Bilinear Forms on G-Algebras
Michel Broué*
Service de Mathématiques et Informatique, École Normale Supérieure,
1 Rue Maurice Arnoux, 92120 Montrouge, France
AND
Geoffrey R. Robinson
Department of Mathematics, UMIST, Po Box 88, Manchester M60 1QD, England

Received January 7, 1986

TO J. A. GREEN, ON HIS 60TH BIRTHDAY

Introduction

It is a pleasure to acknowledge the influence of J. A. Green on this paper. Our original aim was to produce a proof of the main results of [Ro] using an endomorphism ring approach suggested by Green. It soon became apparent that (as we and Green had suspected) there was a common theme linking parts of Green's paper on Scott modules [Gr2] with the papers [$\mathrm{Brl}, \mathrm{Ro}$] (although the results of these papers are independent).

It turns out that the most convenient setting to work with is that of G algebras (see [Grl]) endowed with G-stable bilinear forms somewhat analogous to that introduced by Green in [Gr2].

The paper is divided into two more or less independent parts, the only overlap being when we combine the results of both sections to prove the main result of [Ro].

In the first section, we develop general properties of bilinear forms on G^{-} algebras, include some applications which illustrate how our techniques unify some apparently diverse results (such as a recent result of Benson and Carlson on the multiplicity of the Scott module in $M \otimes M^{*}$ (see [$\mathrm{Bc}-\mathrm{Ca}$]), results on the number of blocks of $K G$ with given defect groups, results about height 0 characters), and give explicit formulae for the ranks of the forms we definc.

[^0]In the second section, we examine links between group algebras and Hecke algebras to produce (via the results of the first section) a proof of the main result of [Ro]. We also obtain some general results linking the structure of Hecke algebras with group-theoretic properties (such as control of fusion) and mention some consequences for the structure of permutation modules and their summands.

Notation

For an algebra A, we let $J(A)$ denote the Jacobson radical of A, and A^{\times} denote the group of multiplicative units of A. When G is a finite group, R is a ring, and X is a subset of G, we let $\mathscr{S} X$ denote $\sum_{g \in X} g$ in $R G$.

When A, B are subgroups of G, we let $[A \backslash G / B]$ denote a full set of representatives for the (A, B) double coset representatives in G, and we abbreviate $[1 \backslash G / B]$ to $[G / B],[A \backslash G / 1]$ to $[A \backslash G]$.

When M is an $R G$-module, and H is a subgroup of G, we let M^{H} denote the set of H-fixed points of M, and we define $\operatorname{Tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ by $\operatorname{Tr}_{H}^{G}(m)=\sum_{g \in[G / H]} g m$.

1. Bilinear Forms on G-Algebras

A. Generalities

Let G be a finite group, p be a prime, k an algebraically closed field of characteristic p. Let A denote a finite dimensional G-algebra over k (see [Gr1]), and suppose further that A is endowed with a linear form $t: A \rightarrow k$ such that for all $x, y \in A$, all $g \in G$, we have

$$
t(x y)=t(y x), \quad t(g \cdot x)=t(x) .
$$

For any p subgroup, P, of G, let A_{P}^{G} denote $\mathrm{T}_{\mathrm{I}}^{G}\left(A^{P}\right)$, a two-sided ideal of A^{G} (see [Grl]). We set

$$
A(P)=A^{P} / \sum_{Q<P} A_{Q}^{P}
$$

and we denote by $\mathrm{Br}_{r}: A^{P} \rightarrow A(P)$ the canonical epimorphism, which we call the Brauer morphism associated with P (see [Br 2$]$). The algebra $A(P)$ is clearly an $\bar{N}(P)$ algebra (where $\bar{N}(P)=N_{G}(P) / P$), and the algebra morphism Br_{μ} is then an $\bar{N}(P)$-morphism.

Since

$$
\operatorname{Tr}_{\rho}^{G}(x)=\sum_{[P \backslash G / P]} \operatorname{Tr}_{P \cap \cap_{P} P}^{P}(g \cdot x) \quad \text { for } \quad x \in A^{P}
$$

it is clear that (see $[\mathrm{Br} 2]$)

$$
\begin{equation*}
\operatorname{Br}_{\rho} \circ \operatorname{Tr}_{P}^{G}=\operatorname{Tr}_{1}^{\bar{N}(P)} \circ \operatorname{Br}_{p} \tag{1.1}
\end{equation*}
$$

Moreover, we see that ker $\mathrm{Br}_{p} \subset \operatorname{ker} t$, and thus t defines a linear form $t_{P}: A(P) \rightarrow k$ which is still "symmetric," and $\bar{N}(P)$ stable.

Definition. We define the bilinear form

$$
\rho_{P, G}^{A, I}: \quad A_{P}^{G} \times A_{P}^{G} \rightarrow k
$$

as follows: if $x-\operatorname{Tr}_{P}^{G}\left(x^{\prime}\right)$ and $y=\operatorname{Tr}_{P}^{G}\left(y^{\prime}\right)\left(x^{\prime}, y^{\prime} \in A^{P}\right)$, then

$$
\rho_{P, C i}^{A, t}(x, y)=t\left(x y^{\prime}\right) .
$$

(1.2) Proposition. (1) The form $\rho_{P . G}^{A . t}$ is well defined, symmetric, and associative.
(2) Whenever $x, y \in A_{P}^{G}$, we have

$$
\rho_{P, G}^{A, t}(x, y)=\rho_{1, N, N}^{A(P), f},\left(\operatorname{Br}_{\rho}(x), \operatorname{Br}_{p}(y)\right) .
$$

Proof. Let $x=\operatorname{Tr}_{P}^{G}\left(x^{\prime}\right)$ and $y=\operatorname{Tr}_{P}^{G}\left(y^{\prime}\right)$. By definition of t_{P}, we have $t\left(x y^{\prime}\right)=t_{P}\left(\operatorname{Br}_{p}\left(x y^{\prime}\right)\right)=t_{P}\left(\operatorname{Br}_{P}(x) \operatorname{Br}_{P}\left(y^{\prime}\right)\right)$.

By (1.1), we also know that

$$
\operatorname{Br}_{P}(x)=\operatorname{Tr}_{1}^{\bar{N}(P)}\left(\operatorname{Br}_{P}\left(x^{\prime}\right)\right) \quad \text { and } \quad \operatorname{Br}_{p}(y)=\operatorname{Tr}_{1}^{\mathcal{N}(P)}\left(\operatorname{Br}_{P}\left(y^{\prime}\right)\right)
$$

We then see that in order to prove (1), we may as well assume that $P=1$ (replacing G, P, A by $\bar{N}(P), 1, A(P)$), and also that (2) is clear.

Now we assume $P=1$. Since t is G-stable, we have

$$
t\left(\operatorname{Tr}_{1}^{G}\left(x^{\prime}\right) y^{\prime}\right)=t\left(x^{\prime} \operatorname{Tr}_{1}^{G}\left(y^{\prime}\right)\right)
$$

this shows that $t\left(x y^{\prime}\right)=t\left(x y^{\prime \prime}\right)$ as soon as $\operatorname{Tr}_{1}^{G}\left(y^{\prime}\right)=\operatorname{Tr}_{1}^{G}\left(y^{\prime \prime}\right)$, and so that the form is well defined. It is symmetric since $t\left(x y^{\prime}\right)=t\left(y^{\prime} x\right)$, and associative since $z y=\operatorname{Tr}_{1}^{G}\left(z y^{\prime}\right)$ for all $z \in A^{G}$, and so

$$
\rho_{1, G}^{A, t}(x z, y)=t\left(x z y^{\prime}\right)=\rho_{1 . G}^{A, t}(x, z y) .
$$

The next result is really a special case of Green's main result in [Gr2].
(1.3) Proposition. Suppose that (A, t) is a symmetric algebra. Then for any p-subgroup P, of G, the rank of the form $\rho_{P . G}^{A, t}$ is the multiplicity of the Scott module with vertex P as a summand of A (where A is considered just as $k G$-module).

Proof. In [Gr2], J. A. Green proved that, given a $k G$-module M, the multiplicity of the Scott module with vertex P as a summand of M is given by the rank of the bilinear form $\langle,\rangle_{P}: M_{P}^{G} \times\left(M^{*}\right)_{P}^{G} \rightarrow k$ defined by

$$
\left\langle\operatorname{Tr}_{P}^{G}(m), \operatorname{Tr}_{P}^{G}(\phi)\right\rangle_{P}=\phi\left(\operatorname{Tr}_{P}^{G}(m)\right) \quad \text { for } m \in M \text { and } \phi \in\left(M^{*}\right)^{P} .
$$

Let A^{*} denote the (k-vector space) dual of A. Since (A, t) is a symmetric algebra, there is a k-vector space isomorphism $\beta: A \rightarrow A^{*}$ given by $\beta(y)(x)=t(x y)$ for all $x, y \in A$. Since t is G-stable, β is easily seen to be an isomorphism of $k G$-modules. In particular, $\beta\left(A^{P}\right)=\left(A^{*}\right)^{P}$.

Now $\rho_{P, G}^{A, \prime}\left(\operatorname{Tr}_{\rho}^{G}\left(x^{\prime}\right), \operatorname{Tr}_{P}^{G}\left(y^{\prime}\right)\right)=t\left(\operatorname{Tr}_{P}^{G}\left(x^{\prime}\right) y^{\prime}\right)=\beta\left(y^{\prime}\right)\left(\operatorname{Tr}_{\rho}^{G}\left(x^{\prime}\right)=\right.$ $\left\langle\operatorname{Tr}_{P}^{G}\left(x^{\prime}\right), \operatorname{Tr}_{P}^{G}\left(\beta\left(y^{\prime}\right)\right)\right\rangle_{P}$, where \langle,\rangle_{P} denotes Green's form from $A_{P}^{G} \times\left(A^{*}\right)_{P}^{G}$ to k. Thus the forms $\rho_{G: G}^{A .1}$ and \langle,\rangle_{P} have the same rank, which suffices to complete the proof of (1.3).

As an example, let us consider the case where $A=k G$, the group algebra of G over k, endowed with the usual form

$$
t: \quad \sum_{g \in G} x(g) g \rightarrow x(1) .
$$

Then the form $\rho_{P, G}^{k G, t}$ is just the form denoted by $\bar{\beta}_{P, G}$ in [Br 2$]$. Let us recall (see [Gr1]) that ($k G)_{P}^{G}$ has for basis the family $(\mathscr{T} C$) where C runs over the set of conjugacy classes of G with a defect group contained in P. As done in [Br 2], it is then immediate to check that

$$
\begin{aligned}
& \rho_{P, G}^{k G . t}\left(S C, S C^{\prime}\right) \\
& \quad= \begin{cases}0 & \text { if } C \text { or } C^{\prime} \text { has defect smaller than } P \\
\delta_{C^{\prime}, C^{\prime}} \cdot|C|_{p^{\prime}} /|G|_{p^{\prime}} & \text { if } C \text { and } C^{\prime} \text { have defect } P,\end{cases}
\end{aligned}
$$

from which it follows that rad $\rho_{P, G}^{k G, t}$ equals $\operatorname{ker} \operatorname{Br}_{\rho} \cap(k G)_{P}^{G}$.
Now if e is any idempotent of $Z k G$, it follows that

$$
\mathrm{rk} \rho_{P, \bar{i}}^{k G, i}=\operatorname{dim} \operatorname{Br}_{\rho}\left((k G)_{P}^{G} e\right)=\operatorname{dim}\left(k C_{G}(P)_{1}^{\bar{N}(P)} \operatorname{Br}_{\rho}(e)\right),
$$

the "multiplicity of P associated with e." Either as in Green [Gr2] by applying (1.3), or as in [Br 2], we then deduce immediately the following result of Burry:
(1.4) Corollary. Let b be a primitive idempotent of $Z k G$, and let us consider the block $k G \cdot b$ as a $k G$-module by the conjugation action. Then for any p-subgroup, P, of G, the multiplicity of P as a lower defect group for b is the same as the multiplicity of the Scott module with vertex P as a summand of $k G \cdot b$.

B. When $J(A) \subset \operatorname{ker} t$

We now return to the situation where A need not be a symmetric algebra. In fact, we assume from now on that $J(A) \subset \operatorname{ker} t$.

We need to recall a definition.

Definition (Puig [Pu]). A point of A is an A^{\times}-conjugacy class of primitive idempotents of A.

Of course, the points of A are in natural bijection with the maximal twosided ideals of A, and with the isomorphism classes of simple A-modules. For a point, s, of A, we let χ_{s} denote the character of A afforded by the corresponding simple A-module $A i / J(A) i$ where i is an idempotent in s. We let $t(s)$ denote $t(i)$ (which depends only on s, not on the particular i chosen).
(1.5) Lemma. We have $t=\sum_{s} t(s) \chi_{s}$, where s runs over the points of A.

Proof. Since $J(A) \subset$ ker t, and since there is (up to scalar multiples) only one symmetric linear form on a matrix algebra, we may write $t=\sum_{s} \alpha_{s} \chi_{s}$, where each $\alpha_{s} \in k$. It is easy to see that $\chi_{s}\left(s^{\prime}\right)=\delta_{s, s^{\prime}}$ whenever s, s^{\prime} are points of A, so that $\alpha_{s}=t(s)$ for each point s.

It is clear from the above statement that $t(x)=0$ whenever x is a nilpotent element of A. In particular, whenever A^{\prime} is a subalgebra of A, we have $J\left(A^{\prime}\right) \subset \operatorname{ker}\left(\left.t\right|_{A^{\prime}}\right)$, so the arguments of (1.5) may be applied with A^{\prime} in place of A and $\left.t\right|_{A^{\prime}}$ in place of t. This remark applies in particular to the algebra A^{P} where P is a p-subgroup of G.

The Brauer morphism $\mathrm{Br}_{P}: A^{P} \rightarrow A(P)$ identifies points of $A(P)$ with certain points of A^{r}, namely those s such that $\operatorname{Br}_{P}(s) \neq\{0\}$. We set $s_{P}=\operatorname{Br}_{P}(s)$. Then we have

$$
\begin{equation*}
t_{P}=\sum_{v} t_{P}\left(s_{P}\right) \chi_{s p} \tag{1.6}
\end{equation*}
$$

where s runs the points of A^{P} such that $s_{P} \neq\{0\}$.
Considering A just as a P-algebra, we may define (following Green, see [Gr1]) the defect groups in P of a point of A^{P} : if i is a primitive idempotent of A^{P}, its defect groups are the subgroups Q of P, minimal subject to $i \in A_{Q}^{P}$; the defect groups of i are unique up P-conjugacy (see [Gr1]), and they obviously depend only on the $\left(A^{P}\right)^{\times}$-conjugacy class of i, i.e., on the point of i. By Rosenberg's lemma, it is then clear that (see [Pu$]$)
(1.7) whenever s is a point of A^{P}, we have $s_{P} \neq 0$ if and only if s has defect group P in P.

The next result gives the "local calculation" of $\rho_{P, G}^{A, t}$.
For s a point of A^{P}, we denote by V_{s} the associated simple A^{P}-module, by $\sigma_{s}: A^{P} \rightarrow \operatorname{End}_{k} V_{s}$ the associated morphism, by $\operatorname{tr}_{s}:$ End $_{k} V_{s} \rightarrow k$ the ordinary trace form, and by $\bar{N}(P, s)$ the stabilizor of s in $\bar{N}(P)$.
(1.8) Proposition. (1) For $x, y \in A_{P}^{G}$, we have

$$
\rho_{P, G}^{A, t}(x, y)=\sum_{(s)} t(s) \rho_{1, \bar{N}(P, s)}^{\mathrm{End}_{k} l_{s} \operatorname{tr}_{s}}\left(\sigma_{s}(x), \sigma_{s}(y)\right),
$$

where s runs over a set of representatives for the $\bar{N}(P)$-conjugacy classes of points of A^{P} with defect group P in P, and such that $1(s)\left(\right.$ i.e., $\left.t_{P}\left(s_{P}\right)\right) \neq 0$.
(2) We have

$$
\operatorname{rk} \rho_{P, G}^{A, t}=\sum_{(s)} \operatorname{dim}_{k}\left(\operatorname{End}_{k} V_{s}\right)_{1}^{\bar{N}_{1}(P, s)}
$$

where the sum is taken over the same set as in (1).
Proof. (1) By (1.2)(2), it is immediate that we are reduced to the case where $P=1$ (replacing, as now usual, A, G, P by $A(P), \bar{N}(P), 1)$. In that case, we denote $\bar{N}(P, s)$ by G_{s}.

Let $x=\operatorname{Tr}_{1}^{G}\left(x^{\prime}\right)$ be an element of A_{1}^{G}. Then, by the Mackey-type formula, $x=\operatorname{Tr}_{1}^{G_{s}}\left(\sum_{\left[G_{s} G\right]} \sigma_{s}\left(g \cdot x^{\prime}\right)\right.$), and since σ_{s} is a G_{s}-morphism we get

$$
\sigma_{s}(x)=\operatorname{Tr}_{1}^{G_{s}}\left(\sum_{\left[G_{s} \backslash G\right]} \sigma_{s}\left(g \cdot x^{\prime}\right)\right)
$$

By definition of the form ρ, we then have to prove

$$
t\left(x^{\prime} y\right)=\sum_{(s)} t(s) \operatorname{tr}_{s}\left(\sum_{[G, \backslash G]} \sigma_{s}\left(g \cdot x^{\prime}\right) \sigma_{s}(y)\right)
$$

i.e.

$$
t\left(x^{\prime} y\right)=\sum_{(s)} t(s) \chi_{s}\left(\sum_{\left[G_{s} \backslash G\right]}\left(g \cdot x^{\prime}\right) y\right) .
$$

By Lemma (1.5), we know that

$$
t=\sum_{s} t(s) \chi_{s}=\sum_{(s)} t(s) \sum_{\left[G_{s} \backslash G\right]} \chi_{g^{-1}(s)}
$$

Thus it suffices to prove that whenever s is a point of A, we have

$$
\sum_{\left[G_{s} \backslash G\right]} \chi_{g}{ }^{1}(s)=\sum_{[G, G]} \chi_{s} \circ g, \quad \text { which is trivial. }
$$

(2) Again we may reduce to the case $P=1$, and we do so. The rank of the form $\rho_{1, G_{v}}^{\mathrm{End}_{k} V_{s}, \mathrm{tr}_{s}}$ is clearly equal to $\operatorname{dim}_{k}\left(\operatorname{End}_{k} V_{s}\right)_{1}^{G_{s}}$. The assertion follows from the fact that the map

$$
\prod_{(s)} \sigma_{s}: \quad A_{1}^{G} \rightarrow \prod_{(s)}\left(\operatorname{End}_{k} V_{s}\right)_{1}^{G} \quad \text { is onto. }
$$

C. Applications

We continuc to assume that $J(A) \subset$ ker t.
First, we need to recall some ideas of Puig [Pu] extending to G-algebras the notion of source (which was previously defined by Green for modules).

The next statement is one of Puig's basic results ($[\mathrm{Pu}]$, Theorem 1.2).
When s is a point of A^{P}, we denote by $A^{P} \cdot s \cdot A^{P}$ the two-sided ideal generated by elements of s (recall that s may be viewed as a set of idempotents of A^{P}).
(1.9) Suppose that A^{G} is local, and let P be a defect group of 1 in G.
(1) There exists a point s of A^{P} such that $1 \in \operatorname{Tr}_{p}^{G}\left(A^{P} \cdot s \cdot A^{P}\right)$.
(2) Such a point has defect P in P, and any other point of A^{P} with defect P in P is $\bar{N}(P)$-conjugate to s.

We sketch a proof here for the convenience of the reader. See $[\mathrm{Pu}]$ to view this result in the general context of "pointed groups."
(1) is an easy consequence of Rosenberg's lemma, and by transitivity of the relative trace, we see that s must have defect group P in P. Let s and s^{\prime} two points of A^{P} such that $A^{G}=\operatorname{Tr}_{P}^{G}\left(A^{P} \cdot s \cdot A^{P}\right)$ and s^{\prime} has defect P in P, and let i^{\prime} be an element of s^{\prime}. Then

$$
i^{\prime} \in \operatorname{Tr}_{p}^{G}\left(A^{\Gamma} \cdot s \cdot A^{P}\right) \subset \sum_{[P \not G P P]} \operatorname{Tr}_{P \cap \& P}^{P}\left(g \cdot\left(A^{r} \cdot s \cdot A^{r}\right)\right)
$$

By Rosenberg's lemma, we see that there exists $g \in G$ such that $i^{\prime} \in$ $\operatorname{Tr}_{P \cap P_{P}}^{P}\left(g \cdot\left(A^{P} \cdot s \cdot A^{P}\right)\right)$, and since i^{\prime} has defect P, we see that $g \in N(P)$. Thus $i^{\prime} \in A^{P} \cdot g(s) \cdot A^{P}$, from which it follows that $s^{\prime}=g(s)$, as required.

If A^{G} is local and if s is a point of A^{P} such that (1.9)(1) holds, s is called a source of the G-algebra A.

The following lemma will be crucial in the applications.
(1.10) Lemma. Suppose that A^{G} is local.
(1) If $\rho_{P, G}^{A, t} \neq 0$, then P is contained in a defect group of 1_{A} in G.
(2) If P is a defect group of 1_{A} in G, then $\rho_{P, G}^{A, t} \neq 0$ if and only if $t(s) \neq 0$ for s a source of the G-algebra A. In that case, we have

$$
\operatorname{rk} \rho_{P, G}^{A, t}=\operatorname{dim}_{k}\left(\operatorname{End}_{K} V_{s}\right)_{1}^{\bar{N}(P . s)} .
$$

(3) If $A^{G} \subset Z(A)$, then $\rho_{P, G}^{A, t} \neq 0$ if and only if P is a defect group of 1_{A} in G and $t(s) \neq 0$ for s a source of A. In that case, rk $\rho_{P, G}^{A, t}=1$.

Proof. (1) If P is not contained in a defect group of 1_{A} in G, then $A(P)=0$ and it follows from (1.2)(2) that $\rho_{P, G}^{A, t}=0$.
(2) By (1.9), there is a single $\bar{N}(P)$-conjugacy class of points of $A^{\prime \prime}$ with defect group P in P (namely, the class of a source). Then by (1.8)(2), we see that

$$
\operatorname{rk} \rho_{P, G}^{A, t}= \begin{cases}\operatorname{dim}_{k}\left(\mathrm{End}_{k} V_{s}\right)_{1}^{\bar{N}(P . s)} & \text { if } \quad t(s) \neq 0 \\ 0 & \text { if } t(s)=0\end{cases}
$$

But with (1.1) it is easy to see [Pu , Proposition 1.3] that

$$
\sigma_{s}\left(\operatorname{Tr}_{P}^{G}(x)\right)=\operatorname{Tr}_{1}^{\bar{N}\left(P_{s, s}\right)}\left(\sigma_{s}(x)\right) \quad \text { for } \quad x \in A^{P} \cdot s \cdot A^{P} .
$$

In this case, we may take x such that $\operatorname{Tr}_{P}^{G}(x)=1$, from which it follows that $1=\operatorname{Tr}_{1}^{\bar{N}(P, s)}\left(\sigma_{s}(x)\right)$, whence $\left(\text { End }_{k} V_{s}\right)_{1}^{N(P, s)} \neq 0$.
(3) By what has been just proved, it suffices to prove that if $A^{G} \subset Z(A)$ and if P is strictly contained in a defect group of 1_{A}, then $\rho_{P \cdot G}^{A, \prime}=0$. Indeed, we then have $A_{P}^{G} \subset J\left(A^{G}\right)$, and thus each element of A_{P}^{G} is central and nilpotent. We use the fact that t vanishes on each nilpotent element and the definition of $\rho_{P, G}^{A, t}$ to get the desired result.

Moreover, since A^{G} is central in A, it is mapped into the center of End ${ }_{k} V_{s}$ by the morphism σ_{s}; thus we have $\sigma_{s}\left(A_{P}^{G}\right)=0$ or k. Since it is not zero by assertion (2), it is k, and so $\operatorname{dim}_{k}\left(\operatorname{End}_{k} V_{s}\right)_{1}^{\tilde{N}(P s)}=1$.

Remarks. (1) The assumption of the third assertion of (1.10) can be weakened: by (1.2)(2), it is enough to assume, for example, that $A(P)^{N(P)} \subset Z(A(P))$.
(2) In $[\mathrm{Pi}-\mathrm{Pu}]$, Picaronny and Puig study G-algebras A such that A^{G} is local and $\left(\operatorname{End}_{k} V_{s}\right)_{1}^{\bar{N}(P, s)}=k$ for a source s of A. For such an algebra, we see that $\mathrm{rk} \rho_{P, G}^{A, t}=1$ or 0 according to the fact that $t(s) \neq 0$ or $t(s)=0$. If the algebra satisfies the condition (K) of [$\mathrm{Pi}-\mathrm{Pu}$], it is then clear that we are in the first case.

C1. Applications to the group algebra. For the next results, let \mathcal{O} be a complete discrete valuation ring of characteristic 0 , with maximal ideal \mathscr{P} and such that $\mathcal{O} / \mathscr{P}=k$.

Let t be a linear form on $k G$ which is a class function on G and whose kernel contains $J(k G)$. Then (see (1.5)) t is a linear combination of the characters of the irreducible $k G$-modules. Thus there exists a linear combination with coefficients in \mathcal{O} of characters of (\mathcal{O}-free) $\mathcal{O} G$-modules, say χ, such that $t=\bar{\chi}$, the reduction of $\chi \bmod \mathscr{P}$.
(1.11) Proposition. Let χ be an \mathcal{G}-linear combination of characters of $\mathcal{O} G$-modules, let b be a primitive idempotent (block) of $Z \mathcal{O} G$ with defect P in G, and with source s. Then the following assertions are equivalent:
(i) $\chi(b) /|G: P|$ is invertible in \mathcal{O}.
(ii) $\bar{\chi}(s) \neq 0$.
(iii) The form $\rho_{P, G}^{k G E \cdot \bar{x}}$ is nonzero.

Proof. First, we remark that if $b=\operatorname{Tr}_{P}^{G}\left(b^{\prime}\right)$ for $b^{\prime} \in(\mathbb{C} G)^{P} \cdot b$, we then have $\chi(b)=|G: P| \chi\left(b^{\prime}\right)$ and $\rho_{P, G}^{k G E, \bar{\chi}}(\bar{b}, \bar{b})=\bar{\chi}\left(b^{\prime}\right)$.

We prove that (i) \Leftrightarrow (iii), for we know by Lemma (1.10)(2) that (ii) \Leftrightarrow (iii). For that, it suffices to check that $\rho_{P, G}^{k G \cdot \bar{Z}} \overline{\bar{Z}}$ is nonzero if and only if it is nonzero on (\bar{b}, \bar{b}). But since $Z k G \cdot \bar{b}=(k G \cdot \bar{b})_{P}^{G}=k \cdot \bar{b} \oplus J(Z k G \cdot \bar{b})$ and since $J(Z k G \cdot \bar{b}) \subset \operatorname{rad} \rho_{P . G}^{k G \cdot \bar{B}, \bar{x}}$, we are done.

Remark. We let the reader generalize (1.11) to more general G-algebras, and look for the connections with [$\mathrm{Pi}-\mathrm{Pu}$].

We may also note that s corresponds to a point of $A(P)=k C_{G}(P)$ when $A=k G$, hence to an isomorphism class of projective indecomposable $k C_{G}(P)$-modules (or, equivalently, to an isomorphism class of simple $k C_{G}(P)$-modules $)$. Let Φ be the Brauer character of such a projective indecomposable $k C_{G}(P)$-module (Φ is the projective character associated with a "root" of b). Then we have

$$
\begin{equation*}
\chi(s)=\left\langle\operatorname{Res}_{C_{G}(P)}^{G} \chi, \Phi\right\rangle_{C_{G}(P)} \quad(\bmod \mathscr{P}) . \tag{1.12}
\end{equation*}
$$

Indeed, we have (see Subsection A) $\bar{\chi}(s)=\bar{\chi}_{P}\left(s_{P}\right)=\bar{\chi}_{P}\left(i_{P}\right)$ where i_{P} is an idempotent element of s_{P}. Since Φ is just the character of the projective $k C_{G}(P)$-module $k C_{G}(P) i_{P}$, the assertion (1.12) is now clear.

We now arrive at one of the main applications of our forms $\rho_{P . G}^{A . t}$.
(1.13) Proposition. Let χ be an \mathcal{C}-linear combination of characters of G. Whenever P is a p-subgroup of G, the rank of $\rho_{P, G}^{k, \bar{R}}$ is the number of blocks with defect group P of G and such that $\chi(b) /|G: P|$ is invertible in \mathbb{O}.

Proof. Since $k G$ is the direct product of its block algebras, it is clear by Lemma (1.10)(3) and Proposition (1.12).

As an example, we may take for χ the character of the permutation module of G modulo a Sylow p-subgroup. Let χ_{p} denote this character. Then it is easy to see that $\left(1 /|G|_{p}\right) \bar{\chi}_{p}$ is just the characteristic function of the set G_{p} of p-elements of G, and so the form $\rho_{P . G}^{k G_{.} \bar{\chi}_{n}}$ is the form denoted by $\rho_{P . G}$ in $[\mathrm{Br} 1]$.

The main advantage of this character χ_{p} is the following property:
(1.1) Whenever b is a primitive idempotent of G with defect P in G, then $\chi_{p}(b) /|G: P|$ is invertible in \mathcal{O}.

This property is known, but for the convenience of the reader, we sketch a proof. By (1.11), it suffices to prove that $\rho_{P, G}^{k G 5, \bar{z}_{p}}$ is nonzero. Since $\operatorname{Br}_{p}(\bar{b}) \neq 0$, there exists a p-regular element g_{0} of $C_{G}(P)$ such that, if $\bar{b}=\sum_{g \in G} \bar{b}(g) g$, then $\bar{b}\left(g_{0}^{-1}\right) \neq 0$. We have $\rho_{P, G}^{k G \bar{x}_{p}}\left(\bar{b}, \operatorname{Tr}_{P}^{G}\left(g_{0}\right)\right)=\chi_{\rho}\left(\bar{b} g_{0}\right)$. Thus it suffices to prove that $\bar{\chi}_{p}\left(\bar{b} g_{0}\right)=|G|_{p} \cdot \bar{b}\left(g_{0}{ }^{1}\right)$. This results from the fact that the multiplication by b preserves $\left(\mathcal{O} G_{p}\right)^{G}$, and so that

$$
\chi_{p}\left(b g_{0}\right)=\frac{1}{\left|G: C_{G}\left(g_{0}\right)\right|} \chi_{p}\left(b \cdot \operatorname{Tr}_{C_{G}\left(g_{0}\right)}^{G}\left(g_{0}\right)\right)=|G|_{p^{\prime}} \cdot b\left(g_{0}^{1}\right)
$$

As an immediate application of (1.13) and (1.14), we get (see [Br1, Theorem (1.7)]).
(1.15) Corollary. The rank of the form $\rho_{P \cdot G}^{k G_{.} \dot{x}_{g}}$ is equal to the number of blocks of G with defect P.

In Section 2 (see (2.11)), we shall use some information about Hecke algebras to get the explicit information about rk $\rho_{P . G}^{k G_{i} \cdot \bar{x}_{P}}$ which was the substance of [Ro].

C2. Applications to module theory. Let M be any $k G$-module, and let A denote the G-algebra End $_{k} M$. In this case, the language of G-algebras reduces to the following (see $[\mathrm{Gr} 1, \mathrm{Pu}]$): the module M is indecomposable if and only if A^{G} is local; it has vertex P if and only if 1_{A} has defect P in G; the summand $i \cdot M$ of $\operatorname{Res}_{P}^{G} M$ (i an idempotent of $A^{P}=\operatorname{End}_{k P} M$) is a source of M if and only if the $\left(A^{P}\right)^{\times}$-conjugacy class of i is a source of A.

Moreover, if we take for t the usual trace form on $\operatorname{End}_{k} M$, then $t(s)$ is just the value $\bmod p$ of the dimension of the module $i \cdot M$ for $i \in S$. In particular, if s is a source of A, then $t(s)$ is the dimension $(\bmod p)$ of a source module of M.

By Proposition (1.3), we then see that the following result, due to Benson and Carlson [$\mathrm{Be}-\mathrm{Ca}$] is just a particular case of (1.10).
(1.16) Proposition. Let M be an indecomposable $k G$-module with vertex P. Then the Scott module with vertex P is a summand of $\operatorname{End}_{k} M=M \otimes_{k} M^{*}$ if and only if the source of M has dimension prime to p.

Moreover, we may note that (1.10) gives the multiplicity of this Scott module. Indeed, let $\operatorname{End}_{k} V_{s}$ be the simple quotient of the algebra $\mathrm{End}_{k P} M$ corresponding to a source s of M. The group denoted by $N(P, s)$ is just the
inertial group of that source in $N_{G}(P)$, and $\bar{N}(P, s)$ acts on the simple quotient $\operatorname{End}_{k} V_{s}$. The dimension of $\left(\operatorname{End}_{k} V_{s}\right)_{1}^{\overline{N(P . s)}}$ is the multiplicity of the projective cover of the trivial module for $\bar{N}(P, s)$ as a summand of End ${ }_{k} V_{s}$, and thus (1.16) may be completed by
(1.17) If the Scott module with vertex P is a summand of $\operatorname{End}_{k} M$, then its multiplicity is equal to the multiplicity of the Scott module with vertex 1 as a summand of the $k \bar{N}(P, s)$-module $\operatorname{End}_{k} V_{s}$.

Finally, we turn our attention to the case where P is a Sylow p-subgroup of G. We state first an easy consequence of (1.3) and (1.10)
(1.18) Proposition. Let A be a G-algebra such that A^{G} is local, and assume that (A, t) is symmetric (and $t G$-stable). Then the trivial $k G$-module is a summand of A if and only if $t\left(1_{A}\right) \neq 0$.

Proof. If $t\left(1_{A}\right) \neq 0$, it is clear that $A=k 1_{A} \oplus$ ker t, and so the trivial $k G$ module is a summand of the $k G$-module A. Reciprocally, let us assume that the trivial $k G$-module (i.e., the Scott module with vertex P) is a summand of A. By $(1.10)(1)$, we see that 1_{A} has defect P. Let s be a source. By (1.3) and (1.10) it suffices to prove that if $t(s) \neq 0$, then $t\left(1_{A}\right) \neq 0$. Indeed, let $i \in s$; we have $\operatorname{Tr}_{P}^{G}(i)=\alpha 1_{A}+j$ where $\alpha \in k, j \in J\left(A^{G}\right)$. Thus $|G: P| t(i)=\alpha t\left(1_{A}\right)$, from which the desired result is clear.

The following result of Benson [Be Ca], inspired by a remark of Landrock [La] is now a particular case of (1.18) (taking $A=\operatorname{End}_{k}(M)$ and $t=\operatorname{tr}$).
(1.19) Corollary. Let M be an indecomposable $k G$-module. Then the trivial module is a summand of $M \otimes M^{*}$ if and only if $p \nmid \operatorname{dim}_{k} M$.

In $[\mathrm{Be}-\mathrm{Ca}]$, Benson and Carlson prove a deeper result, namely that whenever M and N are indecomposable $k G$-modules, the trivial $k G$-module is a summand of $M \otimes N^{*}$ if and only if $M \simeq N$ and $p \nmid \operatorname{dim}_{k} M$. It is easy to check that this is equivalent to the following statement:
(1.20) Let M be any $k G$-module, and let $\left(m_{i}\right)_{i \in!}$ be the multiplicities of the isomorphism classes of indecomposable $k G$-modules $\left(M_{i}\right)_{i \in I}$ as components of M. Then the multiplicity of the trivial $k G$-module as a summand of $M \otimes M^{*}$ equals $\sum m_{i}^{2}$, where the sum is taken over those i for which $p \nmid \operatorname{dim}_{k} M_{i}$.

The preceding result admits the following generalization, due to Puig (private communication).

Let A be any G-algebra. If b is a point of A^{G}, corresponding to the irreducible representation $\sigma_{b}: A^{G} \rightarrow$ End $_{k} V_{b}$, we call multiplicity of b and denote by $m(b)$ the dimension of V_{b} over k (see $[\mathrm{Pu}]$).
(1.21) Proposition (Puig). Let P be a Sylow p-subgroup of G. Then rk $\rho_{P, G_{i}}^{A . t}=\sum m(b)^{2}$, where the sum is taken over all points b of A^{G} such that $t(b) \neq 0$.

Proof. First, we need to quote an elementary fact from general pointed group theory. If P is any p-subgroup of G and s a point of A^{P} with defect P in P, we denote by $\mathscr{P}\left(A^{G} ;(P, s)\right)$ the set of all points of A^{G} with defect group P and source s (i.e., the set of points b of A^{G} such that P_{s} is a local pointed group which is maximal in G_{b}, see $[\mathrm{Pu}]$).
(1.22) Lemma (see [Pu, Proposition 1.3]). (1) With the preceding notation, we have

$$
\left(\operatorname{End}_{k} V_{s}\right)_{1}^{\bar{N}\left(P_{s, s}\right)} J J\left(\left(\operatorname{End}_{k} V_{s}\right)_{1}^{\bar{N}\left(P_{s, s}\right)} \simeq \prod_{b \in \mathscr{P}\left(A^{(j}:\left(P_{P s)}\right.\right.} \operatorname{End}_{k} V_{h} .\right.
$$

(2) In particular, if $\left(\mathrm{End}_{k} V_{s}\right)_{1}^{\tilde{N(P . s)}}$ is semisimple, we have

$$
\operatorname{dim}\left(\operatorname{End}_{k} V_{s}\right)_{1}^{N(P, s)}=\sum_{b \in \mathscr{P}\left(A^{(}:(P, s)\right)} m(b)^{2} .
$$

The proof of Lemma (1.22) is immediate, once one notes that the morphism σ_{s} induces a surjection from $A_{P}^{(j}$ onto (End $\left._{k} V_{s}\right)_{1}^{\bar{N}(P, s)}$ (see (1.1), for example). Indeed, it follows that A_{P}^{G} maps onto the semisimple quotient of $\left(\operatorname{End}_{k} V_{s}\right)_{1}^{\bar{N}(P, s)}$, and so the simple factors of this quotient correspond to points of A_{P}^{G}. It is then clear by the definitions that they are precisely the elements of $\mathscr{P}\left(A^{G} ;(P, s)\right)$.

Now, let us return to the proof of (1.21). Since $\bar{N}(P, s)$ is a p^{\prime}-group, the algebra $\left(\operatorname{End}_{k} V_{s}\right)^{N(P, s)}$ is semisimple and is equal to $\left(\operatorname{End}_{k} V_{s}\right)_{1}^{N(P, s)}$. Thus (1.21) follows from Lemma (1.22)(2) and from Proposition (1.8)(2), provided we prove that, whenever $b \in \mathscr{P}\left(A^{G} ;(P, s)\right)$, we have $t(s) \neq 0$ if and only if $t(b) \neq 0$.

Let e be an element of b and i be an element of s (e and i are primitive idempotents of, respectively, A^{G} and A^{P}) such that $e i=i e=i$. Since ker t contains $J\left(e A^{G} e\right)$ and $J\left(i A^{P} i\right)$, we have $t\left(e A^{G} e\right)=k t(e)=k t(b)$ and $t\left(i A^{P} i\right)=k t(i)=k t(s)$. But we also have $e A^{G} e=\operatorname{Tr}_{P}^{G}\left(e A^{P} \cdot i \cdot A^{P} e\right)$ since s is a source of b. By the assumptions on t we deduce that $t\left(e A^{G} e\right)=t\left(i A^{P} i\right)$, whence the desired result (see $[\mathrm{Pi}-\mathrm{Pu}]$).

2. On Hecke Algebras

A. Generalities

In this section, we set the notation and state or recall some more or less known results on Hecke algebras (see, e.g., [Ca] or [La]).

Let R be a commutative ring, let G be a finite group and let H be a subgroup of G. The permutation $R G$-module $\operatorname{Ind}_{H}^{G} R$ is identified with $R G \cdot \mathscr{S} H$ (as a left submodule of $R G)$. We set $E_{R}(G / H)=\operatorname{End}_{R}\left(\operatorname{Ind}_{H}^{G} R\right)$, and we consider this algebra as endowed with the natural algebra morphism $\sigma_{H}: R G \rightarrow E_{R}(G / H)$ which defines the structure of $R G$-module of $\operatorname{Ind}_{H}^{G} R$.

The Hecke algebra associated with the triple (G, R, H) is by definition the algebra of $R G$-endomorphisms of $\operatorname{Ind}_{H}^{G} R$, i.e., the set of fixed points of G acting on $E_{R}(G / H)$ by conjugation through σ_{H} :

$$
\mathscr{H}_{R}(G, H)=E_{R}(G / H)^{G}
$$

The following observations are known (see [Ca, La]) and easy to check: Let $\alpha_{H}: R G \rightarrow E_{R}(G / H)$ be the R-linear map defined by

$$
\alpha_{H}(x)(g \mathscr{P} H)=\left\{\begin{array}{ll}
x \mathscr{F} H & \text { if } g \in H \\
0 & \text { if } g \notin H
\end{array} \text { for all } x \in R G .\right.
$$

Wc have
($\alpha 1$) $h \alpha_{H}(x) h^{\prime-1}=\alpha_{H}(h x)$ for $h, h^{\prime} \in H$, and α_{H} is a morphism of $H \times H$-modules.
($\alpha 2$) If $x \in G$ and $h \in{ }^{x} H$, we have $\alpha_{H}(x)=\alpha_{H}(h x)$, whence

$$
\alpha_{H}(x) \in E_{R}(G / H)^{H \cap `} \cap^{\prime}
$$

Let us put $a_{H}(x)=\operatorname{Tr}_{H \cap{ }^{\prime} H}^{G}\left(\alpha_{H}(x)\right)$ for all $x \in G$. The following properties of the family $\left(a_{H}(x)\right)$ are standard (see [Ca, La]):
(2.1) (1) $a_{H}(x)=a_{H}(y)$ if and only if $H x H=H y H$.
(2) The set of distinct $a_{H}(x)$'s $(x \in G)$ is a basis of $\mathscr{H}_{R}(G, H)$ over R.
(3) The endomorphism $a_{H}(x)$ of the module $R G \cdot \mathscr{S} H$ sends $\mathscr{S} H$ onto $\mathscr{S}(H x H)$.

Proof of (3). We have $a_{H}(x)(\mathscr{S} H)=\operatorname{Tr}_{H \cap{ }^{\prime} H}^{G}\left(\alpha_{H}(x)\right)(\mathscr{S} H)=$ $\operatorname{Tr}_{H \cap{ }^{\prime}{ }_{H}}^{H}\left(\alpha_{H}(x)\right)(\mathscr{P} H)=\operatorname{Tr}_{H \cap{ }^{\prime}{ }_{H}}^{H}(x \mathscr{P} H)=\mathscr{S}(H x H)$.

The ordinary trace map $\operatorname{tr}: E_{R}(G / H) \rightarrow R$ induces on $\mathscr{H}_{R}(G, H)$ the linear map defined by

$$
\operatorname{tr} a_{H}(x)= \begin{cases}|G: H| & \text { if } \quad x \in H \\ 0 & \text { if } \quad x \notin H\end{cases}
$$

from which it is easy to deduce

$$
\operatorname{tr}\left(a_{H}(x) a_{H}(y)\right)=\left\{\begin{array}{lll}
\left|G: H \cap{ }^{\star} H\right| & \text { if } \quad H x H=H y{ }^{1} H \tag{2.2}\\
0 & \text { if } H x H \neq H y{ }^{1} H
\end{array}\right.
$$

We introduce the following notation:
For $a=\sum_{g \in G} a(g) g \in R G$, we set $a^{0}=\sum_{g \in G} a\left(g^{-1}\right) g$. Moreover, we denote by $N_{R G}(\mathscr{P} H)$ the set of all a in $R G$ such that $\mathscr{S} H a^{0} \in R G \mathscr{P} H$. It is clear that $N_{R G}(\mathscr{P} H)$ is a subalgebra of $R G$.

The following definition can also be found in [La, p. 178].

Definition. We denote by $\omega_{H}: N_{R G}(\mathscr{S} H) \rightarrow \mathscr{H}_{R}(G, H)$ the algebra morphism defined by

$$
\omega_{H}(a)(g \mathscr{S} H)=g \mathscr{S} H a^{0} \quad \text { for } \quad a \in N_{R G}(\mathscr{P} H), g \in G .
$$

We give the first properties of the morphism ω_{H} in an omnibus proposition.
(2.3) Proposition. (1) The morphism $\omega_{H}: N_{R G}(\mathscr{S} H) \rightarrow \mathscr{H}_{R}(G, H)$ is onto, and its kernel is the left annihilator of $\mathscr{P} H$ in $R G$ [La].
(2) We have $R N_{G}(H) \subset N_{R G}(\mathscr{P} H)$, and for $n \in N_{G}(H)$, we have $\omega_{H}(n)=a_{H}\left(n^{-1}\right)$.
(3) We have $(R G)^{H} \subset N_{R G}(\mathscr{P} H)$, and for $x \in G$ we have

$$
\omega_{H}\left(\operatorname{Tr}_{C H(x)}^{H}(x)\right)=\left|H \cap{ }^{x} H: C_{H}(x)\right| a_{H}\left(x^{-1}\right) .
$$

In particular, whenever $a \in R^{H}$, we have

$$
\omega_{H}(a)=\operatorname{Tr}_{H}^{G}\left(\alpha_{H}\left(a^{0}\right)\right)
$$

(4) Whenever $z \in Z R G$, we have $\omega_{H}(z)=\sigma_{H}\left(z^{0}\right)$, and if C is a conjugacy class of G, we have

$$
\omega_{H}\left(\mathscr{S} C^{0}\right)=\sum_{x}|C \cap x H| a_{H}(x),
$$

where x runs over a set of representatives of (H, H)-double cosets of G.
Proof. (1) To prove the surjectivity, it suffices by (2.1)(2) to exhibit, for all $x \in G$, an element of $N_{R G}(\mathscr{P} H)$ whose image is $a_{H}(x)$. Choose $x \in G$, and choose $\left\{t_{1}, \ldots, t_{n}\right\}$ a left transversal to $H \cap{ }^{x} H$ in H, and $\left\{u_{1}, \ldots, u_{n}\right\}$ a right transversal to $H \cap{ }^{x} H$ in H. We then set $X=\left\{t_{i} x \quad{ }^{1} u_{i} ; 1 \leqslant i \leqslant n\right\}$. It is not difficult to check that $\mathscr{P} H \cdot \mathscr{S} X=\mathscr{P} X \cdot \mathscr{P} H=\mathscr{P}\left(H x^{-1} H\right)$, whence that
$\mathscr{S} X \in N_{R G}(\mathscr{S} H)$ (in fact $\mathscr{S} X$ commutes with $\left.\mathscr{S} H\right)$ and $\omega_{H}(\mathscr{S} X)=a_{H}(x)$ by (2.1)(3), as required.

Since $\omega_{H}(a)$ is a G-endomorphism of $R G \cdot \mathscr{S} H$, it is defined by its action on $\mathscr{S} H$. Then it is clear that $\operatorname{ker} \omega_{H}=\{a \in R G \mid a \cdot \mathscr{S} H=0\}$.
(2) Trivial. Note that ω_{H} induces an injective morphism from $R \bar{N}_{G}(H)^{0}$ (where $\bar{N}_{G}(H)^{0}$ denotes the opposite group to $\left.N_{G}(H) / H\right)$ into $\mathscr{H}_{R}(G, H)$.
(3) We have $\omega_{H}\left(\operatorname{Tr}_{C_{H}(x)}^{H}(x)\right) \mathscr{S} H=\mathscr{S} H \cdot \operatorname{Tr}_{C_{H}(x)}^{H}\left(x^{-1}\right)=\operatorname{Tr}_{C_{H}(x)}^{H}\left(\mathscr{T} H x^{-1}\right)$ $=\left|H \cap{ }^{x} H: C_{H}(x)\right| \operatorname{Tr}_{H \cap \cap^{\prime} H}^{H}\left(\mathscr{S} H x^{-1}\right)=\left|H \cap{ }^{\wedge} H: C_{H}(x)\right| \mathscr{S}\left(H x^{-1} H\right)$.

Since $a_{H}(x)=\operatorname{Tr}_{H \cap{ }^{G} H}^{G}\left(\alpha_{H}(x)\right)$, we see that

$$
\begin{aligned}
\omega_{H}\left(\operatorname{Tr}_{C_{H}(x)}^{I I}\left(x{ }^{1}\right)\right) & =\left|H \cap{ }^{x} H: C_{H}(x)\right| \operatorname{Tr}_{H \cap{ }^{\prime} H}^{G}\left(\alpha_{H}(x)\right) \\
& =\operatorname{Tr}_{C_{H /}(x)}^{G}\left(\alpha_{H}(x)\right)=\operatorname{Tr}_{H}^{G}\left(\operatorname{Tr}_{C_{H}(x)}^{H} \alpha_{H}(x)\right) \\
& =\operatorname{Tr}_{H}^{G}\left(\alpha_{H}\left(\operatorname{Tr}_{C_{H /(x)}}^{H}(x)\right), \quad\right. \text { which proves (3). }
\end{aligned}
$$

(4) It is clear from the definition that $\omega_{H}(z)=\sigma_{H}\left(z^{0}\right)$. To find the coefficient of $\omega_{H}\left(\mathscr{P} C^{0}\right)$ on $a_{H}(x)$ we note that we have (applying to $\mathscr{S} H$) $\mathscr{S} H \cdot \mathscr{S} C=\sum \lambda(C, x) \mathscr{P}(H x H)$ and $\lambda(C, x)$ is the coefficient of x in the element $\mathscr{S H} \cdot \mathscr{S} C$ (expressed as a combination of the natural basis elements of $R G$). Thus $\lambda(C, x)=|C \cap x H|$, as required.

B. In characteristic p

From now on, we assume that $R=k$, a field with characteristic $p>0$, and that H is a p-group denoted by P.

It results from (2.3)(3) that
(2.4) Whenever C is a P-conjugacy class of G, then $\omega_{P}(\mathscr{P} C)=0$ unless there exists $x \in G$ with $C_{P}(x)=P \cap{ }^{x} P$.

This remark will be crucial in the proof we shall give (see (26)) of the fact that defect groups are Sylow intersections (a result due to Green, and improved in [Ro]). First, let us note that no idempotent is mapped to zero by σ_{P} or ω_{P}, because of the following statement.
(2.5) Proposition. (1) $\operatorname{ker} \sigma_{P} \subset J k G$.
(2) $\operatorname{ker} \omega_{P} \cap(k G)^{P} \subset J\left((k G)^{P}\right)$.

Proof. (1) If V is any $k G$-module, then, $\operatorname{Hom}_{k G}\left(\operatorname{Ind}_{P}^{G} k, V\right) \simeq V^{\mu}$ is not zero. Thus every irreducible $k G$-module is an image of $\operatorname{Ind}_{P}^{G} k$, which proves (1).
(2) It suffices to check that $\operatorname{ker} \omega_{P} \cap(k G)^{P}$ contains no idempotent. But if i is an idempotent of $(k G)^{P}$, then $i k G$ is a projective (whence free) $k P$-module, and $\mathscr{S} P i k G$ is then not zero: its dimension is the $k P$-rank of $i k G$. Thus we have $\mathscr{S} P i \neq 0$, which shows (by (2.3)(1) that $i \notin \operatorname{ker} \omega_{P}$.

Using (2.4) and (2.5)(1), we can now prove the following result (Green, Robinson).
(2.6) Corollary. Let D be a defect group of a p-block of G, and let P be a Sylow p-subgroup containing D. There exists a p-regular element x of G with the following two properties:
(a) $D=P \cap{ }^{x} P$.
(b) D is a Sylow p-subgroup of $C_{G}(x)$.

Proof. As usual (see [Br1], for example) we reduce to the case where D is normal in G. Let $b=\sum_{c} b(C) \cdot \mathscr{P} C$ (where C runs over the set of p regular conjugacy classes of G) be a primitive idempotent of $Z k G$ with defect group D. The image of b through the morphism $\sigma_{P}: k G \rightarrow E_{k}(G / P)$ is not zero by $(2.5)(1)$, and so there exists C such that $b(C) \sigma_{P}(b \mathscr{P} C) \neq 0$. Standard arguments give now that C has defect D.

Moreover, since $\sigma_{P}(\mathscr{S} C) \neq 0$ and since $\sigma_{P}(\mathscr{T} C)=\omega_{P}\left(\mathscr{S} C^{0}\right)$ (by (2.3)(4)), it follows from (2.4) that there exists $x \in C$ with $C_{p}(x)=P \cap^{\wedge} P$, hence $D=P \cap^{x} P$, as required.

We can also notice the following immediate consequence of the preceding formalism.
(2.7) Corollary. Suppose $P \triangleleft G$. Then the morphism ω_{P} induces a surjective algehra morphism from $(k G)^{P}$ onto $k \bar{C}_{G}(P)^{0} \quad$ (where $\left.\bar{C}_{G}(P)=C_{G}(P) / Z(P)\right)$. In particular, $(k G)^{P}$ is local if and only if $C_{G}(P) \subset P$.

Proof. By (2.3)(3), it is immediate that

$$
\omega_{p}\left(\operatorname{Tr}_{C_{p(x)}}^{\sigma}(x)\right)=\left\{\begin{array}{lll}
a_{p}\left(x^{1}\right) & \text { if } & x \in C_{G}(P) \\
0 & \text { if } & x \notin C_{G}(P) .
\end{array}\right.
$$

Now (2.7) is clear. The last assertion follows from (2.5)(2).
Let us end this section with an interesting property of the morphism ω.
We say that the subgroup H of G controls the G-fusion of its p-subgroups if whenever P is a p-subgroup of H and g is an element of G such that $P^{g} \subset H$, then $g \in C_{6}(P) H$.
(2.7) Proposition. Let k be a field of characteristic p, and let H be a subgroup of G. Then the image of $(k G)^{H}$ under ω_{H} is all of $\mathscr{H}_{k}(G, H)$ if and only if H controls the G-fusion of its p-subgroups.

Proof. By (2.1)(2) and (2.3)(3) we see that $\omega\left((k G)^{H}\right)$ is all of $\mathscr{H}_{k}(G, H)$ if and only if
(F1) $(\forall g \in G)\left(\exists g^{\prime} \in H g H\right)$ such that $p+\left|H \cap{ }^{g^{\prime}} H: C_{H}\left(g^{\prime}\right)\right|$. But if $g^{\prime}=h^{\prime} g h$ for $h, h^{\prime} \in H$, we have

$$
\left|H \cap{ }^{g^{\prime}} H: C_{H}\left(g^{\prime}\right)\right|=\left|H \cap{ }^{g} H: C_{H}\left(g h h^{\prime}\right)\right|,
$$

and $(F 1)$ is equivalent to
(F2) $(\forall g \in C)(\exists h \in H)$ such that $p+\left|H \cap{ }^{2} H: C_{H}\left(g h^{1}\right)\right|$. We claim that (F 2) is equivalent to
(F3) $\quad(\forall h \in G)\left(\forall P \in \operatorname{Syl}_{p}\left(H \cap{ }^{8} H\right)\right)(\exists h \in H)$ such that $P \subset C_{H}\left(g h{ }^{1}\right)$.
Indeed, it is clear that (F3) \Rightarrow (F2). Let us prove that (F2) \Rightarrow (F3). Given g, and $P \in \operatorname{Syl}_{p}\left(H \cap{ }^{8} H\right.$), assuming (F2) we see that there exists $h \in H$ such that $C_{H}\left(g h^{-1}\right)$ contains $h_{1} P h_{1}^{-1}$ where $h_{1} \in H \cap{ }^{g} H$. If $h_{1}=g h_{2} g{ }^{-1}$ with $h_{2} \in H$, then

$$
P \subset h_{1}^{-1} C_{H}\left(g h^{-1}\right) h_{1}=C_{H}\left(g h_{2}^{-1} h^{1} h_{1}\right), \quad \text { which proves }(\mathrm{F} 3) \text {. }
$$

Now we prove that (F3) holds if and only if H controls the G-fusion of its p-subgroups. Let us assume that (F3) holds, and let P and P^{g} be contained in H for $g \in G$. Then $P \subset H \cap{ }^{8} H$; let Q be a Sylow p-subgroup of $H \cap^{g} H$ containing P. By (F3), there exists $h \in H$ such that $Q \subset C_{H}\left(g h{ }^{1}\right)$. Let us set $z=g h^{1}$. Then $z \in C_{G}(Q)$, hence $z \subset C_{G}(P)$ and $g=z h$, as required. The converse is as easy.

Let us give an amusing application of Proposition (2.7).
Let H be a subgroup of G which controls the G-fusion of its p-subgroups, so such that

$$
\omega_{H}: \quad(k G)^{H} \rightarrow \mathscr{H}_{k}(G, H)=\operatorname{End}_{k G}\left(\operatorname{Ind}_{H}^{G} k\right)
$$

is onto. By classical facts about lifting idempotents, there exists a decomposition of 1 into a sum of orthogonal idempotents of $(k G)^{H}$, say $1=\sum_{c} e$, such that $\sum \omega_{H}(e)$ is a decomposition of 1 into a sum of orthogonal primitive idempotents in $\mathscr{H}_{k}(G, H)$, i.e., such that

$$
\operatorname{Ind}_{H}^{G} k=k G \cdot \mathscr{S} H=\oplus k G \cdot \mathscr{S} H \cdot e^{0}
$$

is a decomposition into indecomposable $k G$-modules. It is easy to recognize the Scott module associated with H in this decomposition: it corresponds to the idempotent e_{0} such that $e_{0} \mathscr{S} G \neq 0$.

We can now note that the Loewy series of $k H$ is somewhat reflected in each of the projective modules $k G e^{0}$: we have

$$
k G \cdot e^{0} \supset k G \cdot J(k H) e^{0} \supset k G \cdot J^{2}(k H) e^{0} \supset \cdots
$$

Suppose, for example, that $H=\langle x\rangle$ is a cyclic p-group with order p^{m}, with no G-fusion on $\langle x\rangle$. Then each of the indecomposable summands of $\operatorname{Ind}_{I I}^{G} k$ can be extended p^{m} times by itself to build up a projective $k G$ module, since

$$
k G^{0} \supset k G e^{0}(1-x) \supset \cdots \supset k G e^{0}(1-x)^{i} \supset \cdots \supset\{0\},
$$

with $k G^{0}(1-x)^{i} / k G e^{0}(1-x)^{i+1} \simeq k G e^{0} \mathscr{S} H$.

C. Application to Bilinear Forms

Now, we come back to the form $\rho_{P, G}^{k G_{i} \chi_{p}}$ (see Sect. 1 ; in particular (1.15)). We shall see that the preceding formalism provides the explicit information on that form which was given in [Ro]. The following result is due to Scott (see also [Ca]).
(2.8) Let S be a Sylow p-subgroup of G, and P be a p-subgroup of G. Then the algebra $E_{k}(G / S)_{P}^{G}$ has for basis the set of distinct $a_{S}(x)$ such that $S \cap{ }^{x} S \leqslant{ }_{G} P$.

Indeed, 2.8 follows from explicit formulae in [Grl], since $E_{k}(G / S)$ is a permutation module under G-conjugation.

From now on, we assume that P is a normal p-subgroup of G.
Let us say that the element $a_{S}(x)$ has defect group P if $S \cap{ }^{x} S=P$. The following fact is clear by (2.8) and (2.2).

$$
\begin{equation*}
\text { If } a_{S}(x) \text { and } a_{S}(Y) \text { have defect } P \text {, then } \tag{2.9}
\end{equation*}
$$

$$
\rho_{P, G}^{\varepsilon_{k}(G / S), \operatorname{tr}}\left(a_{S}(x), a_{S}\left(y^{1}\right)= \begin{cases}1 & \text { if } a_{S}(x)=a_{S}(y) \\ 0 & \text { if not. }\end{cases}\right.
$$

Let us say that a conjugacy class C of G with defect P is P-distinguished if there exists an element $x \in C$ such that $S \cap^{x} S=P$.

By (2.4) and (2.3)(4), we see that
(2.10) Whenever C is a conjugacy class of G with defect group P such that $\sigma_{S}(\mathscr{P} C) \neq 0$, then C is P-distinguished.

Let us recall moreover the following two facts.
(1) The set of all $\mathscr{S} C$'s, where C runs over the set of p-regular conjugacy classes, generates $Z k G$ modulo its radical.
(2) Whenever C is a G-conjugacy class with defect strictly contained in P, we have $\mathscr{T} C \in \operatorname{rad} \rho_{P \cdot G}^{k G \cdot \overline{\mathcal{F}}_{P}}$.

By (1) and (2) above, and by (2.10), it is now clear that
(2.11) The rank of $\rho_{P . G}^{k G, \bar{\delta}_{P}}$ is equal to the rank of the matrix $\left(\rho_{P \cdot}^{k G \bar{x}_{P}}\left(\mathscr{S} C^{\prime}, \mathscr{G} C^{0}\right)\right.$), where C and C^{\prime} run over the set of p-regular P-distinguished conjugacy classes of G.

But, by definition of $\rho_{P . G}^{k G . \dot{x}_{V}}$, we have

Let M_{S} denote the matrix of the system of $\sigma_{S}(\mathscr{F} C)$'s, where C runs over the set of p-regular P-distinguished classes of G, expressed on the $a_{S}(x)$'s. It is now clear, by (2.9) and (2.11), that
(2.12) The rank of $\rho_{P, G}^{k G, x_{r}}$ is equal to the rank of the matrix $M_{S}{ }^{\prime} M_{S}$.

Since M_{S} (see (2.3)(4)) is precisely the matrix denoted by N in [Ro], a fact first noted by Landrock, we see that (2.12), combined with (1.15), is the main result of [Ro].

Acknowledgments

The authors wish to thank L. Puig for suggesting that it would be helpful to work with points of A^{P}, and also for other useful remarks. Thanks are also due to B. Külshammer for a helpful discussion.

The second author wishes to thank the following institutions for their kind support at various times during the preparation of this work:

NSF, Université de Paris VII, École Normale Supérieure, Montrouge.

References

[Be-Ca] D. J. Benson and J. F. Carlson, Nilpotent elements in the Green Ring, J. Algebra 104 (1986), 329-350.
[Brl] M. Brout, On a Theorem of G. Robinson, J. London Math. Soc. 29 (1984), 425-434.
[Br 2] M. Broué, On Scott modules an p-permutation modules: An approach through the Brauer morphism, Proc. Amer. Math. Soc. 93 (1985), 401-408.
[Ca] M. Cabanes, Brauer morphism between modular Hecke algebras, preprint. 1985, submitted.
[Grl] J. A. Green, Some remarks in defect groups, Math. Z. 107 (1968), 133-150.
[Gr2] J. A. Green, Multiplicities, Scott modules and lower defect groups, J. London Math. Soc. 28 (1983), 282-292.
[La] P. Landrock, "Finite Group Algebras and Their Modules," London Math. Soc. (L.N.), Vol. 84, Cambridge Univ. Press, London, 1983.
[Pi-Pu] C. Picaronny et L. Puig. Quelques remarques sur un thème de Knörr, J. Algebra, in press.
[Pu] L. Puig, Pointed groups and construction of characters, Math. Z. 176 (1981), 265-292.
[Ro] G. Robinson, The number of blocks with a given defect group, J. Algehra 84 (1983), 493-502.

[^0]: * Present address: Département de Mathématiques et Informatique, École Normale Supérieure, 45 rue d'Ulm 75005 Paris, France.

