC(X) ∩ L2(X, µ)}

N0η =
1
2

Tr[Qηxx ] + 〈x, A∗ηx 〉 + 〈F(x), ηx 〉.

(49)

It can be easily seen that FC2
0(A

∗) ⊆ D(N0) so that (see [21]) N0 ⊂ N and D(N0) is dense in
L2 (X, µ). Moreover D(N0) is also dense in UCb(X) in the sense of the so-calledK-convergence
(the uniform convergence on compact subsets plus uniform boundedness, see [11]). We can now
define the concepts of strict and strong solution of Eq. (42).
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Definition 4.1. A function u : [0, T ] × X → R is a strict solution of Eq. (42) if u has the
following regularity properties

u(·, x) ∈ C1([0, T ]), ∀x ∈ X
u (t) ∈ D(N0) ∀t ∈ [0, T ] and sup

t∈[0,T ]

‖u (t) ‖D(N0) < +∞

u, ut , D̃Qu,∈ Cb([0, T ] × X), N0u ∈ C([0, T ] × X) ∩ L2(X, µ)

and satisfies (42) in the classical sense with D̃Q in place of DQ .

Note that this definition is slightly different from the one of [32] in that it does not require the
boundedness of N0u. This comes from the presence of the nonlinear, and possibly unbounded,
term F which was assumed to be bounded in [32].

Definition 4.2. A function u : [0, T ] × X → R is a strong solution of Eq. (42) if u ∈

L2
(

0, T ; W 1,2
Q (X, µ)

)
and there exist three sequences {un}, { fn} ⊂ L2

(
0, T ; W 1,2

Q (X, µ)
)

and {ϕn} ⊂ D(N0) such that for every n ∈ N, un is the strict solution of the Cauchy problem:{
wt = N0w − H(DQw)+ fn
w(0) = ϕn

and moreover, for n → +∞

ϕn −→ ϕ in L2 (X, µ)

fn −→ f in L2
(

0, T ; L2 (X, µ)
)

un −→ u in C
(

[0, T ] ; L2 (X, µ)
)

D̃Qun −→ D̃Qu in L2
(

0, T ; L2 (X, µ; X)
)

Proposition 4.3. Assume that Hypotheses 2.1 and 3.1 hold. The couple (u,U ) ∈

L2
(

0, T ; W 1,2
Q (X, µ)

)
is a mild solution of Eq. (42) if and only if U = D̃Qu and u is a strong

solution.

Proof. Let (u,U ) be the mild solution of (42). By the definition of D̃Qu in Proposition 2.12
and the Definition of mild solution 3.3 we immediately get U = D̃Qu. Let {ϕn}, {ψn} be two
sequences such that

ϕn ∈ D(N0); ψn ∈ C ([0, T ]; D(N0))

ϕn
n→+∞
−→ ϕ in L2(X, µ)

ψn
n→+∞
−→ −H(D̃Qu)+ f in L2

(
0, T ; L2 (X, µ)

)
.

These sequences exist thanks to approximation lemmas proved e.g. in [11,21]. Since we have

u(t) = Ptϕ +

∫ t

0

[
Pt−s

(
−H(D̃Qu(s))+ f (s)

)]
ds,

then setting

un(t, x) = Ptϕn +

∫ t

0
Pt−sψn(s)ds
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by Proposition 2.12 we get that

un
n→+∞
−→ u in C

(
[0, T ] ; L2 (X, µ)

)
D̃Qun

n→+∞
−→ D̃Qu in L2

(
0, T ; L2 (X, µ; X)

)
.

Moreover un satisfies, in the classical sense, the approximated HJ equation:{
∂un

∂t
= Nun − H(D̃Qun)+ fn, t ∈ ]0, T ] x ∈ D(A)

u(0, x) = ϕn(x), x ∈ X,
(50)

where we set

fn = ψn − [−H(D̃Qun)]
n→+∞
−→ f in L2

(
0, T ; L2 (X, µ)

)
.

This proves that a mild solution is always strong. Vice versa it is easy to check that a strong
solution is always a mild one. In fact, if u is a strong solution and un, fn, ϕn are its approximating
sequences as in Definition 4.2 then, by the formula for variation of constants, for every n we have

un(t) = Ptϕn +

∫ t

0
Pt−s

[
−H(D̃Qun(s))+ fn(s)

]
ds

so, setting ψn = −H(D̃Qun)+ fn we get

= Ptϕn +

∫ t

0
Pt−s [ψn(s)] ds

where ϕn ∈ D(N0), ψn ∈ L2
(
0, T ; L2 (X, µ)

)
and

ϕn
n→+∞
−→ ϕ in L2(X, µ)

ψn
n→+∞
−→ −H(D̃Qu)+ f in L2

(
0, T ; L2 (X, µ)

)
.

Then we can apply Proposition 2.12 and pass to the limit for n → +∞ to get the claim. �

Remark 4.4. We observe that the sequences (ϕn)n∈N and (ψn)n∈N can be always taken with
values in FC2

0 (A
∗) i.e. finite dimensional with respect to a fixed orthonormal basis in X .

However the approximate solutions (un)n∈N are not in general finite dimensional, except for
some special cases (e.g. when F = 0, and A, Q are diagonal operators with respect to the
same orthonormal basis in X ). Of course these cases could be interesting from the point
of view of numerical approximations, this happens e.g. in some fluid dynamics models (see
e.g. [18–20]). �

Remark 4.5. In the case when DQ is closable then, using the same arguments of Theorem 3.8
above we can prove that

D̃Qun
n→+∞
−→ D̃Qu in C

(
[ε, T ] ; L2 (X, µ; X)

)
for every ε > 0. �
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Remark 4.6. Using results of Section 2.2 one can prove also the following approximation result
similar to the ones of this section. If φn ∈ C1

b(X) and limn→∞ φn = φ in L2(X, µ) then

lim
n→∞

∫ T

0

(
‖un(t)− u(t)‖2

+
∥∥DQ (un(t)− u(t))

∥∥2
)

dt = 0.

The same results also holds if we approximate f by fn ∈ C1
b([0, T ] × X). �

5. Dynamic programming

Consider a stochastic controlled system governed by the state equation

y(s) = e(s−t)Ax +

∫ s

t
e(s−r)A

[
Q1/2 F(y(r))+ Q1/2h1(z(r))

]
dr

+

∫ s

t
e(r−t)A Q1/2dW (r), s ≥ t ≥ 0 (51)

where x ∈ X which is a separable Hilbert space, A, Q, F,W satisfy Hypothesis 2.1, the function
h1 : X 7→ X is measurable and z ∈ M2

W (t, T ; X). Eq. (51) can be regarded as the mild form of
the stochastic differential equation{

dy(s) =

[
Ay(s)+ Q1/2 F(y(s))+ Q

1
2 h1(z(s))

]
ds + Q1/2dW (s), t ≤ s ≤ T

y(t) = x, x ∈ X.
(52)

The following Proposition is proved in [33] and, in a special case, in [8], (see also [22, Ch 7.1]).

Proposition 5.1. Let h1 : X 7→ X be continuous and sublinear. Then, for all z ∈ M2
W (t, T ; X),

Eq. (51) has a unique solution y(·, t, x, z) ∈ M2
W (t, T ; X). Moreover, if for some β > 0,∫ T

0
t−β

∥∥∥et A Q1/2
∥∥∥2

H S
dt < +∞,

then the solution y(·, t, x, z) is continuous with probability one.

We now consider the following abstract optimal control problem in the so-called relaxed
setting (see e.g. [51]). Given 0 ≤ t ≤ T < ∞ we denote by At,T the set of admissible (relaxed)
controls. The set consists of:

• probability spaces (Ω ,F,P),
• cyilindrical Brownian motions W , on [t, T ].
• measurable processes z ∈ M2

W (t, T ; X) with sups∈[t,T ] |z(s)| ≤ R for a given constant R > 0
possibly infinite.

We will use the notation (Ω ,F,P,W, z) ∈ At,T . When no ambiguity arises we will leave
aside the probability space (regarding it as fixed) and consider admissible controls simply as
processes z ∈ At,T := M2

W (t, T ; X) with sups∈[t,T ] |z(s)| ≤ R.
Let now x ∈ X and (Ω ,F,P,W, z) ∈ At,T . We try to minimize the cost functional

J (t, x; z) = E
{∫ T

t
[ f (y(s; t, x, z))+

1
2

h2(z(s))]ds + ϕ(y(T ; t, x, z))

}
(53)

over all (relaxed) controls z ∈ At,T .
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Here f, ϕ : X → R satisfy Hypothesis 3.1, h2 : X → R is measurable and bounded from
below and y(·; t, x, z) is the mild solution of Eq. (51). The value function of this problem is
defined as

V (t, x) = inf
{

J (t, x; z) : z ∈ At,T
}
. (54)

The corresponding Hamilton–Jacobi equation reads as follows{
−
∂v

∂t
= N v − H(DQv)+ f (x), t > 0, x ∈ D(A)

v(T, x) = ϕ(x), x ∈ X,
(55)

where the Hamiltonian H is given by

H(p) = sup
z∈X

{−〈h1(z), p〉 − h2(z)} . (56)

To apply our results we need to assume that Hypotheses 2.1 and 3.1-(B) hold and moreover

Hypothesis 5.2. (i) h1 : X 7→ X is continuous and either (a) bounded or (b) sublinear and there
exists R > 0 such that |z(s)| ≤ R for each t ≤ s ≤ T and z ∈ At,T .

(ii) h2 : X → R is measurable and bounded below.

Remark 5.3. Hypothesis 5.2 says, in particular, that h1 and h2 are such that the Hamiltonian
function H : X → R defined by (56) is Lipschitz continuous, so also Hypothesis 3.1-(A) is
satisfied. �

We now show how to apply our results on HJB equations to obtain a verification theorem
and existence of optimal feedbacks for the above optimal control problem. We will need some
technical lemmas that guarantee non triviality.

Lemma 5.4. Assume that Hypotheses 2.1 and 5.2 hold and let

ρz = exp
(∫ T

0
〈h1(z(r)), dW (r)〉 −

1
2

∫ T

0
|h1(z(r))|

2 dr

)
.

Then Exρz = 1 for a.e. x where Ex is the expected value with respect to the law of the process
y(·, 0, x). Moreover, there exists a set Z ⊂ X such that µ(X − Z) = 0 and

sup
x∈Z

Exρ2
z < ∞.

Finally, the laws of the processes y(·, 0, x) and y(·, 0, x, z) are equivalent.

Proof. Standard and omitted. �

Lemma 5.5. Assume that Hypotheses 2.1 and 5.2 hold and that w ∈ L2
(
0, T ; L2 (X, µ)

)
(or

L2
(
0, T ; L2 (X, µ; X)

)
). Then the map

(s, x) 7→ Ew (s, y(s; t, x, z))

belongs to L1 ((t, T )× X, Leb ⊗ µ)
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Proof. If z = 0 then y (·; t, x, z) = y (·; t, x) is a solution to (11) and so µ is its stationary
measure. Therefore,∫ T

t

∫
H

|Ew (s, y(s; t, x))|µ(dx) ds

≤

∫ T

t

∫
H

E |w (s, y(s; t, x))|µ(dx) ds =

∫ T

t

∫
H

Ps−t |w (s, ·)| (x)µ(dx) ds

=

∫ T

t

∫
H

|w(s, x)|µ(dx) ds ≤ CT
∫ T

t

∫
H

|w(s, x)|2 µ(dx) ds < +∞.

Invoking Lemma 5.4 we find that∫ T

t

∫
H

|Ew (s, y(s; t, x, z))|µ(dx) ds

≤

∫ T

t

∫
H

E |w (s, y(s; t, x, z))|µ(dx) ds =

∫ T

t

∫
H

E |ρzw (s, y(s; t, x))|µ(dx) ds

≤

∫ T

t

∫
H

(
E |ρz |

2 E |w (s, y(s; t, x))|2
)1/2

µ(dx) ds

≤ CT,z

(∫ T

t

∫
H

E |w (s, y(s; t, x))|2 µ(dx) ds

)1/2

= CT,z

(∫ T

t

∫
H

Ps−t |w (s, ·)|2 (x)µ(dx) ds

)1/2

= CT,z

(∫ T

t

∫
H

|w (s, ·)|2 (x)µ(dx) ds

)1/2

< +∞.

and the claim follows. �

Lemma 5.6. Assume that Hypothesis 2.1, 3.1 and 5.2 hold. Let (u,U ) ∈ L2
(

0, T ; W 1,2
Q (X, µ)

)
be the mild solution of (55). Then, for every t ∈ [0, T ], x ∈ X and z ∈ At,T , the following
identity holds

v(t, x)+

∫ T

t

{
H(D̃Qv(s, y(s)))+ 〈h1(z(s)), D̃Qv(s, y(s))〉 + h2(z(s))

}
ds

= E
{∫ T

t
[ f (y(s))+ h2(z(s))]ds + ϕ(y(T ))

}
= J (t, x, z) (57)

where y(s)
de f
= y(s; t, x, z) is the mild solution of (51).

Proof. Let (ϕn)n∈N, (ψn)n∈N be suitable approximating sequences as in Section 4. Then we set

un(t, x) = Ptϕn +

∫ t

0
Pt−sψn(s)ds
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Then we know that un satisfies, in the classical sense, the approximated Hamilton–Jacobi
equation:{

∂un

∂t
= Nun − H(D̃Qun)+ fn, t ∈ ]0, T ] x ∈ D(A)

u(0, x) = ϕn(x), x ∈ X,
(58)

where we set

fn(t, x) = ψn(x)+ H(D̃Qun)
n→+∞
−→ f in L2

(
0, T ; L2(X, µ; X)

)
(if DQ is closable then the convergence is in C

(
[ε, T ]; L2(X, µ; X)

)
for every ε > 0 and we

may put DQ instead of D̃Q). Let vn(s, x) = un(T − s, x). By using Ito’s formula as in [33] we
obtain

dvn(s, y(s)) =

[
∂vn

∂s
(s, y(s))+

1
2

Tr Qvnxx (s, y(s))

]
ds +

〈
dy(s),

∂vn

∂x
(s, y(s))

〉
. (59)

Then use (52) and (58), integrate on [t, T ] and take the expectation to obtain

Eϕn(y(T ))− vn(t, x)

= E
∫ T

t

[
〈D̃Qvn(s, y(s)), h1(z(s))〉 + H(D̃Qun(s, y(s)))− fn(T − s, y(s))

]
ds. (60)

Now we pass to the limit for n → +∞ in (60) by using (4.2) and the two Lemmas 5.4 and 5.5
above. It follows that

Eϕ(y(T ))− v(t, x)

= E
∫ T

t

[
〈DQv(s, y(s)), h1(z(s))〉 + H(DQv(s, y(s)))− f (y(s))

]
ds

which gives (57) by rearranging the terms. �

Theorem 5.7. Assume that Hypothesis 2.1, 3.1 and 5.2 hold. Assume also that H is
differentiable. Then problem (55) has a unique mild solution v which coincides with the value
function V defined in (54). Moreover, for any (t, x) ∈ [0, T ] × X, there exists a unique optimal
control for problem (53) in the relaxed sense. Furthermore, the optimal relaxed control z∗ is
related to the corresponding optimal state y∗ by the feedback formula

z∗(s) = DH(D̃Q V (s, y∗(s))). (61)

Proof. First we remark that, by (56) for every s ∈ [t, T ] and z ∈ M2
W (t, T ; X) the following

inequality holds

H(D̃Qv(s, y(s)))− 〈z(s), D̃Qv(s, y(s))〉 + h2(z(s)) ≥ 0 (62)

so that by (57) it follows that v(t, x) ≤ V (t, x) on [0, T ] × X . To prove the reverse inequality,
let us first recall that, by the regularity of h2, the minimum of (62) is attained if and only if, for
almost every (t, x, ω) ∈ [0, T ] × X × Ω ,

z(t) = DH(D̃Qv(t, y(t)))
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(see e.g. [26, Section I.8]). We then consider the closed loop equation (with T ≥ s ≥ t ≥ 0)

y(s) = e(s−t)Ax +

∫ s

t
e(s−r)A

[
Q

1
2 F(y(r))+ Q

1
2 DH(D̃Qv(s, y(s)))

]
dr + WA(t, s).

(63)

This equation has a solution y∗(s) (see e.g. [22, Ch. 8]). At this point, taking

z∗(s) = DH(D̃Qv(s, y∗(s; t, x))) (64)

we have the equality in (62) and so by (57) v(t, x) ≥ V (t, x) on [0, T ]× X . Moreover, the choice
(64) provides the optimal control at (t, x). Finally, the feedback formula (61) follows from (64)
and from the equality v = V . �

6. Examples

6.1. Stochastic controlled delay equations

Let us consider a simple controlled stochastic differential equation with a delay r > 0:{
dx(t) = (a0x(t)+ a1x(t − r)+ bz0(t)) dt + bdW0(t),
x(0) = x0, x(θ) = x1(θ), θ ∈ [−r, 0).

(65)

This kind of equation is used e.g. in advertising models (see [45]) and can be studied as a
stochastic controlled equation in R (see e.g. [41] or, more recently, [49]). We use here the setting
introduced in [12] by rewriting the equation as a controlled stochastic evolution equation in the
space X = R × L2 (−r, 0; R) as follows. Consider the linear operator on X :

D (A) =

{({
x0
x1(·)

)
∈ R × W 1,2(−r, 0; R)

}
A

(
x0
x1(·)

)
=

(
a0x0 + a1x1(−r)
x ′

1(·)

)
.

Then A generates a strongly continuous semigroup S (t) on X and, for x = (x0, x1(·)) ∈ X ,
S (t) x can be written in term of the solution of the linear deterministic delay equation{

ẏ(t) = a0 y(t)+ a1 y(t − r),
y(0) = x0, y(θ) = x1(θ), θ ∈ [−r, 0),

(66)

as follows:

S (t) x =

(
y(t)

y(t + ·)

)
∈ X, t ≥ 0,

(see [12]). Then, set

z =

(
z0

z1(·)

)
∈ X

W =

(
W0
W1

)
∈ X
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where z1 is a fictitious control belonging to L2 (−r, 0; R) and W1 is a cylindrical white noise in
L2 (−r, 0; R), and define Q : X 7→ X as

Q

(
x0

x1(·)

)
=

(
b2x0

0

)
.

Then the controlled stochastic delay equation (65) can be rewritten as the unique mild solution
of a linear evolution equation

dY =

[
AY + Q1/2z

]
dt + Q1/2dW,

X (0) =

(
x0
x1

)
∈ H.

(67)

We assume that

a0 < 1, a0 < −a1 <

√
γ 2 + a2

0, (68)

where γ ∈ (0, π) and γ coth γ = a0. Under this condition equation (67) has a unique invariant
measure µ which is nondegenerate (see [23, Chapter 10]).

Let DQ = Q1/2 D be an operator in L2(X, µ) with dom
(
DQ

)
= C1

b(H). It is shown in [31]
that the operator DQ is not closable on L2(X, µ). This fact shows that it is important to treat
cases where the operator DQ is not closable. Moreover it can be easily seen that Hypothesis 2.1
holds true in this case so that here DQ is closable in the weak sense introduced in Definition 2.3,
so our theory can be applied.

Now consider the problem of minimizing the functional (setting x = (x0, x1))

J0(t, x; z0) = E
{[∫ T

t
f0 (x (s; t, x, z0))+ h0 (z0 (s))

]
ds + ϕ0(x(T ; t, x, z0))

}
z0 ∈ M2

W (t, T ; R) with sups∈[t,T ] |z0(s)| ≤ R for a given constant R > 0. The above functional
can be rewritten as follows. Set

f (x0, x1) = ( f0 (x0) , 0) ; h (z0, z1) = (h0 (z0) , 0) ;

ϕ (x0, x1) = (ϕ0 (x0) , 0)

so

J0(t, x; z0) = J (t, x; z) = E
{∫ T

t
[ f (Y (s; t, x, z))+ h (z (s))] ds + ϕ(Y (T ; t, x, z))

}
.

The value function of this problem is defined as

V (t, x) = inf

{
J (t, x; z) : z ∈ M2

W (t, T ; X), sup
s∈[t,T ]

|z(s)| ≤ R

}
(69)

and the HJ equation is exactly (55) with the Hamiltonian H0 given by

H0 (p) = sup
z∈X

{−〈z, p〉X − h (z)} = sup
z∈R

{−〈z0, p0〉R − h0 (z0)} .

Then all the results of Sections 3–5 hold true, and we can find the optimal feedback.
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Remark 6.1. We observe that here, for simplicity of presentation, we considered a simple one
dimensional case of controlled stochastic delay equations. In fact in our framework we can treat
more general cases like semilinear d-dimensional equations of the following type

dx(t) =

[
a0x(t)+

N∑
i=1

ai x(t + θi )+ F0 (x(t), x(t + θ1), . . . , x(t + θn))

+ bz0(t)

]
dt + bdW0(t),

x(0) = x0, x(θ) = x1(θ), θ ∈ [−r, 0).

(70)

where the map F0 needs to satisfy suitable assumptions to have existence of a nontrivial invariant
measure for the system, see [23, Section 10.3] on this (for example the case when F0 is bounded
fits in our theory). Finally we could also treat in the same way a control problem where the costs
f0 and φ0 depend also on the history of the state x .

6.2. Control of stochastic PDE’s of first order

We will consider a controlled stochastic differential equation

dy(t, ζ ) =

(
∂y

∂ζ
(t, ζ )+ F0(y(t, ·), ζ )+ b(y(t, ζ ))z(t, ζ )

)
dt + b(y(t, ζ ))dW (t),

ζ ≥ 0, (71)

where b is a bounded continuous function, W is a one dimensional Wiener process and

F0(y(t, ·), ζ ) = b(y(t, ζ ))
∫ ζ

0
b(y(t, r))dr.

This equation is important in financial modelling, see [46]. It provides a description of time
evolution of the forward rates under the nonarbitrage assumption. We will study this equation in
the following abstract framework. Let Hκ

= L2 ((0,∞), ρκ(ζ )dζ ), where ρκ(ζ ) = e−κζ with
κ > 0. In particular H0

= L2 (R). The scalar product and the norm in Hκ will be denoted by
〈·, ·〉κ and | · |κ respectively. Let

A =
∂

∂ζ
, dom(A) = H1

κ (0,∞).

Then

et Ax(ζ ) = x(t + ζ ), t, ζ ≥ 0,

and it is easy to check that∥∥∥et A
∥∥∥

Hκ→Hκ
≤ e−κt .

We will assume that

B : Hκ
→ Hκ , B(x)(ζ ) = b(x(ζ ))

is a Lipschitz mapping and the mapping F : Hκ
→ Hκ defined by

F(x)(ζ ) = b(x(ζ ))
∫ ζ

0
b(x(r))dr,
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is a Lipschitz mapping as well. Then Eq. (71) may be rewritten as an abstract equation

dy(t) = (Ay(t)+ F(y(t))+ Bz(t)) dt + B(y(t))dW (t), (72)

where z(t) ∈ Hκ is a control. We need also to consider an uncontrolled equation

dy(t) = (Ay(t)+ F(y(t))) dt + B(y(t))dW (t). (73)

The proof of the next lemma is similar to the proof provided in [29] and is thus omitted.

Lemma 6.2. Assume that

‖b‖∞ + |b|κ ≤ c,

with c > 0 small enough. Then there exists a nondegenerate invariant measure for Eq. (73).

Given the above lemma we can apply the theory of the HJ equation developed in the previous
section to study the optimal control problem for Eq. (72). Note that, as for the previous example,
in this case

(
DQ,D

)
is not closable, see [31] for details. �

Remark 6.3. Using the same framework as in the case of the Musiela equation, we can consider
the optimal control of first order equations arising in economic theory (see e.g. [5]) and in the
theory of population dynamics (see e.g. [3,38]). �

6.3. Second order SPDE in the whole space

Let Hκ
= L2 (R, ρκ(ζ )dζ ), where ρκ(ζ ) = e−κ|ζ | with κ > 0. In particular H0

= L2 (R).
The scalar product and the norm in Hκ will be denoted by 〈·, ·〉κ and | · |κ respectively. Fix m > 0
and let A(0) = ∆ − m I , where ∆ is the Laplacian in H0 and let S(0)(t) denote the semigroup on
H0 generated by A(0). The semigroup

(
S(0)(t)

)
is selfadjoint on H0 and∥∥∥S(0)(t)

∥∥∥ ≤ e−mt . (74)

By the results in [23, Section 9.4.1]
(
S(0)(t)

)
can be uniquely extended to a C0-semigroup(

S(κ)(t)
)

on Hκ with the generator denoted by A(κ). Moreover,∥∥∥S(κ)(t)
∥∥∥ ≤ e

(
1
2 κ

2
−m

)
t
, t ≥ 0. (75)

We will consider the equation

dy =

(
A(κ)y + J F(y)

)
dt + JdW, (76)

where W is a standard cylindrical Wiener process on H (0) and J : H (0)
→ H (κ) is an imbedding:

J x = x . Moreover, we assume that the Lipschitz mapping F : H0
→ H0 is bounded.

It was proved in [23] that for any κ > 0 and m > 0 the solution (76) is well defined in Hκ

and it admits an invariant measure µ = N (0, Q∞). Moreover, ker (Q∞) = {0} for any κ > 0
and m > 0. Then by the recent results in [13] there exists a nondegenerate invariant measure µF

for y which has a density with respect to µ.
Let us consider a controlled equation

dy(t) = (Ay(t)+ J F(y(t))− J z(t)) dt + JdW (t),
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where z is a control taking values in L2 (R). It may be shown that the transition semigroup of
this process is never strongly Feller, hence the theory of HJB equations developed in [7–9,32,
33] does not apply in this case. We can apply however all the results of the previous sections to
obtain a unique optimal feedback control for the process y.

Acknoledgements

Thanks to A. Lunardi for useful discussions, to prof. Da Prato and Scuola Normale Superiore
di Pisa for warm hospitality. Thanks also to the referee for useful suggestions.

This work was partially supported by the ARC Discovery Grant DP0346406, by the UNSW
Faculty Research Grant PS05345 and by the Italian MIUR grant prot. 2003133037-002.

References

[1] N.U. Ahmed, Optimal control of ∞-dimensional stochastic systems via generalized solutions of HJB equations,
Discuss. Math. Differ. Incl. Control Optim. 21 (1) (2001) 97–126.

[2] N.U. Ahmed, Generalized solutions of HJB equations applied to stochastic control on Hilbert space, Nonlinear
Anal. 54 (3) (2003) 495–523.

[3] S. Anita, Analysis and control of age-dependent population dynamics, in: Mathematical Modelling: Theory and
Applications, Kluwer Academic Publishers, Dordrecht, 2000.

[4] V. Barbu, G. Da Prato, Hamilton–Jacobi equations in Hilbert spaces, in: Research Notes in Mathematics, Pitman,
Boston, 1983.

[5] E. Barucci, F. Gozzi, On capital accumulation in a vintage model, Res. Economics 52 (1998) 159–188.
[6] V. Borkar, T. Govindan, Optimal control of semilinear stochastic evolution equations, Nonlinear Anal. 23 (1) (1994)

15–35.
[7] P. Cannarsa, G. Da Prato, Direct solution of a second order Hamilton–Jacobi equation in Hilbert spaces, in: G. Da

Prato, L. Tubaro (Eds.), Stochastic Partial Differential Equations and Applications, in: Pitman Research Notes in
Mathematics, vol. 268, 1992, pp. 72–85.

[8] P. Cannarsa, G. Da Prato, Second order Hamilton–Jacobi equations in infinite dimensions, SIAM J. Control Optim.
29 (2) (1991) 474–492.

[9] S. Cerrai, Optimal control problems for stochastic reaction-diffusion systems with non-Lipschitz coefficients, SIAM
J. Control Optim. 39 (2001) 1779–1816.

[10] S. Cerrai, Stationary Hamilton–Jacobi equations in Hilbert spaces and applications to a stochastic optimal control
problem, SIAM J. Control Optim. 40 (2001) 824–852.

[11] S. Cerrai, F. Gozzi, Strong solutions of Cauchy problems associated to weakly continuous semigroups, Differential
Integral Equations 8 (3) (1995) 465–486.

[12] A. Chojnowska-Michalik, Representation theorem for general stochastic delay equations, Bull. Acad. Pol. Sci. Ser.
Sci. Math. 26 (7) (1978) 634–641.

[13] A. Chojnowska-Michalik, Transition semigroups for stochastic semilinear equations on Hilbert spaces,
Dissertationes Math. 396 (2001) 59 pages.

[14] V.S. Borkar, R.T. Chari, S.K. Mitter, Stochastic quantization of field theory in finite and infinite volume, J. Funct.
Anal. 81 (1) (1988) 184–206.

[15] P.L. Chow, J.L. Menaldi, Infinite dimensional Hamilton–Jacobi–Bellman equations in Gauss–Sobolev spaces,
Nonlinear Anal. 29 (4) (1997) 415–426.

[16] M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations,
Bull. (New Series) A.M.S. 27 (1) (1992) 1–67.

[17] G. Da Prato, Some results on Bellman equation in Hilbert spaces, SIAM J. Control Optim. 23 (1985) 61–71.
[18] G. Da Prato, A. Debussche, Control of the stochastic Burgers model of turbulence, SIAM J. Control Optim. 37 (4)

(1999) 1123–1149.
[19] G. Da Prato, A. Debussche, Differentiability of the transition semigroup of the stochastic Burgers equation, and

application to the corresponding Hamilton–Jacobi equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend.
Lincei (9) Mat. Appl. 9 (4) (1998) 267–277.

[20] G. Da Prato, A. Debussche, Dynamic programming for the stochastic Navier–Stokes equations, Math. Model.
Numer. Anal. 34 (2) (2000) 459–475. (Special issue for R. Temam’s 60th birthday).



1962 B. Goldys, F. Gozzi / Stochastic Processes and their Applications 116 (2006) 1932–1963

[21] G. Da Prato, J. Zabczyk, Regular densities of invariant measures in Hilbert spaces, J. Funct. Anal. 130 (2) (1995)
427–449.

[22] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, in: Encyclopedia of Mathematics and its
Applications, Cambridge University Press, Cambridge (UK), 1992.

[23] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, in: London Mathematical Society Lecture
Note Series, vol. 229, Cambridge University Press, 1996.

[24] G. Da Prato, J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, in: London Mathematical
Society Lecture Note Series, vol. 293, Cambridge University Press, 2002.

[25] G. Da Prato, J. Zabczyk, Differentiability of the Feynman–Kac semigroup and a control application, Atti Accad.
Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (3) (1997) 183–188.

[26] W.H. Fleming, H.M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, Berlin, New-
York, 1993.

[27] M. Fuhrman, G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic
differential equations approach and applications to optimal control, Ann. Probab. 30 (3) (2002) 1397–1465.

[28] M. Fuhrman, G. Tessitore, The Bismut–Elworthy formula for Backward SDEs and applications to nonlinear
Kolmogorov equations and control in infinite dimensional spaces, Stoch. Stoch. Rep. 74 (1–2) (2002) 429–464.

[29] B. Goldys, M. Musiela, Lognormality of rates and term structure models, Stoch. Anal. Appl. 18 (2000) 375–396.
[30] B. Goldys, B. Maslowski, Ergodic control of semilinear stochastic equations and Hamilton–Jacobi equations,

J. Math. Anal. Appl. 234 (2) (1999) 592–631.
[31] B. Goldys, F. Gozzi, J.M.A.M. Van Neerven, On closability of directional gradients, Potential Anal. 18 (2003)

289–310.
[32] F. Gozzi, Regularity of solutions of a second order Hamilton–Jacobi equation and application to a control problem,

Comm. Partial Differential Equations 20 (5 & 6) (1995) 775–826.
[33] F. Gozzi, Global regular solutions of second order Hamilton–Jacobi equations in Hilbert spaces with locally

Lipschitz nonlinearities, J. Math. Anal. Appl. 198 (1996) 399–443.
[34] F. Gozzi, E. Rouy, Regular solutions of second order stationary Hamilton–Jacobi equation, J. Differential Equations

130 (1) (1996) 201–234.
[35] F. Gozzi, E. Rouy, A. Swiech, Second order Hamilton–Jacobi equation in Hilbert spaces and stochastic boundary

control, SIAM J. Control Optim. 38 (2) (2000) 400–430.
[36] F. Gozzi, A. Swiech, Hamilton–Jacobi–Bellman equations for the optimal control of the Duncan–Mortensen–Zakai

equation, J. Funct. Anal. 172 (2) (2000) 466–510.
[37] T. Havarneanu, Existence for the dynamic programming equation of control diffusion processes in Hilbert space,

Nonlinear Anal. 9 (1985) 619–629.
[38] M. Iannelli, Mathematical problems in the description of age structured populations, in: Mathematics in Biology

and Medicine (Bari, 1983), 19–32, in: Lecture Notes in Biomath., vol. 57, Springer, Berlin, 1985.
[39] H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s, Comm.

Pure Appl. Math. 42 (1989) 15–45.
[40] H. Ishii, Viscosity solutions of nonlinear second-order partial differential equations in Hilbert spaces, Comm. Partial

Differential Equations 18 (1993) 601–651.
[41] K. Ito, M. Nisio, On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ. 4 (1) (1964)

1–75.
[42] M. Kocan, A. Swiech, Second order unbounded parabolic equations in separated form, Studia Math. 115 (1995)

291–310.
[43] P.-L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite

dimensions. Part I: The case of bounded stochastic evolution, Acta Math. 161 (1988) 243–278;
G. Da Prato, L. Tubaro (Eds.), Part II: Optimal Control of Zakai’s equation, in: Lecture Notes in Mathematics, vol.
1390, Springer-Verlag, Berlin, 1989, pp. 147–170; Part III: Uniqueness of viscosity solutions for general second
order equations, J. Funct. Anal. 86 (1989) 1–18.
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