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a b s t r a c t

We give lower bounds on the growth rate of Dejean words, i.e.minimally repetitive words,
over a k-letter alphabet, for 5 ≤ k ≤ 10. Put together with the known upper bounds, we
estimate these growth rates with the precision of 0.005. As a consequence, we establish the
exponential growth of the number of Dejean words over a k-letter alphabet, for 5 ≤ k ≤

10.
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1. Introduction

Letw = a1 · · · an be a word over an alphabetΣ . The number n is called the length ofw and is denoted by |w|. The symbol
ai of w is denoted by w[i]. A word ai · · · aj, where 1 ≤ i ≤ j ≤ n, is called a factor of w and is denoted by w[i : j]. For any
i = 1, . . . , n the factorw[1 : i] (w[i : n]) is called a prefix (a suffix) ofw. A positive integer p is called a period ofw if ai = ai+p
for each i = 1, . . . , n − p. If p is the minimal period of w, the ratio e(w) = n/p is called the exponent of w. Two words
w′, w′′ over Σ are called isomorphic if |w′

| = |w′′
| and there exists a bijection σ : Σ −→ Σ such that w′′

[i] = σ(w′
[i]),

i = 1, . . . , |w′
|. By K(w), we will denote the set of all words over Σ which are isomorphic to the word w. We also denote

by |A| the number of elements of a finite set A. Let |Σ | = k. It is easy to note that |K(w)| = k! if w contains at least k − 1
different symbols of Σ .

LetW be an arbitrary set of words. This set is called factorial if for any word w fromW all factors of w are also contained
in W . We denote by W (n) the subset of W consisting of all words of length n. If W is a factorial then it is not difficult to
show (see, e.g., [3,1]) that there exists the limit limn→∞

n
√

|W (n)| which is called the growth rate of words from W . For any
words u, v we denote by W (v)(n) the set of all words from W (n) which contain v as a suffix, and by W (u,v)(n) the set of all
words fromW (n) which contain v as a suffix and u as a prefix.

One can mean by a repetition any word of exponent greater than 1. The best known example of repetitions is a square;
that is, a word of the form uu, where u is an arbitrary nonempty word. Avoiding ambiguity,1 by the period of the square uu
we mean the length of u. In an analogous way, a cube is a word of the form uuu for a nonempty word u, and the period of
this cube is also the length of u. A word is called square-free (cube-free) if it contains no squares (cubes) as factors. It is easy
to see that there are no binary square-free words of length larger than 3. On the other hand, by the classical results of Thue
[20,21], there exist ternary square-free words of arbitrary length and binary cube-free words of arbitrary length. For ternary
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square-free words this result was strengthened by Dejean in [9]. She found ternary words of arbitrary length which have
no factors with exponents greater than 7/4. On the other hand, she showed that any long enough ternary word contains a
factor with an exponent greater than or equal to 7/4. Thus, the number 7/4 is the minimal limit for exponents of avoidable
factors which is universally called the repetition threshold in arbitrarily long ternary words. Dejean conjectured also that the
repetition threshold in arbitrarily long words over a k-letter alphabet is equal to 7/5 for k = 4 and k/(k− 1) for k ≥ 5. This
conjecture is now proved for any k through the work of several authors [5–8,13,12,15,16].

Denote the repetition threshold in arbitrarily long words over a k-letter alphabet by ϕk. In the paper we will call the
words having no factors with exponents greater than ϕk minimally repetitive words or Dejean words. By S⟨k⟩(n) we denote
the number of all minimally repetitivewords of length n over a k-letter alphabet. Note that the set of all minimally repetitive
words is obviously factorial. So for any k there exists the growth rate γ ⟨k⟩

= limn→∞
n

S⟨k⟩(n).

The problem of estimating the number of repetition-free words has been investigated actively during the last decades
(reviews of results on the estimations for the number of repetition-free words obtained before 2008 can be found in
[2,10]). The most progress in this field has been made for the case of the binary alphabet. In this case Dejean words reduce
to overlap-free words which are also a classical object for combinatorial investigations. It is proved in [17] that the growth
of the number of binary overlap-free words is polynomial. Actually, binary overlap-free words of each length are counted
by a 2-regular function [4].

In [11] we proposed a new approach for obtaining lower bounds on the number of repetition-free words. Using this
approach, we obtained precise lower bounds for the growth rates of ternary square-free words, binary cube-free words,
and ternary minimally repetitive words. This approach proved to be very effective. In particular, in [19] Shur proposed
an interesting modification of our approach which allows to compute more effectively lower bounds for the growth
rates of words which contain no repetitions of exponent greater than or equal to a given bound if this bound is not less
than 2. The direction of our further investigations in this field is testing the proposed approach for ‘‘extreme’’ cases when
the prohibitions imposed on words are maximal possible for the existence of words of arbitrary length avoiding these
prohibitions. These cases are obviously the most difficult for obtaining lower bounds on the number of appropriate words.
The case ofminimally repetitivewords is a natural example of such ‘‘extreme’’ cases.Moreover, the general case ofminimally
repetitive words over a k-letter alphabet for k ≥ 5 when ϕk = k/(k − 1) is the most interesting for us. So this paper is
devoted to obtaining lower bounds on γ ⟨k⟩ for k ≥ 5 by using the proposed approach. Note that the method proposed
in [11] is not directly applicable to resolving this problem because of the huge size of required computer computations. In
this paperwepropose an improvement of thismethodwhich requires significantly fewer computer computations. Using this
improvement, we obtain lower bounds on γ ⟨k⟩ for 5 ≤ k ≤ 10which have the precision of 0.005. As an evident consequence
of these results, we establish the exponential growth of the number of minimally repetitive words over a k-letter alphabet
for 5 ≤ k ≤ 10 (for k = 3, 4 this fact was proved by Ochem in [14]).

2. Estimation for the number of minimally repetitive words

2.1. General

For obtaining a lower bound on γ ⟨k⟩ we will consider the alphabet Σk = {a1, a2, . . . , ak} where k ≥ 5. We denote the
set of all minimally repetitive words over Σk by F . By a prohibited factor we mean a factor with an exponent greater than
k/(k− 1). Letm be a natural number,m > k, and w′, w′′ be two words from F (m). We call the word w′′ a descendant of the
word w′ if w′

[2 : m] = w′′
[1 : m − 1] and w′w′′

[m] = w′
[1]w′′

∈ F (m + 1). The word w′ is called in this case an ancestor
of the word w′′. We introduce a notion of closed words in the following inductive way. A word w from F (m) is called right
closed (left closed) if and only if this word satisfies one of the two following conditions:

(a) Basis of induction. w has no descendants (ancestors);
(b) Inductive step. All descendants (ancestors) of w are right closed (left closed).

A word is closed if it is either right closed or left closed. We denote by F̂ (m) the set of all words from F (m) which are not
closed. By Lm we denote the set of all words over Σk such that the length of these words is not less than m and all factors
of length m in these words belong to F̂ (m). We also denote by Fm the set of all minimally repetitive words from Lm. Note
that a word w is closed if and only if any word isomorphic to w is also closed. So we have the following obvious fact.

Proposition 1. For any isomorphic words w′, w′′ and any n ≥ |w′
| the equality |F

(w′)
m (n)| = |F

(w′′)
m (n)| holds.

A word will be called rarefied if the distance between any two different occurrences of the same symbol in this word is
not less than k − 1.
Proposition 2. Any word from Lm is rarefied.
Proof. Let w be an arbitrary word from Lm. Assume that w[i] = w[j] where j < i ≤ j + (k − 2). Consider the factor
f = w[j : i]. Since |f | = i− j+ 1 ≤ k− 1 < m, in w the factor f is contained in some factor f ′ of lengthm. By the definition
of Lm we have f ′

∈ F (m), so f ∈ F . On the other hand, f has the period |f | − 1, so

e(f ) ≥
|f |

|f | − 1
=

i − j + 1
i − j

≥
k − 1
k − 2

>
k

k − 1

which contradicts the definition of F (m). �
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A word w of length n ≥ k − 1 over Σk will be called trimmed if w[n − (k − 1) + j] = aj for j = 1, . . . , k − 1. We denote
by F̂ ′(m) the set of all trimmed words from F̂ (m). Taking into account Proposition 2, it is not difficult to note that for any
word from F̂ (m) there exists a single word from F̂ ′(m) which is isomorphic to this word, and for any word from F̂ ′(m)
there exist exactly k! different words from F̂ (m) which are isomorphic to this word. Thus |F̂ (m)| = k!|F̂ ′(m)|. Let w′, w′′

be two words from F̂ ′(m). We call the word w′′ a quasi-descendant of the word w′ if w′′ is isomorphic to some descendant
of w′. The word w′ is called in this case a quasi-ancestor of the word w′′.

Let ŝ = |F̂ (m)| and s = |F̂ ′(m)|. Without loss of generality we can assume that F̂ (m) = {w1, w2, . . . , wŝ} where
F̂ ′(m) = {w1, w2, . . . , ws}. For anywordw from F̂ (m)wewill denote by ι(w) the serial number ofw in F̂ (m), i.e. ι(w) = i
if w = wi for some i = 1, 2, . . . , ŝ. We define a matrix ∆̂m = (δ̂ij) of size ŝ × ŝ in the following way: δ̂ij = 1 if and only if wi

is an ancestor of wj; otherwise δ̂ij = 0. For any natural t by ∆̂
(t)
m = (δ̂

(t)
ij ) wewill denote the t-th power of the matrix ∆̂m, i.e.

∆̂(t)
m = ∆̂m × ∆̂m × · · · × ∆̂m  

t

.

Further we use the following evident fact.

Proposition 3. For any i, j = 1, 2, . . . , ŝ and any n > m the equality |L
(wi,wj)
m (n)| = δ̂

(n−m)
ij is valid.

We also define a matrix ∆m = (δij) of size s × s in the following way: δij = 1 if and only if wi is a quasi-ancestor of
wj; otherwise δij = 0. Note that ∆m is a nonnegative matrix, so, by the Perron–Frobenius theorem, for ∆m there exists
some maximal in modulus eigenvalue r which is a nonnegative real number. Moreover, we can find some eigenvector
x̃ = (x1; . . . ; xs) with nonnegative components which corresponds to r . Assume that r > 1 and all components of x̃ are
positive. Then we denote by µ the ratio maxi=1,...,s xi/mini=1,...,s xi, and for n ≥ m we define S⟨k⟩

m (n) =
∑s

i=1 xi · |F
(wi)
m (n)|.

In an inductive way we estimate S⟨k⟩
m (n + 1) by S⟨k⟩

m (n).
First we estimate |F

(w)
m (n + 1)| for each w ∈ F̂ (m). It is obvious that

|F (w)
m (n + 1)| = |G(w)(n + 1)| − |H (w)(n + 1)|, (1)

where G(w)(n+ 1) is the set of all words v from L
(w)
m (n+ 1) such that v[1 : n], v[n−m+ 1 : n+ 1] ∈ F , and H (w)(n+ 1)

is the set of all words from G(w)(n + 1) which contain some prohibited factor as a suffix. If w ∈ F̂ ′(m) we denote by π(w)
the set of all quasi-ancestors of w. Taking into account Proposition 1, it is easy to see that

|G(w)(n + 1)| =

−
v∈π(w)

|F (v)
m (n)|. (2)

Therefore, using that x̃ is a eigenvector of ∆m for the eigenvalue r , we obtain
s−

i=1

xi · |G(wi)(n + 1)| =

s−
i=1


xi ·

−
v∈π(wi)

|F (v)
m (n)|



= (x1; x2; . . . ; xs)


δ11 δ21 . . . δs1
δ12 δ22 . . . δs2
...

...
. . .

...
δ1s δ2s . . . δss




|F
(w1)
m (n)|

|F
(w2)
m (n)|

...

|F
(ws)
m (n)|



= r · (x1; x2; . . . ; xs)


|F

(w1)
m (n)|

|F
(w2)
m (n)|

...

|F
(ws)
m (n)|

 = r · S⟨k⟩
m (n). (3)

We now estimate |H (w)(n + 1)|. For any word v from H (w)(n + 1) we can find the minimal prohibited factor which is a
suffix of v. We denote this factor by h(v) and the minimal period of this factor by λ(v). Since after removing the last symbol
from h(v) this factor cannot be prohibited, we have actually |h(v)| = ⌊kλ(v)/(k − 1)⌋ + 1. Note that the value λ(v) is not
less than p0 = (m + 1) − ⌊(m + 1)/k⌋. Thus

|H (w)(n + 1)| =

−
j≥p0

|H
(w)
j (n + 1)| (4)

where H
(w)
j (n + 1) is the set of all words v from H (w)(n + 1) such that λ(v) = j.

2.2. Upper bound for |H
(w)
j (n + 1)|

To estimate |H
(w)
j (n+ 1)|, let χ(j) = ⌊j/(k− 1)⌋+ 1 and let t = j+χ(j)+ 1. Recall that for any v from H

(w)
j (n+ 1) the

prohibited factor h(v) is a word from Lm(j+ χ(j)) with the minimal period j. Moreover, this word does not contain shorter
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prohibited factors and contains the word w as a suffix.
Let X (w)

j,t be the set of words v ∈ Lm(t) such that v[1 : t − 1] ∈ F (t − 1), v[3 : t] ∈ F (t − 2), v[t − j − χ(j) + 1 :

t − j] = v[t − χ(j) + 1 : t] and w is a suffix of v. Note that for every v ∈ X (w)
j,t , v[t − j − χ(j)] ≠ v[t − χ(j)], otherwise

v[1 : t − 1] would have a forbidden factor. Suppose that n + 1 ≥ t and let u ∈ H
(w)
j (n + 1). Then

u[n′

j + 1 : n + 1] = u[n′′

j + 1 : n − j + 1] (5)

where n′

j = n − ⌊j/(k − 1)⌋ and n′′

j = n − ⌊kj/(k − 1)⌋. By definition of H
(w)
j (n + 1), u[n + 1 − t + 1 : n + 1] ∈ X (w)

j,t .
Moreover u[1 : n + 1 − t + m] ∈ F (n + 1 − t + m). Thus we have

Proposition 4.

|H
(w)
j (n + 1)| ≤

−
v∈X(w)

j,t

|F (v[1:m])(n + 1 − t + m)|.

Let U (w)
j,t be the multiset of all prefixes of size m in words of X (w)

j,t (note that among words U (w)
j,t we can have identical

words, i.e., the same word can be a prefix of different words of X (w)
j,t and so can be counted several times in U (w)

j,t ). Then
Proposition 4 implies

|H
(w)
j (n + 1)| ≤

−
u∈U(w)

j,t

|F (u)
m (n + 1 − t + m)|.

For l = 1, . . . , s, denote by ζ
(l)
j,t (w) the number of occurrences of wl in the multiset U (w)

j,t . Then

|H
(w)
j (n + 1)| ≤

−
u∈U(w)

j,t

|F (u)
m (n + 1 − t + m)| =

s−
l=1

ζ
(l)
j,t (w) · |F (wl)

m (n + 1 − t + m)|. (6)

2.3. Weaker upper bound for |H
(w)
j (n + 1)|

We can also obtain another estimation for |H
(w)
j (n+1)|wherew ∈ F̂ ′(m). This estimation is more rough in comparison

with (6) but requires much fewer computer computations. To estimate |H
(w)
j (n+1)| by this way, we denote ⌊j/(k−1)⌋+1

by χ(j) and assume that χ(j) ≥ k − 1 and n ≥ j + m. Recall that for any v from H
(w)
j (n + 1) we have relation (5). We

consider separately the two following cases: χ(j) ≤ m and χ(j) > m.
Let χ(j) ≤ m. For any v from H

(w)
j (n + 1) denote by f ′(v) the factor v[n + 2 − j − m : n + 1 − j] of v. It follows from

v ∈ Lm that f ′(v) ∈ F̂ (m). Moreover, from (5) we obtain that f ′(v) and w have the common suffix of length χ(j). Since
w ∈ F̂ ′(m) and χ(j) ≥ k − 1, it implies that f ′(v) ∈ F̂ ′(m). Thus

|H
(w)
j (n + 1)| =

−
u∈Wj(w)

|I
(w)
j,u (n + 1)|

whereWj(w) is the set of allwords from F̂ ′(m)whichhave the common suffix of lengthχ(j)with thewordw, andI
(w)
j,u (n+1)

is the set of all words v from H
(w)
j (n+1) such that f ′(v) = u. To estimate |I

(w)
j,u (n+1)|, note that for any v from I

(w)
j,u (n+1)

we have v[1 : n + 1 − j] ∈ F
(u)
m (n + 1 − j) and v[n + 2 − j − m : n + 1] ∈ L

(u,w)
m (j + m). Hence, using Proposition 3, we

obtain

|I
(w)
j,u (n + 1)| ≤ |F (u)

m (n + 1 − j)| · |L(u,w)
m (j + m)| = |F (u)

m (n + 1 − j)| · δ̂
(j)
ι(u),ι(w).

Thus, in this case we get the estimation

|H
(w)
j (n + 1)| ≤

−
u∈Wj(w)

δ̂
(j)
ι(u),ι(w) · |F (u)

m (n + 1 − j)|. (7)

Let now χ(j) > m. For any v from H
(w)
j (n+ 1) denote by f ′′(v) the factor v[n′′

j + 1 : n′′

j +m] of v. It follows from v ∈ Lm

that f ′′(v) ∈ F̂ (m). Thus in this case

|H
(w)
j (n + 1)| =

−
u∈F̂ (m)

|J
(w)
j,u (n + 1)|

where J
(w)
j,u (n + 1) is the set of all words v from H

(w)
j (n + 1) such that f ′′(v) = u. To estimate |J

(w)
j,u (n + 1)|, consider

an arbitrary word v from J
(w)
j,u (n + 1). Note that v is determined uniquely by the prefix v[1 : n′

j + m] which satisfies the
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following conditions: v[1 : n′′

j + m] ∈ F
(u)
m (n′′

j + m), v[n′′

j + 1 : n + 1 − j] ∈ L
(u,w)
m (χ(j)), and v[n + 2 − j − m : n′

j + m] ∈

L
(w,u)
m (j + 2m − χ(j)). Hence, using Proposition 3, we obtain

|J
(w)
j,u (n + 1)| ≤ |F (u)

m (n′′

j + m)| · |L(u,w)
m (χ(j))| · |L(w,u)

m (j + 2m − χ(j))|

= |F (u)
m (n′′

j + m)| · δ̂
(χ(j)−m)

ι(u),ι(w) · δ̂
(j+m−χ(j))
ι(w),ι(u) .

Thus, in this case we get the estimation

|H
(w)
j (n + 1)| ≤

−
u∈F̂ (m)

δ̂
(χ(j)−m)

ι(u),ι(w) · δ̂
(j+m−χ(j))
ι(w),ι(u) · |F (u)

m (n′′

j + m)|.

Taking into account Proposition 1, we can rewrite this estimation in the form

|H
(w)
j (n + 1)| ≤

−
u∈F̂ ′(m)

|F (u)
m (n′′

j + m)|

 −
v∈K(u)

δ̂
(χ(j)−m)

ι(v),ι(w) · δ̂
(j+m−χ(j))
ι(w),ι(v)


. (8)

Note that, unlike estimation (6), estimations (7) and (8) can be computed in polynomial time.

2.4. Estimation of |H (w)(n + 1)|

We fix numbers p1, p2 such that p0 ≤ p1 < p2 and p2 ≥ 2k − 3, and assume for convenience that n > kp2/(k − 1). We
present sum (4) in the form

|H (w)(n + 1)| =

p1−
j=p0

|H
(w)
j (n + 1)| +

p2−
j=p1+1

|H
(w)
j (n + 1)| + |Ĥ (w)(n + 1)|

where Ĥ (w)(n + 1) =


j>p2
H

(w)
j (n + 1). Thus

∑s
i=1 xi|H

(wi)(n + 1)| can be presented as
p1−

j=p0

s−
i=1

xi|H
(wi)
j (n + 1)| +

p2−
j=p1+1

s−
i=1

xi|H
(wi)
j (n + 1)| +

s−
i=1

xi|Ĥ (wi)(n + 1)|. (9)

To estimate the first sum in (9), we use inequality (6)
p1−

j=p0

s−
i=1

xi|H
(wi)
j (n + 1)| ≤

p1−
j=p0

s−
i=1

xi
s−

l=1

ζ
(l)

j,


kj
k−1


+2

(wi) · |F (wl)
m


n −


jk

k − 1


− 1 + m



=


kp1
k−1


+2−

d=


kp0
k−1


+2

s−
l=1

η′

l(d) ·

F (wl)
m


n −


jk

k − 1


− 1 + m

 (10)

where η′

l(d) =
∑s

i=1 xi · ζ
(l)

j,


kj
k−1


+2

(wi) if there is a j such that
 kj

k−1


+ 2 = d, and η′

l(d) = 0 otherwise.

To estimate the second sum in (9), we use inequalities (7) and (8). In particular, in the case of χ(j) ≤ m, using
inequality (7) and taking into account that u ∈ Wj(w) if and only if w ∈ Wj(u), we obtain

s−
i=1

xi|H
(wi)
j (n + 1)| ≤

s−
i=1

−
u∈Wj(wi)

xiδ̂
(j)
ι(u),i · |F (u)

m (n + 1 − j)|

=

−
u∈F̂ ′(m)

|F (u)
m (n + 1 − j)|

 −
wi∈Wj(u)

xi · δ̂
(j)
ι(u),i


=

s−
l=1

|F (wl)
m (n + 1 − j)|

 −
wi∈Wj(wl)

xi · δ̂
(j)
l,i

 .

In the case of χ(j) > m, using inequality (8), we have
s−

i=1

xi|H
(wi)
j (n + 1)| ≤

s−
i=1

−
u∈F̂ ′(m)

xi|F (u)
m (n′′

j + m)|

 −
v∈K(u)

θ
(j)
i,v


=

−
u∈F̂ ′(m)

|F (u)
m (n′′

j + m)|

s−
i=1

xi

 −
v∈K(u)

θ
(j)
i,v


=

s−
l=1

|F (wl)
m (n′′

j + m)|

s−
i=1

xi

 −
v∈K(wl)

θ
(j)
i,v
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where θ
(j)
i,v = δ̂

(χ(j)−m)

ι(v),i · δ̂
(j+m−χ(j))
i,ι(v) . Thus, defining d(j) = j − 1 for the case of χ(j) ≤ m and d(j) = ⌊kj/(k − 1)⌋ − m for the

case of χ(j) > m, we conclude that
s−

i=1

xi|H
(wi)
j (n + 1)| ≤

s−
l=1

ξl(j) · |F (wl)
m (n − d(j))|

where

ξl(j) =


−

wi∈Wj(wl)

xi · δ̂
(j)
l,i , if χ(j) ≤ m;

s−
i=1

xi

 −
v∈K(wl)

θ
(j)
i,v


, if χ(j) > m.

Hence
p2−

j=p1+1

s−
i=1

xi|H
(wi)
j (n + 1)| ≤

p2−
j=p1+1

s−
l=1

ξl(j) · |F (wl)
m (n − d(j))|.

We define ξ ′

l (d) = ξl(j) if there exists some j such that d(j) = d, and ξ ′

l (d) = 0 otherwise. Then

p2−
j=p1+1

s−
l=1

ξl(j) · |F (wl)
m (n − d(j))| =

d3−
d=d2

s−
l=1

ξ ′

l (d) · |F (wl)
m (n − d)| (11)

where d2 = d(p1 + 1), d3 = d(p2).
Summing up (10) and (11), we get

p2−
j=p0

s−
i=1

xi|H
(wi)
j (n + 1)| ≤

b−
d=a

s−
l=1

ωl(d) · |F (wl)
m (n − d)|

where ωl(d) = η′

l(d) + ξ ′

l (d), a = min(d2,


kp0
k−1


+ 2 − m − 1) and b = max(d3,


kp1
k−1


+ 2 − m − 1).

We majorate this sum by some sum
∑b

d=a ρd · S⟨k⟩
m (n − d) in the following way. We compute consecutively coefficients

ρd of this sum for d = a, a + 1, . . . , b. For each d = a, a + 1, . . . , b − 1 together with the number ρd we compute also
numbers ω′

1(d + 1), . . . , ω′
s(d + 1) such that

d+1−
j=a

s−
l=1

ωl(j) · |F (wl)
m (n − j)| ≤

s−
l=1

ω′

l(d + 1) · |F (wl)
m (n − d − 1)| +

d−
j=a

ρj · S⟨k⟩
m (n − j). (12)

For d = awe take ρa = min1≤l≤s(ωl(a)/xl). Then
s−

l=1

ωl(a) · |F (wl)
m (n − a)| = ρa · S⟨k⟩

m (n − a) +

s−
l=1

νl · |F (wl)
m (n − a)|

where νl = ωl(a) − ρa · xl, l = 1, . . . , s. Denote by ν̃ the vector (ν1; . . . ; νs) and consider the vector ν̃ ′
= ∆mν̃. Let

ν̃ ′
= (ν ′

1; . . . ; ν ′
s). It follows from (1) and (2) that

|F (wl)
m (n − a)| ≤ |G(wl)(n − a)| =

−
v∈π(wl)

|F (v)
m (n − a − 1)|

for any l = 1, . . . , s. Note also that νl ≥ 0 for l = 1, . . . , s. Hence
s−

l=1

νl · |F (wl)
m (n − a)| ≤

s−
l=1


νl ·

−
v∈π(wl)

|F (v)
m (n − a − 1)|


=

s−
l=1

ν ′

l · |F (wl)
m (n − a − 1)|.

Thus
a+1−
j=a

s−
l=1

ωl(j) · |F (wl)
m (n − j)| ≤ ρa · S⟨k⟩

m (n − a) +

s−
l=1

ω′

l(a + 1) · |F (wl)
m (n − a − 1)| (13)

where ω′

l(a + 1) = ωl(a + 1) + ν ′

l . Assume now that for some d such that a < d < b we already computed the numbers
ρa, . . . , ρd−1 and ω′

1(d), . . . , ω
′
s(d). Then we take ρd = min1≤l≤s(ω

′

l(d)/xl), ν̃ = (ω′

1(d) − ρd · x1, . . . , ω′
s(d) − ρd · xs), and
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ν̃ ′
= ∆mν̃. We take alsoω′

l(d+1) = ωl(d+1)+ν ′

l where ν ′

l is the l-th component of the vector ν̃ ′, l = 1, . . . , s. Analogously
to inequality (13), in this case we have the inequality

s−
l=1


ω′

l(d) · |F (wl)
m (n − d)| + ωl(d + 1) · |F (wl)

m (n − d − 1)|


≤ ρd · S⟨k⟩
m (n − d) +

s−
l=1

ω′

l(d + 1) · |F (wl)
m (n − d − 1)|.

This inequality implies that inequality (12) holds for every d. For d = bwe take ρb = max1≤l≤s(ω
′

l(b)/xl). Thus,

b−
d=a

s−
l=1

ωl(d) · |F (wl)
m (n − d)| ≤

b−
d=a

ρd · S⟨k⟩
m (n − d)

which implies
p2−

j=p0

s−
i=1

xi|H
(wi)
j (n + 1)| ≤

b−
d=a

ρd · S⟨k⟩
m (n − d). (14)

2.5. Upper bound for |Ĥ (wi)(n + 1)|

We estimate finally the sum
∑s

i=1 xi|Ĥ
(wi)(n + 1)|. For this purpose we denote by Ĥ(n + 1) the set

ŝ
i=1 Ĥ (wi)(n + 1)

and by Ĥ ′(n + 1) the set
s

i=1 Ĥ (wi)(n + 1). Note that the sets Ĥ (wi)(n + 1) are non-overlapping, so |Ĥ ′(n + 1)| =∑s
i=1 |Ĥ (wi)(n + 1)|. Thus

s−
i=1

xi|Ĥ (wi)(n + 1)| ≤ |Ĥ ′(n + 1)| · max
i=1,...,s

xi. (15)

Moreover, since by Proposition 2 any word from Ĥ(n + 1) is rarified and n + 1 > k − 1, for any word from Ĥ(n + 1) there
exists a single word from Ĥ ′(n + 1) which is isomorphic to this word, and for any word from Ĥ ′(n + 1) there exist exactly
k! different words from Ĥ(n + 1) which are isomorphic to this word. So |Ĥ(n + 1)| = k!|Ĥ ′(n + 1)|.

Let v be an arbitrary word from Ĥ(n + 1). Then for v we have

v

[
n −


λ(v)

k − 1


+ 1 : n + 1

]
= v

[
n′

−


λ(v)

k − 1


+ 1 : n′

+ 1
]

where n′
= n−λ(v). Thus the word v is determined uniquely by the number λ(v) and the prefix v[1 : n−⌊λ(v)/(k− 1)⌋].

We denote this prefix by τ(v). Further we use the following fact.

Lemma 5. For any different v′, v′′
∈ Ĥ(n + 1) the prefixes τ(v′), τ (v′′) are also different.

Proof. Let τ(v′) = τ(v′′) = u for some different v′, v′′
∈ Ĥ(n + 1). Denote by l the length of u. Note that v′, v′′

∈ Lm, so
v′, v′′ and u are rarefied by Proposition 2. Thus without loss of generality we can assume that u is trimmed, i.e.

aj = u[l − (k − 1) + j] = v′
[l − (k − 1) + j] = v′′

[l − (k − 1) + j] (16)

for j = 1, . . . , k − 1. As we noted above, the equalities τ(v′) = τ(v′′) and λ(v′) = λ(v′′) imply v′
= v′′. So λ(v′) ≠ λ(v′′).

Without loss of generality we assume that λ(v′) > λ(v′′). Since n − l = ⌊λ(v′)/(k − 1)⌋ = ⌊λ(v′′)/(k − 1)⌋, we can
assume moreover that λ(v′′) < λ(v′) < λ(v′′) + (k − 1). Note also that the inequality ⌊λ(v′)/(k − 1)⌋ ≥ 2 follows from
λ(v′) ≥ p2 + 1 ≥ 2k − 2. So l = n − ⌊λ(v′)/(k − 1)⌋ ≤ n − 2. Recall that we have also

v′
[l + 1 : n + 1] = v′

[l − λ(v′) + 1 : n − λ(v′) + 1] = u[l − λ(v′) + 1 : n − λ(v′) + 1], (17)
v′′

[l + 1 : n + 1] = v′′
[l − λ(v′′) + 1 : n − λ(v′′) + 1] = u[l − λ(v′′) + 1 : n − λ(v′′) + 1]. (18)

Suppose v′
[l + 1] = v′′

[l + 1]. Then by Eqs. (17) and (18) we obtain u[l − λ(v′) + 1] = u[l − λ(v′′) + 1]. Since

(l − λ(v′′) + 1) − (l − λ(v′) + 1) = λ(v′) − λ(v′′) ≤ k − 2,

this contradicts that u is rarefied. So v′
[l + 1] ≠ v′′

[l + 1]. Since v′, v′′ are rarefied, it is easy to note from (16) that v′
[l + 1]

and v′′
[l + 1] can be either a1 or ak. So we have only two possible cases: v′

[l + 1] = a1, v′′
[l + 1] = ak or v′

[l + 1] = ak,
v′′

[l + 1] = a1. We consider these cases separately.
Let v′

[l+1] = a1 and v′′
[l+1] = ak. Then it is easy to note that the symbol v′

[l+2] can be only ak. Thus, by Eqs. (17) and
(18) we obtain u[l−λ(v′)+1] = a1, u[l−λ(v′)+2] = ak and u[l−λ(v′′)+1] = ak. So u[l−λ(v′)+2] = u[l−λ(v′′)+1].
Since

(l − λ(v′′) + 1) − (l − λ(v′) + 2) = λ(v′) − λ(v′′) − 1 < k − 1
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and u is rarefied, the only case we have to consider is l − λ(v′′) + 1 = l − λ(v′) + 2, i.e. λ(v′) − λ(v′′) = 1 (in this
case u[l − λ(v′) + 2] and u[l − λ(v′′) + 1] are the same letter in u). Since v′′ is rarefied, v′′

[l + 2] can be either a1 or a2.
If v′′

[l + 2] = a1, then by (18) we obtain a1 = u[l − λ(v′′) + 2] = u[l − λ(v′) + 3]. Thus we have in this case that
u[l − λ(v′) + 1] = u[l − λ(v′) + 3] which contradicts that u is rarefied since 2 < k − 1. Let v′′

[l + 2] = a2. Then it is easy
to note that the symbol v′′

[l + 3] can be only a1. Therefore, a1 = u[l − λ(v′′) + 3] = u[l − λ(v′) + 4] by (18). Thus we have
that u[l − λ(v′) + 1] = u[l − λ(v′) + 4] which contradicts again that u is rarefied.

Let now v′
[l + 1] = ak and v′′

[l + 1] = a1. Then it is easy to note that the symbol v′′
[l + 2] can be only ak. Thus, by

Eqs. (17) and (18) we obtain u[l − λ(v′) + 1] = ak, u[l − λ(v′′) + 1] = a1 and u[l − λ(v′′) + 2] = ak. Since u is rarefied, we
have

(l − λ(v′′) + 2) − (l − λ(v′) + 1) = λ(v′) − λ(v′′) + 1 ≥ k − 1.

Thus λ(v′) − λ(v′′) = k− 2 has to be valid in this case. Since v′ is rarefied, we have also that v′
[l+ 2] can be either a1 or a2.

If v′
[l + 2] = a1, then u[l − λ(v′) + 2] = a1 by (17). Since u[l − λ(v′′) + 1] = a1 and

(l − λ(v′′) + 1) − (l − λ(v′) + 2) = λ(v′) − λ(v′′) − 1 = k − 3 < k − 1,

this contradicts that u is rarefied. Let v′
[l + 2] = a2. It is easy to note that in this case the symbol v′

[l + 3] can be only a1.
Therefore, u[l − λ(v′) + 3] = a1 by (17). Taking into account that u[l − λ(v′′) + 1] = a1 and k ≥ 5, we obtain again a
contradiction with the fact that u is rarefied, so the lemma is proved. �

Note that for any word v ∈ Ĥ(n + 1) we have τ(v) ∈ Fm and n − ⌊n/k⌋ ≤ |τ(v)| ≤ n − ⌊(p2 + 1)/(k − 1)⌋, i.e.
τ(v) ∈ Q(n + 1) =

n−⌊(p2+1)/(k−1)⌋
j=n−⌊n/k⌋ Fm(j). So from Lemma 5 we obtain that |Q(n + 1)| ≥ |Ĥ(n + 1)| = k!|Ĥ ′(n + 1)|.

Denote by Q′(n + 1) the set of all trimmed words from Q(n + 1). Since by Proposition 2 any word from Q(n + 1) is
rarified and has the length greater than p2 > k − 1, for any word from Q(n + 1) there exists a single word from Q′(n + 1)
which is isomorphic to this word, and for any word from Q′(n + 1) there exist exactly k! different words from Q(n + 1)
which are isomorphic to this word. So |Q(n + 1)| = k!|Q′(n + 1)|. Thus |Q′(n + 1)| ≥ |Ĥ ′(n + 1)|. Note that actually
Q′(n + 1) =

n−⌊(p2+1)/(k−1)⌋
j=n−⌊n/k⌋

s
i=1 F

(wi)
m (j) and, since all sets F

(wi)
m (j) are non-overlapping,

|Q′(n + 1)| =

n−

p2+1
k−1

−
j=n−⌊ n

k ⌋

s−
i=1

|F (wi)
m (j)| ≤

n−

p2+1
k−1

−
j=n−⌊ n

k ⌋

S⟨k⟩
m (j)/( min

i=1,...,s
xi).

Thus, taking into account (15), we obtain
s−

i=1

xi|Ĥ (wi)(n + 1)| ≤ |Ĥ ′(n + 1)| · max
i=1,...,s

xi ≤ |Q′(n + 1)| · max
i=1,...,s

xi

≤ ( max
i=1,...,s

xi)

n−

p2+1
k−1

−
j=n−⌊ n

k ⌋

S⟨k⟩
m (j)/( min

i=1,...,s
xi) = µ

⌊ n
k ⌋−

d=

p2+1
k−1

 S⟨k⟩
m (n − d).

(19)

2.6. Getting a lower bound for γ ⟨k⟩

Summing up estimation (19) with relation (14), we conclude that

s−
i=1

xi|H (wi)(n + 1)| ≤

b−
d=a

ρd · S⟨k⟩
m (n − d) + µ

⌊ n
k ⌋−

d=

p2+1
k−1

 S⟨k⟩
m (n − d). (20)

For the sake of convenience we denote by P (z) the polynomial
∑b

d=a ρd · zd in a variable z. Suppose for some α > 1 we
have

S⟨k⟩
m (n) ≥ αd

· S⟨k⟩
m (n − d) (21)

for each d = 1, 2, . . . , n − m. Then relation (20) implies that

s−
i=1

xi|Ĥ (wi)(n + 1)| ≤ S⟨k⟩
m (n)

b−
d=a

ρd

αd
+ µS⟨k⟩

m (n)
⌊ n

k ⌋−
d=

p2+1
k−1


1
αd

< S⟨k⟩
m (n)

P


1
α


+ µ

∞−
d=

p2+1
k−1


1
αd


= S⟨k⟩

m (n)


P


1
α


+

µ

αq(α − 1)
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where q =


p2+1
k−1


− 1. Using this estimation and equalities (1) and (3), we obtain

S⟨k⟩
m (n + 1) =

s−
i=1

xi · |G(wi)(n + 1)| −

s−
i=1

xi|Ĥ (wi)(n + 1)|

> S⟨k⟩
m (n) ·


r − P


1
α


−

µ

αq(α − 1)


.

Therefore, if α satisfy the inequality

r − P


1
α


−

µ

αq(α − 1)
≥ α,

we obtain the inequality S⟨k⟩
m (n + 1) ≥ αS⟨k⟩

m (n), and thus S⟨k⟩
m (n + 1) ≥ αd

· S⟨k⟩
m (n + 1 − d) holds for any d = 1, 2, . . . ,

n − m + 1. If inequalities (21) hold for some n′, then inequalities (21) hold inductively in this case for every n ≥ n′. Thus
we have S⟨k⟩

m (n) = Ω(αn). Since, obviously, the order of growth of S⟨k⟩(n) is not less than S⟨k⟩
m (n), we then conclude that

S⟨k⟩(n) = Ω(αn). Hence γ ⟨k⟩
≥ α.

Note that for obtaining the bound γ ⟨k⟩
≥ α wehave to prove initially that inequalities (21) holds for n′. For these purposes

we compute the exact values of S⟨k⟩(n) for n ≤ n0 by an enumeration of all Dejean’s words of size atmost n0. The inequalities
S⟨k⟩
m (n + 1) ≥ αS⟨k⟩

m (n) for n0 < n ≤ kp2/(k−1) could be verified in the same inductiveway as described abovewith evident
modifications following from the restriction n ≤ kp2/(k − 1).

3. Results

Using the described method of estimating γ ⟨k⟩, we obtained lower bounds on γ ⟨k⟩ for 5 ≤ k ≤ 10. The obtained bounds
together with the parameters m, n0, p1, p2 used in the computer computations of these bounds are given in the following
table. In this tablewe give also the upper bounds on γ ⟨k⟩ weobtainwith themethod described in [18]. For the anti-dictionary
A, we take the set of all binary minimally forbidden words in the Pansiot’s code (w.r.t. factor containment) of size at most q.

k m s n0 p1 p2 Lower bound on γ ⟨k⟩ q |A| Upper bound on γ ⟨k⟩

5 50 5287 150 183 600 1.153811 158 12783585 1.157895
6 33 1926 100 125 500 1.223437 113 3946990 1.224695
7 28 318 100 126 600 1.236409 114 2958045 1.236899
8 18 31 100 119 600 1.234725 118 1399465 1.234843
9 20 42 100 123 600 1.246659 112 287646 1.246678
10 22 55 100 122 600 1.239287 115 65346 1.239308

Comparing the obtained lower bounds with the upper bounds on γ ⟨k⟩ presented in the table, one can conclude that we
have estimated γ ⟨k⟩ for 5 ≤ k ≤ 10 with the precision of 0.005.

4. Conclusion

In this paper we obtained lower bounds on γ ⟨k⟩ for 5 ≤ k ≤ 10, but we believe that by themethod proposed in the paper
lower bounds on γ ⟨k⟩ could be computed for any fixed k ≥ 5 (provided that γ ⟨k⟩ > 1). So we consider as an interesting
problem for further investigations the question if the computations described in the paper can be generalized theoretically
for obtaining theoretical lower bounds on γ ⟨k⟩ valid for any k ≥ 5.
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