View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF APPROXIMATION THEORY 33, 199-213 (1981)

Approximation by Finite Rank Operators

FrRANK DEUTSCH*

Department of Mathematics, Pennsylvania State University,
University Park. Pennsylvania 16802

AND

JAROSLAV MACH AND KLAUS SAATKAMP

Institut fiir Angewandte Mathematik der Universitdt Bonn, 5300
Bonn, West Germany

Communicated by Oved Shisha

Received April 21, 1980

1. INTRODUCTION

There has been much recent interest in the problem of approximating in
the space of bounded linear operators ¥(X, ¥) from one normed linear space
X into another Y by certain subsets . # of Z’(X, Y). In particular, the case
when . # = #(X.Y), the compact operators, has received considerable
attention (see, e.g., |7, 10~17]). A strong impetus in developing a reasonable
theory in this case has come from the fact that (for certain spaces X and Y)
A(X,Y) is an “M-ideal” in Z(X, Y) so that one can apply the powerful
and elegant M-ideal theory (as developed by Alfsen and Effros [1]) to get
substantial information about this problem. (Precise definitions are given
below.) Of special importance is the question of the existence of best approx-
imations. (A subset M of the normed space Z is called proximinal in Z if
each z € Z has a nearest point in M.) From the general M-ideal theory, one
obtains immediately that whenever .# (X, Y) is an M-ideal in Z/(X, Y), then
A (X, Y) is proximinal in &(X,Y) (see, eg., |1]). In general, however,
A (X, Y) is not an M-ideal in (X, Y) and .# (X, Y) may or may not be
proximinal in (X, Y). More precisely, there are examples of spaces X, YV
such that .# (X, Y) is not an M-ideal in ¥/(X, Y), but .# (X, Y) is proximinal
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in Z(X,Y) (see, e.g., |12, 15, 17]). On the other hand, there is a Hilbert
space X and a separable strictly convex Banach space Y such that . #(X.Y)
is not proximinal in %(X, Y) (Holmes and Kripke |9]). In spite of what is
known, there are still many nagging open problems connected with the prox-
iminality of # (X, Y} in Z'(X,Y) (see, e.g.. |15]).

An interesting related problem concerns the question of when the set of
“rank N operators. 7 (X. Y) is proximinal in 2 (X, Y) (or in # (X. Y)). (An
operator in (X, Y) is said to have rank N if its range is contained in an N
dimensional subspace of Y.) This problem has obvious practical
ramifications as well (e.g., in the theory of integral equations). Unfor-
tunately. the algebraic structure of #(X,Y) is not as nice as that of
(X, Y). Indeed, whereas # (X.Y) is a (linear) subspace, . # (X. Y) is not
even convex. At the present time, we are aware of only relatively few results
concerning the proximinality of - #.(X,Y) in Z(X,Y) for certain special
cases X and Y (see, e.g.. |7, 14)).

This paper represents a further contribution to a solution of the problem:
When is #(X. Y) proximinal in (X, Y) or in. # (X, ¥)? The main result of
Section 2 (Theorem 2.2) states that #,(X. Y*) is proximinal in (X, Y*) for
any normed spaces X and Y. More generally. . #(X.Y) is proximinal in
Z(X.Y) whenever Y is norm-one complemented in a dual space
(Corollary 2.6). As corollaries, we obtain two results of Fakhoury {7.
Remark 2.3 (1) and Corollary 2.8 as well as the fact that when Y is an
abstract L-space, then .#,(X, Y) is proximinal in #'(X, Y) (Corollary 2.7). In
Section 3, we are concerned with the case when Y = C(5), the continuous
functions “vanishing at infinity” on a locally compact Hausdorff space S.
Theorem 3.2 is a generalization of the result of Fakhoury [7] which states:
“If X* is strictly convex, then #(X, Cy(S)) is proximinal in. # (X, C,(S)).”
When S has the discrete topology. then (Theorem 3.4). #(X, Cy(S)) is prox-
iminal in .# (X, Cy(S)) for any space X. It is not known to us whether
(X, Cy(S)) can be replaced by /7 (X.C,(S)) in Theorem 3.2 or 3.4.
However, Theorem 3.5 (resp. Theorem 3.10) states that if X is uniformly
smooth (resp. X =c¢,), then .#(X,c,) is proximinal in 2/(X.c,). In
Section 4, we consider approximating by compact operators, For example, in
Theorem 4.1, we give a list of several approximative properties that the set
(X, Co(S)) in (X, Cy(S)) possesses provided S has the discrete topology.
In this case, .# (X, C,(S)) is an M-ideal and hence is proximinal. However,
there is substantially more that can be said. For example, we give an explicit
formula for a homogeneous Lipschitz continuous selection for the metric
projection onto (X, C,(S)). (Before this, only the existence—-
nonconstructive—of a continuous homogeneous selection was known. See
[10}.) In Section 5, we collect a few miscellaneous facts and state some open

problems.
We conclude the introduction with some basic notation and terminology.
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(All undefined notation or terminology is standard and can be found, e.g., in
[6].) If X and Y are (real) normed linear spaces, then #(X. Y) denotes the
normed linear space of all bounded linear operators T from X into Y
endowed with the norm || 7| =sup{| Tx|||x € X.[|x[|<1}. .# (X, Y) is the
subset of all compact operators in (X, Y). That is, T € # (X, Y) iff T maps
the unit ball in X into a relatively compact subset of Y. For any natural
number N, the set of rank N operators is the subset %, (X, Y) of all operators
T in (X, Y) with the property that the range of T is at most N dimensional.
If S is any locally compact Hausdorff space, Co(S) will denote the set of all
real-valued continuous functions f on S “vanishing at infinity” (ie., {s€ S|
f(s) = ¢t is compact for each ¢ > 0) and endowed with the supremum
norm. If S is compact. then C,(S) = C(S). the continuous functions on S. If
S is any set with the discrete topology. we often write ¢,(S) for C,(S). If M
is a subset of a normed space Z and z is in Z, an element v in M is called a
best approximation to z from M if ||x — y|l=d(x, M), where d(x,M)=
inf{||x —y|l|y € M!\. M is called proximinal in Z if each z € Z has a best
approximation in M. The set of all best approximations in M to z is denoted
by P,(z). The set-valued mapping P,,: Z— 2" thus defined is called the
metric projection onto M. A closed subspace M of Z is called an M-ideal if
there is a linear projection Q from Z* onto M~ such that ||z*|| = ||Qz *|| +
liz* — Qz*|| for every z* € Z*. If z € Z, then 7 will denote the image of z
under the natural embedding of Z into its second dual Z**. That is, Z(z*) =
z¥(z). z* € Z. Further, Z will denote the set {7 |z € Z}.

Throughout this paper, unless explicitly stated otherwise, X and Y will
denote arbitrary (real) normed linear spaces. N any given natural number.
and S an arbitrary locally compact Hausdorff space.

2. WHEN THE RANGE Spacg Is A DUAL SPACE

In this section we will consider the case when Y is a dual space or, more
generally, Y is norm-one complemented in a dual space.

The following lemma isolates a simple but useful fact that will be needed
more than once in the sequel. (Here X and Y are arbitrary.)

2.1. LemMa. If FE # (X, Y), then there exist N vectors y; €Y and N
Sfunctionals x¥ € X* such that
i flvill=1 (i=1,2,.,N)
(i) Jx*I<IHFl (=12 N)
(iii) Fx=37% , x¥(x)y;, xE X.

i
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Conversely, if F is defined by (iii) for some given sets {y,, V.., ¥yt in Y
and {xF, xF...xF} in X*, then FE€ # (X, Y).

Proof. Let V be an N dimensional subspace of Y which contains the

range of F. By Auerbach’s lemma |3], there is a basis {v,. ;... } of ¥
and linear functionals {y¥, y¥...v¥} in V* such that |y ll=1v¥]=1
(i=1.2....N)and v =3} , v¥*(v) »;, v € V. By the Hahn-Banach theorem.
we may assume v € Y* (i=1,2,..N). In particular,
N
Fx= N\ yXFx) ;. XEX.

i1
Let x* = p* o F. Then x}¥ € X* and

L <UF I IEI<IFI (= 1. 20 N,

The converse is trivial. 1

2.2. THEOREM. 7 (X, Y*) is proximinal in /(X. Y*),

Proof. We will actually prove the stronger statement that . #(X. Y*) is
“boundedly weak *-operator compact.” i.e.. any bounded net in . # (X. Y*)
has a subnet which converges in the weak *-operator topology to an element
of #,(X. Y*). Let (F,) be a bounded net in . # (X, Y*). say. || F,|l < ¢ for all
§. By Lemma 2.1, there exist a set {vi5. v¥...p5tin Y* with HvA| =1
and a set {xf . x5 0K in XF with || x| < JF, || < ¢ such that

\
Noxi(rn. vex

i1

Fox=\

Since all the functionals involved are bounded. it follows that by passing to a
subnet we may assume that

W'

W’ e o s
X3 > x and VE—— ¥f

i i

(i=1,2..,N) for some x} € X* and y* € Y*. (Here w* denotes the weak *
topology.) Hence for each x € X and y € Y,

A N
(Fsx)(ry= N xix) i = N xifx) »/ ().
i1 i
Defining F, on X by F,x=3} , x*(x)p* it follows by Lemma 2.1 that
F,€ #,/(X.Y*) and that F, » F, in the weak*-operator topology. Thus
#{X. Y*) is boundedly weak *-operator compact as claimed.
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Now let T€E€ (X, Y*) and let (F,) be a minimizing sequence in
F(X, YH):

IT—F,| - d(T. #(X, Y*)).

Since (F,) is bounded, the first part of the proof shows that there is a subnet
(F,) which converges, in the weak*-operator topology, to some
F,€ #(X. Y*). Further,

T = F,[| < liminf | T — F, | = d(T.. #(X, Y*))
implies that F, is a best approximation to 7. |

2.3. Remarks. (1) Fakhoury |[7| had proved a special case of
Theorem 2.2 when he showed that the “‘representable operators™ in
#'(L,.Y*) have best approximations in.#,(L,. Y*).

(2) As noted in the proof of Theorem 2.2, we actually proved the
stronger statement that #, = # (X, Y*) is “boundedly weak*-operator
compact.” In particular, by a result of [5], not only is .%, proximinal but the
metric projection P 4. is norm-to-weak *-operator upper semicontinuous.

(3) Theorem 2.1 is false in general if 4 (X. Y*) is replaced by the
compact operators .4 (X, Y*). (See, e.g.. the example of Holmes and Kripke
91,

A (linear) subspace Y of the normed linear space Z is said to be norm-one
complemented in Z provided there is a bounded linear mapping P from Z
onto Y with P* =P and || P| = L.

The next result is a useful device for asserting the proximinality of
ZAX.Y) in Z(X,Y) when it is known that #(X,Z) is proximinal in
(X, Z) for a certain superspace Z which contains Y.

2.5. THEOREM. If Y is norm-one complemented in a space Z and
# (X, Z) Is proximinal in # (X, Z). then . # (X, Y) is proximinal in 22 (X, Y).

Proof. Let P be a norm-one projection of Z onto Y. Let T € Z(X.Y)
Since #(X.Y)c. #(X.Z), it follows that

d(T. #(X.Z)) <d(T. #(X. Y)).

Since (X.Y)c 7 (X, Z), it follows by hypothesis that T has a best approx-
imation F €. #(X. Z). Let F= PF. Then F € #(X, Y) and

T~ Fl|=||PT~PF| = | (T~ F)| <| T~ F|
— d(T. #\(X. 2)) S d(T. 7 (X. Y)),

Thus F is a best approximation to T from #,(X.Y). 1
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2.6. COROLLARY. [IfY is norm-one complemented in a dual space (e.g.. if
Y is a dual space or if 'Y is norm-one complemented in Y**), then % (X.Y)
is proximinal in 7 (X.Y).

Proof. Theorems 2.2 and 2.5. |

2.7. COROLLARY. [f Y is an abstract L-space. then - #{X.Y) is prox
iminal in 7 (X.Y).

Proof. Every abstract L-space is isometric to a space of type L (u) for
some measure ¢ (see, e.g., [18]). Also, L,(¢) is norm-one complemented in
its second dual (see, e.g., |18]). Now apply Corollary 2.6. [

2.8. CoroiLARY (Fakhoury [7]). Let S be an extremally disconnected
compact Hausdorff space. Then . # (X. C(S)) is proximinal in ~ (X. C(S)).

Progf. We use the fact (see. e.g.. [I8]) that C(S) is norm-one
complemented in /,(S). and then apply Corollary 2.6. §

3. WHEN THE RANGE SPACE Is C(S)

In this section we will be concerned with the case when Y =C (S). It is
convenient to first have some notation. Let /, (S. X) denote the space of all
norm bounded functions f* § — X equipped with the supremum norm | /| =
supll| S | s€ S}, If 7 denotes either the norm (||-||) or weak™® (w*)
topology on a dual space X*. let C(S(X*.7)) denote the subspace of
[ (8. X*) of all t-continuous functions f:S - (X*, 7).

Further, let

CoAS. X*¥) = 1f€ C(SAX* w¥)) | £ fE Cy(S). x € X1

ColS. X*) = (£ € C(S, X%, -] {s €S| /() > ¢} is compact for every
¢ > 0}, and, if V is a subspace of X*, let

Co(S. V)= {S€ Co(S, XF) [ f(S) = V.

Note that C,(S, V) c Cy(S, X*) < C,.(S, X¥) < C(S, (X*, w*)). Further,
if S is compact, then C(S, (X*, w*))=C, .(S, X*) and C(S,(X* [ -]]) =
Co(S, X*).

The following representation theorem is essential for our purposes.

3.1. THEOREM. The space (X, C,(S)) is isometrically isomorphic to
C,..(S, X*) via the mapping TE (X, Co(8))—~ T € C,.(S. X*) defined by

T(s)x = (Tx)(s), XEX,sES. (3.1.1)
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Under this mapping, % (X, Cy(S)) is alsg isometrically isomorphic to
Co(S, X*). Moreover, TE€ (X, Co(S)) iff TE Cy(S, V) for some N dimen-
sional subspace V of X.

This result is well known, at least when S is compact (see, e.g., [6, p.
490]).

Let V" be a proximinal subspace of the normed linear space Z. A selection
for the metric projection P, is any function ¢ =0,.:Z -V such that
o(z) € P,(z) for every z € Z. A continuous selection for P, is a selection
which is also continuous.

3.2. DerFINITION. A normed linear space Z is said to have the (CSF)
property if the metric projection onto each finite dimensional subspace of Z
has a continuous selection.

It is easily shown that each strictly convex space has the (CSF) property.
Indeed. in this case the metric projections themselves are single-valued and
continuous. More generally, any space with the property (P) of Brown {4]
has the (CSF) property.

3.3. THEOREM. Let X be a normed linear space whose dual space X*
has the (CSF) property (e.g., if X* is strictly convex). Then # (X, C\(S)) is
proximinal in . # (X, Cy(S)).

Progf. Let K& #(X,Cy(S)) and set .7, =#X,Cy(S)). Using
Theorem 3.1. we see that the function r =% is norm-continuous and
d(K. #)= inf inf  sup|lz(s) —f(s).
)=

X JECHSID) ses
dimi - N

Given any N dimensional subspace V" of X*, let g, be a continuous selection
for the metric projection P,.. Since |[a,(z(s))]] < 2|/ 7(s)|| and 7 € C,(S, X*), it
follows that 0,. o 7€ Cy(S, V) and hence

d(K.7y)= " inf sup|(s) — o,(x(s))]
dim b - A

= inf supd(z(s), V).
FeXt ges
dimp =~

By a result of Garkavi |8], an N dimensional subspace ¥V, of X* exists for
which the infimum is attained. Thus

d(K. #y) = sup [#(5) ~ 0 (2(5)).
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By Theorent 3.1. 0, o 7= F, for some F, €. #,(X, C,(S)) and

K= Fyll= sup lit(s) — o, (T(s)) = d(K, 7).

That is, F,, is a best approximation to K. |

3.4. Remarks. (1) Fakhoury |7| has proved Theorem 3.3 in the
particular case when X* is strictly convex and S compact.

(2) We do not know whether .# (X, Cy(S)) can be replaced by
(X, Cy(S)) in Theorem 3.3.

(3) If S has the discrete topology. then every function defined on S is
continuous. In this case, the same proof as given for Theorem 3.3 (where
now c,. can be any selection for P,.) establishes the following result.

3.5. THEOREM. Let S be any set with the discrete topology and X any
normed linear space. Then . #(X, c,(S)) is proximinal in - #(X.c(S)). In
particular, . 7,.(X, ¢,) is proximinal in % (X, c,).

We do not know whether #,(X, ¢,) is proximinal in ~ (X, ¢,). However.
with a certain restriction on X, the answer is affirmative.

3.6. THEOREM, Let X be a uniformly smooth Banach space (i.e., X* is
uniformly convex). Then # (X, c,) is proximinal in #(X. ¢,).

An essential step in the proof of this theorem is the following lemma
whose proof can be found in [14].

3.7. LeMMmA.  Let X be a uniformly convex Banach space, r > Q. Then for
every € > 0 there is a 6 > 0 such that for every point x € X with |x}|| <r+ 9
and every closed subspace V of X a point y € V with || y|| < ¢ exists such that

lix — | < Max(r, d(x, V).

Proof of Theorem 3.6. By Theorem 3.1, #(X,c,) is isometrically
isomorphic to the space c,. o(X*) of all X*-valued sequences {x;},.., which
w*-converges to 0, equipped with the norm of [ (N, X*)}, and T € #(X. c,)
iff the corresponding sequence is in the set A = () C,(M, V). where the union
on the right hand side is taken over all subspaces F of X* with dim V' < N.
We show that even for every x € [ (N, X*) there exists a best approximation
in 4. Let x = {x*l,.,, €1, (N, X*) be given. Let R =d(x, 4), r, = lim || x¥|L
For every (closed) subspace V of X* let r, = sup, .., || xF — P, x}¥|. Clearly

d(x, C,(N, V)) = Max(r,, r,).
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Let {&;};e,, be a strictly decreasing sequence of positive numbers with
lim¢; = 0. We show first that there is a strictly increasing sequence {k;};.,
of natural numbers such that for every subspace V' of X* x has a best
approximation y,- in Cy(N, V) satisfying

el e

for every i € N and every k > k;. To construct such a best approximation,
choose for every ¢;. i€ N, a number &, for which the conclusion of
Lemma 3.7 holds. For every i € N there exists a k; € N such that for every
k > k; the inequality || y,|| < r; + 9, holds (the sequence {k;} can obviously be
chosen strictly increasing). For k <k, put y,, =P x¥ Let i€N,
k; <k < k;,,. By Lemma 3.7 there exists a y, € V such that || y,|l < ¢; and

Ix — v, € Max(r, . dist(xE, V).

Put vy, . =y,. It follows immediately from the last inequality that for
Yo =40 ke, WE have

x—yll= iug =yl < Max(ry, ry) <d(x, Cy(N, V).
eh

Hence y, is a best approximation of x in Cy (N, V) with the required

property.
Let {V},., be a sequence of subspaces of X* with dim V; < N and

d(x, C,(N, Vi)) <R+ 1)

for every jE€MN. Let y; =y, , jEN, be the best approximation of x in
Co(N, V) constructed above. By Auerbach’s lemma |[3], for every j€ N
there is a basis z],..., zj, of ¥, and functionals f7...., /4 € X* such that for
every m = l..., N we have ||z/ || =/ /7 | =1 and

A
V= Sy zh,

m o1
for every k€ N. Without loss of generality assume that cach of the
sequences {z/,},., converges weakly to some z, € X* with [z,[ <1,
m=1l,... N. Let V, be the subspace of X* generated by z,...., z,. Now, we
construct an element y of Cy(N, ¥,) for which |[x — y|| < R holds. Let £ € N.
It follows from the above representation that the sequences {/7,(¥; )}ic
m = 1,... N are bounded. Hence we may without loss of generality assume
that  lim, /% (p; ) =/ms for some f, €K, m=1.,N. Denote
V=2 w1 S V- Since y, is the weak limit of the sequence {;,},c, and

since v, , satisfies || y; I <e; if k; <k <k;,, for some iEN, y={y,},c is
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in Co(N, Vy). Since l|xF —p, [[<R+ 1/ for every j. k€™, we have
[xF —y, /<R for every k€N, Hence y is a best approximation of x in
A.

The proof of the following lemma may be found in |13}

3.8, LeMMA.  Let {x;},.,, be a sequence in I which w*-converges 1o 0.
Y€1, Then for every € > 0 there exists an iy, € N such that for every i > i,
we have

=yl =Dl =il <.

3.9. THEOREM. .7#\(c,.¢,) Is proximinal in < (c,, c,).

Proof.  Let x = {x;},.. €c,. ;) (sce the proof of Theorem 3.6 for the
notation). Denote again by A the set {JC (™. V). where the union is taken
over all subspaces V of /; with dim V'<C V. Let R=d(x. A). Let |V}, bea
sequence of subspaces of /, with dim V', < N and

d(x. Colls V)Y < R + 1)

for every j &€ 1. Using again Auerbach’s Lemma |3]. every V, has a basis
Pro 2hc i 3= 1o m = 1. N such that every y € V, admits the represen-
tation

N
,1' = \_ 4/‘:)1( .V) .\"Cn -

mo1

i

where [}, € V¥, | fI =1, m=1,. N. Without loss of generality assume
that p/ w*-converges to some p, €/, with ||y, /<1, m=1..N. Let
V,=span{y, .., vy} For every i, j€ N let z/ be an arbitrary best approx-
imation of x; in V. Since the coefficients of {z{},., in the above represen-
tation are bounded for every i€ N, we may without loss of generality
assume that w* —lim; z} =z, for some z,€ V,, i € N. Since for every i.
JEN
Hxi - :”‘ S aX, Cy(h Vj)) SR+

holds, we have |x; —z;| <R. For every i€ N choose an arbitrary best
approximation w; of x; in V,. Obviously ||x; — w;|| < R for every i € N. We
show that w = {w},.,, € Co(IN, V). Assume the contrary. Then there is a
subsequence of {w,}, denote it again by {w,;}, which converges to some
wy # 0. Let ¢ = ||w,ll/4. Since {x; — (w; — wy)};e. wH-converges to O there is.
by the previous lemma, an {, € N such that for every i > i, we have

Hlx, — (v — wo) —woll = fix; = (w; — woll — [wlil < e
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and
b, —wy |l < e
Hence
X ol =l O = wg) = > g — Oy )+ Iwoll — ¢
2 ‘1-\'[l,i‘ =y, =il gl —e >l T+l wyll — 2¢
=|x |+ 2.

It follows that w; cannot be a best approximation of x;

;, which is a
contradiction. 1

4. APPROXIMATION BY COMPACT OPERATORS

In this section we make a few observations about approximating by
compact operators.

If we approximate in ~ (X, c,) by the compact operators . # (X, ¢, ). rather
than #(X.c,). then there is a substantial amount which can be said (with
no restriction on X).

4.1. THEOREM. Let S be any set with the discrete topology and X any
normed linear space. For brevity, let 7 =/ (X.c,(S)). % = #(X.c,(5))
and. for each TE . let d(T)=d(T. #) and define ¢ on ~ by

[(aT)x|(s) =0 it || T(s)| < d(T)
= l — J—CZT,(?(% l (Tx)(s) otherwise

Jor x€ X. s € S. where T is defined as in (3.1.1). Then:
(1) FAX, ¢, (S)) is proximinal in (X, c,(S)).

(2) d(T)=inf sup |T(s),
red ey
where J denotes the cluss of all finite subsets of S.

(3) For every TEC X\ #. # s the cone generated by the sel
P (T)— P (T). In fact. for each K€ # with |[K||<5d(T), K=T"—T"
Jor some T, T” in P ,(T). In particular, span P ,(T)y=.# and P ,(T) is not
compact.

(4) d (P, (T).P,(V)<2[T~V]|

6407333 3
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Jor each T, V in »* and 2 is the smallest constant. (Here d,; denotes the
Hausdorff metric.) In particular, P , is Hausdorff continuous.

(5) P, is lower semicontinuous, but P, is not upper semicontinuous at
any point of ¥\ # .

(6) P,(0)=1T€ 7 0E P (T)}is nowhere dense.

() o7 = 7 is a homogeneous selection for the metric projection P,
which is Lipschitz continuous:

loT —aV | <21 T~ V.

and 2 is the smallest constant.
(8) WloTh <||TI|—d(T)and |lcT!|={T| if and only if T €. # .

(9) o is minimal in norm. i.e..

JloTi=inf{| T T € P (T, TE /.

This even holds pointwise:
l(eT)x|| = inf{|| T"x|| | T' € P (T}, TEY xEX.

Proof. Let C(S,X*) denote the set of all f1S-X* with
|/l = sup,cg I/ (s)| < oo. Then, in the notation defined at the beginning of
this section,

Co (S, X*) = | fE€ C(S. X*)  £0 fE€ ¢,(S). x € X|

and
CAS. X®)=1/€ C(S. X Yy s S| /(s = ¢

is finite for every ¢ > 0.

From |2; Proposition 4.1 and 4.31. it follows that the statements (1}—(9) are
valid if 7 is replaced by C(S,X*) and # by C,(S,X*). However. by
Theorem 3.1. we may identify (X, ¢,(§)) with C, (S, X*) and 7 (X. c(S))
by Cy(S.X*). Since C_.(S, X*)< C(S, X*), it follows immediately that all
of the statements except (6) hold. However, we shall prove in Theorem 5.1
below a much stronger statement than (6). 1

4.2. Remark. From a result of Mach and Ward |15; Theorem 3.1],
A (X, co(S)) is an M-ideal in 7 (X, ¢o(S)). Thus statements (1) and (4) can
also be deduced from the general M-ideal theory (see |[1] and |10] resp.).
Holmes er al. |10] had shown the existence of a continuous homogeneous
selection for the metric projection onto an M-ideal. Unlike our proof.
however, their proof was nonconstructive.
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There is a large collection of pairs of normed linear spaces (X, Y) such
that 7 (X,Y) is an M-ideal in (X,Y). For example, (/,,[,) for
l<p<qg< o |17] and (X, ¢,) for any normed space X [15; Theorem 3.1].
From the remark following Proposition 4.1 of |2], we immediately obtain

4.3. CorROLLARY. Let X, Y be normed linear spaces such that . % (X, Y)
is a (proper) M-ideal in #(X,Y). Then the metric projection P, y, is
Hausdorff continuous and lower semicontinuous, but it is not upper semicon-
tinuous at any point of (X, Y)\Z' (X, Y).

5. MisceLLANEOUS FAcTS AND SOME OPEN PROBLEMS

If M is a subset of the normed linear space Z, the kernel of the metric
projection P,,: Z — 2™ is the set

kerP,={z€Z|0EP, () ={z€Z||z||=d(z. M)}.

If M is a subspace, it is easy to see that ker P,, is a nonempty closed and
proper “cone” in Z, i.e., iz € ker P, whenever z &€ ker P,, and 4 > 0.

It is usually the case that the kernel of the metric projection onto a prox-
iminal, but not Chebyshev. subspace has an interior. In spite of this, we have

5.1. THEOREM. [If X and Y are any normed linear spaces and M is any
subset of ¥ (X, Y) which contains . # (X, Y). then ker P,, is nowhere dense in
Z(X. Y. In particular, ker P, , is nowhere dense in /'(X, Y).

Proof. It suffices to show that ker P,, contains no ball centered at some
nonzero T € ker P,,. Given any ¢ > 0, choose x, € X, |x||= I, such that
| Txyi] > | T| - ¢/4. Choose xFeX* |[ixFl=1, such that xf(x,)=L
Define a mapping 7.: X — Y by

exy(x) .

T x=——77—Tx,, xXe X
2([ T

Then T, € M, || T.|| = ¢/2. and
1T+ T2 Txg + T, x| > [T =d(T.M)=d(T+ T,.M).

Thus 7T+ T, & ker P,, and hence the e-ball centered at T is not contained in
kerP,,. 11

5.2. SoME OPEN ProOBLEMS. During the course of our investigation, a
number of questions arose naturally. With the intention of bringing these
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problems to the attention of a wider audience and thus. hopefully.
contributing to their eventual solution, we list some of them here.

In Theorem 2.2 we showed that if Y is a dual space. then . # (X, Y) is
proximinal in (X, Y).

5.2.1. Question. 1s 7 (X,Y) proximinal in #(X.Y) for anv pair of
normed linear spaces X and Y?

One natural candidate for a counterexample would be when Y = ¢,. But in
this case, by Theorem 3.5. the answer is affirmative whenever X* is
uniformly convex or ¢,. This remarks lead to the following specialization of
Question 5.2.1.

5.2.2. Question. (a) Is #,(X,c,) proximinal in #(X, ¢,) if X is either ¢
or /.7

(b} More generally, is it possible to give a useful characterization of
those normed spaces X such that #(X, ¢,) is proximinal in / (X, ¢,)?

Such a characterization must, of course, include those spaces X with X~
uniformly convex (by Theorem 3.6).

5.2.3. Question. If X* is uniformly convex. is . # (X, C,(S)) proximinal
in 7 (X.Cy(S)?

By a result of Fakhoury [7], the answer is affirmative if X' =/, for
I < p < oo. Also. if § is a countable discrete set. the answer is affirmative by
Theorem 3.6.

We have observed (see Remark 2.3(3)) that there are spaces X. Y such
that . #,(X. Y) is proximinal in (X, Y) but #(X.Y) is not proximnal in
Z(X.Y). This leads to the converse question.

5.2.4. Questionn. Do there exist spaces X. Y such that . # (X, Y) is prox-
iminal in / (X, Y). but #(X, Y) is not proximinal in ¥ (X. }Y)?

5.2.5. Question. Is N “essential™ in these theorems? That is, is #(X, ¥)
proximinal in » (X.Y) for every N if (X, Y} is proximinal in ~ (X, Y) for
some N7

An affirmative answer here would. of course. reduce all such questions of
proximinality to the formaily simpler question of whether or not #(X. Y} is
proximinal in (X, Y).
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