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Abstract

In this paper, we explore the adaptation of policy iteration techniques to compute greatest fixpoint ap-
proximations, in order to find sufficient conditions for program termination. Restricting ourselves to affine
programs and the abstract domain of template constraint matrices, we show that the abstract greatest
fixpoint can be computed exactly using linear programming, and that strategies are related to the tem-
plate constraint matrix used. We also present a first result on the relationships between this approach and
methods which use ranking functions.
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1 Introduction

Abstract interpretation [5] is a powerful framework to develop program analyses.

Most analyses require the computation of approximation of fixpoints on an ab-

stract domain, either least fixpoints (lfp) or greatest fixpoints (gfp). The traditional

method to compute approximations of fixpoints uses widening and narrowing op-

erators. Widening operators are designed to get beyond the fixpoint, which makes

them useful to compute overapproximations of lfp, or (dually) underapproximations

of gfp [6]. However, used on state abstractions, these approximations can only be

used to check safety properties. Liveness properties (and especially termination)

can be proved by computing underapproximations of lfp or overapproximations of

gfp.

More recently, other approaches have been developed to compute abstract fix-

points: abstract acceleration [12] and policy iteration [3,9]. Both methods are

designed in order to compute the exact abstract fixpoint for specific transfer func-

tions. They have been used to compute reachability analyses (which involves the

computation of an lfp), and since the abstract domains used were overapproximating
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domains, they were applied to prove safety properties, providing a greater precision

than widenings. Using these approaches to compute greatest fixpoints would enable

the discovery of sufficient conditions for program termination, and as a particular

case proving termination for all inputs.

This paper describes the use of policy iteration techniques to discover sufficient

termination conditions. As a first work in this direction, we restrict ourselves to

affine programs and to the template constraint matrices abstract domain [14], a

sub-domain of polyhedra. Policy iteration techniques were already used in this

framework to approximate the set of reachable states [10], hence we need to adapt

these results to greatest fixpoint computations.

We first present the relationships between approximating fixpoints and proving

termination. Then we give an overview of the policy iteration approach. In section 4,

we explore the extension of these approaches to the computation of an abstract

backward semantics designed to prove termination properties. Finally we give a first

result on the relationships between our approach and ranking function synthesis,

showing that programs admitting a linear ranking function can be treated with our

approach.

2 Program termination and fixpoint approximation

In this section, we recall a few results on the relationships between termination and

fixpoint approximation. A program P is defined as a transition system (Σ, τ), Σ

being an (infinite) set of states and τ ⊆ Σ × Σ a transition relation. Furthermore,

we consider S0 as the set of initial states.

The trace semantics of a program P is the set of finite and infinite execution

traces of P . The program is said to (definitely) terminate from S0 if any execution

trace starting from s0 ∈ S0 is finite. Broadly, three approaches can be used to show

this property.

Variant abstraction analysis. Many methods use a kind of variant abstraction anal-

ysis [7], where one finds a mapping r from the set of reachable states (from S0) to a

well-founded set (O,<), such that for any transition 〈σ, σ′〉 ∈ τ we have r(σ′) < r(σ).

Once the class of variant functions (or the variant abstraction) is fixed, the analysis

can be expressed as a safety analysis.

Least fixpoint underapproximation. An alternative approach is to prove that S0 is

included in the set of states which could only terminate, that is:

S0 ⊆ lfpλX.p̃re(X)(1)

where p̃re(X) = {y ∈ Σ | ∀x ∈ Σ, 〈y, x〉 ∈ τ ⇒ x ∈ X}.
This property requires to underapproximate the least fixpoint. As noted in [7],

underapproximations are not much used in practice (most abstract domains, in

particular numerical abstract domains, are designed to handle overapproximations).

Furthermore, one cannot use a the “classical” fixpoint induction techniques (with

widenings) to underapproximate least fixpoint.

Greatest fixpoint overapproximation. Similarly, we can show that S0 is disjoint from
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the set of states that are potentially non-terminating, i.e.:

S0 ∩ gfpλX.pre(X) = ∅(2)

where pre(X) = {y ∈ Σ | ∃x ∈ X, 〈y, x〉 ∈ τ}.
Proving this property can be done by overapproximating the greatest fixpoint.

Compared to the (formally equivalent) previous approach, using overapproximations

has the advantage of being compatible with most abstract domains. However, we

still cannot use widenings to approximate the fixpoint.

The three approaches are related: with a ranking function, one can prove for-

mulas (1) and (2). Reciprocally, proving formula (1) or (2) proves that a ranking

function exists. In fact, some lower fixpoint induction methods (e.g. in [4, Sect.

11]) directly use some kind of ranking function. However, if the approximation is

proved with other methods, it may be difficult to make the ranking function ex-

plicit. Hence, techniques which compute directly a fixpoint appear as interesting

alternatives to infer termination properties.

3 Precise fixpoint approximation with policy iterations

The use of policy iterations (also called strategy iterations) to compute the least

fixpoint of a self-map f in static analysis was first introduced in [3]. The principle

of this techniques is to describe f as the minimum (or the maximum) of a set S of

simpler maps. A strategy (or a policy) is a selection of an element of S. The least

fixpoint of this element is computed. If this fixpoint is a fixpoint of f , the algorithm

terminates, otherwise a new strategy is selected during the strategy improvement

step, and the algorithm iterates.

Two different approaches have been proposed to compute least fixpoints: the first

one [3,8,1] uses min-strategy iteration, approaches the least fixpoint from above, and

does not guarantee to return it in the general case 2 . The second one [9,10,11] uses

max-strategy iteration, approaches the least fixpoint from below, and guarantees to

return the least (abstract) fixpoint.

Since our goal is to overapproximate greatest fixpoints, it seems more natural to

approach them from above, hence to use a dual version of the second approach. In

this paper, we mainly follow the method presented in [10] and restrict ourselves to

affine programs and template constraint matrix domains. Before summarizing the

method, we introduce a few notations.

3.1 Notations

In the following, X = {x1, . . . , xk} denotes a tuple of variables. An assignment ρ

on X is defined as a mapping from X to R = R ∪ {−∞,+∞}. When there is no

ambiguity, ρ may be represented as an element of R
k
. The order relation ≤ (and its

strict version <) on R is extended component-wise to R
k
. We denote by ∨ and ∧

2 However, it does return the least fixpoint in the case of nonexpansive self-maps.
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the minimum and maximum operators on R (and their component-wise extension

to R
k
). Hence R

k
has a complete lattice structure.

If ρ is an assignment on X, we denote by [ρ]f (resp. [ρ]∞, [ρ]−∞) the set of x in

X such that ρ(x) is finite (resp. equal to +∞, −∞).

If m is a function from X → R to R, dom(m) represents the set of assignments ρ

such that m(ρ) is finite, and fdom(m) = dom(m)∩R
X . The function m is said to be

order-convex (resp. order-concave) iff fdom(m) is convex 3 and for all comparable

ρ, ρ′ in fdom(m) and λ ∈ [0, 1], λm(ρ) + (1 − λ)m(ρ′) ≥ m(λρ + (1 − λ)ρ′) (resp.

λm(ρ) + (1− λ)m(ρ′) ≤ m(λρ+ (1− λ)ρ′).
Let D be a monotonic function from X → R to X → R. A prefixpoint (resp.

postfixpoint) of D is an assignment ρ such that D(ρ) ≥ ρ (resp. D(ρ) ≤ ρ). If ρ

is a prefixpoint (resp. postfixpoint) of D, we denote by lfp≥ρD (resp. gfp≤ρD) the

least (resp. greatest) fixpoint of D greater than (resp. lower than) ρ.

Finally, an equation system E on X is a k-tuple of equations (x1 := e1, . . . , xk :=

ek) where ei are expressions using the variables X. If �·� represents the semantics

of expressions (such that �ei� ∈ (X → R) → R), the semantics of E is defined as:

�E� : (X → R) → (X → R)

�E� ρ : xi �→ �ei� ρ

A solution (resp. postsolution, presolution) of E is a fixpoint (resp. postfixpoint,

prefixpoint) of �E�.

3.2 Computing the least solution of a system of equations

We consider an equation system E on X where the expressions are defined by the

grammar:

e ::= a | xi | e+ e | b · e | e ∨ e | e ∧ e

where a ∈ R, b ∈ R
>0, ∨ is the max operator and ∧ is the min operator. The

semantics of e is straightforward:

�a� ρ = a �e1 + e2� ρ = �e1� ρ+ �e2� ρ �b · e� ρ = b �e� ρ

�xi� ρ = ρ(xi) �e1 ∨ e2� ρ = �e1� ρ ∨ �e2� ρ �e1 ∧ e2� ρ = �e1� ρ ∧ �e2� ρ

The least solution of E can be computed using max strategy iteration [10]:

• a max-strategy π is a function mapping every expression e1∨e2 to a subexpression

e1 or e2; applying π to E gives a system of conjunctive equations (without the ∨
operator) Eπ;

• the least solution μπ greater than a current presolution of Eπ is computed by

solving two linear programs extracted from the system in linear time;

• the computation terminates if μπ is a solution E , otherwise a new strategy π′ is
selected (such that �E� (μπ) = �Eπ′� (μπ)), and the computation loops.

3 For all ρ, ρ′ in fdom(m) and λ ∈ [0, 1], λρ+ (1− λ)ρ ∈ fdom(m).
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In [10] and [11], the notions of consistent presolution and feasible presolution are

defined to ensure the validity and the termination of this approach. In section 4,

the dual notions will be used to compute greatest fixpoints.

3.3 Systems of rational equations with linear programs

Equations with linear programs (LPs) are defined by adding LPA,b(e, . . . , e) in the

grammar of expressions, with A ∈ R
m×n and b ∈ R

n. The semantics of LPA,b is

defined as:

�LPA,b(e1, . . . , em)� ρ =
∨

{bTx | x ∈ R
n, Ax ≤ (�e1� ρ, . . . , �em� ρ)}

Rational equations with linear programs are used to express the abstract semantics

of affine programs in the template constraint matrix domain [14].

In [10], Gawlitza and Seidl show that LP subexpressions can be handled during

the resolution of the system of conjunctive equations by adding new variables and

inequations. In [11], this result is generalized to order-concave equations, using the

fact that the operator ∧ and LP expressions are order-concave. Since the backward

semantics of programs also use LP expressions, this result cannot be applied directly

to compute overapproximations of greatest fixpoints: one would need order-convex

expressions.

4 Computation of the backward semantics

4.1 Backward semantics of the program

We consider affine programs as a triple (N,E, st) where N is a finite set of program

points, E ⊆ N × Stmt×N is a finite set of transitions labeled by statements, and

st is the start program point. A statement is a pair (g; a) where g is an affine guard

Ax+ b ≥ 0 on the set of program (real) variables x = (x1, . . . , xn) and a is an affine

assignment x := Ax+ b.

The backward collecting semantics of a statement s = (Ax ≤ b;x := Cx+ d) is

defined as:

�s� : ℘ (Rn) → ℘ (Rn)

�s� (X) = {x ∈ R
n | Ax+ b ≥ 0 ∧ Cx+ d ∈ X}

The backward transformer pre on N → ℘ (Rn) is defined as pre(X)(u) =⋃
(u,s,v)∈E �s� (v). Our goal is to overapproximate B = gfp pre. We use the frame-

work of abstract interpretation, and our approach is closely related to the abstract

domain used (we want to compute exactly the abstract fixpoint).

The abstract domain (first introduced in [14]) is relative to a template constraint

matrix T ∈ R
m×n. Each row of T represents a linear combination of program

variables. The matrix T defines an abstraction from R
n to TT = R

m
with the

Galois connection R
n −−−−→←−−−−

αT

γT TT :

γT (ρ) = {x ∈ R
n | Tx ≤ ρ} αT (X) = ∨{ρ|γT (ρ) ⊆ X}
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The functions γT and αT are extended component-wise to N → R
n and N → TT .

An element of γT (R
m
) is said to be canonical. The best abstract backward semantics

of a statement s in this domain is defined as �s�� = αT ◦ �s� ◦ γT .

Lemma 4.1 Let s = (Ax+ b ≥ 0;x := Cx+d) be a statement, and T a non-empty

template matrix. Let ρ be an abstract value on the domain TT .
Let A′, b′ and ρ′ be defined as:

A′ =

⎛
⎝−A

TC

⎞
⎠ b′ =

⎛
⎝−b

Td

⎞
⎠ ρ′ =

⎛
⎝ 0

ρ

⎞
⎠(3)

Then �s�� satisfies:

�s��i (e) =

⎧⎨
⎩

−∞ if {x |A′x+ b′ − ρ′ ≤ 0} = ∅∧{(ρ′ − b′)Tλ |λ ≥ 0 ∧A′Tλ = Ti} otherwise

Remark 4.2 If {x |A′x + b′ − ρ′ ≤ 0} �= ∅ and {λ |λ ≥ 0 ∧ A′Tλ = Ti} = ∅, then
�s��i (ρ) = ∞. Furthermore, {x |A′x+ b′ − ρ′ ≤ 0} �= ∅ implies min{(ρ′ − b′)Tλ |λ ≥
0 ∧A′Tλ = Ti} > −∞ (but the converse is not true).

Example 4.3 With only one variable x1, s = (0 ≥ 0;x1 = 0) and

T =

⎛
⎝ 1

−1

⎞
⎠, we have

∧{(ρ′ − b′)Tλ |λ ≥ 0 ∧ A′Tλ = Ti} = ∞ for all i and all

ρ = (ρ1, ρ2). However, if ρ1 < 0 or ρ2 < 0, then {x |A′x + b′ − ρ′ ≤ 0} = ∅. Thus,

by defining (ρ′1, ρ′2) = �s�� (ρ1, ρ2), we have ρ′1 = ρ′2 = −∞ if ρ1 < 0 or ρ2 < 0, and

ρ′1 = ρ′2 = ∞ otherwise.

The abstract domain for a program (N,E, st) is N → TT 4 . With X ∈ N → TT ,
the abstract backward transformer pre� = αT ◦ pre ◦ γT is given by:

(pre�(X)(u))i =
∨

(u,s,v)∈E
�s��i (X(v))

Lemma 4.4 The abstract semantics gfp pre� satisfies γT (gfp pre
�) ⊇ B.

To compute the greatest fixpoint of pre�, we describe the function as a system of

semantic equations of the form xi = pre�i(x) when pre�i appears as the maximum of

(one or) several �s��i . Following lemma 4.1, �s��i can be expressed as the minimum

of two expressions φs (independent of i) and ψi
s:

• φs(ρ) =

⎧⎨
⎩

∞ if {x |A′x+ b′ − ρ′ ≤ 0} �= ∅
−∞ if {x |A′x+ b′ − ρ′ ≤ 0} = ∅

.

• ψi
s(ρ) =

∧{(ρ′ − b′)Tλ |λ ≥ 0 ∧A′Tλ = Ti}

4 For the sake of simplicity, we consider only one global template constraint matrix.
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φ = alltrue({Cx + C−x ≥ 0, Cy + C−y ≥ 0, Cx+y + C−x−y ≥ 0, Cx−y + C−x+y ≥ 0, Cx + Cy +
C−x−y ≥ 0, C−x + C−y + Cx+y ≥ 0, Cx + C−y + C−x+y ≥ 0, C−x + Cy + Cx−y ≥ 0,
2Cx + C−x−y + C−x+y ≥ 0, 2C−x + Cx+y + Cx−y ≥ 0, 2Cy + C−x−y + Cx−y ≥ 0,
2C−y+Cx+y+C−x+y ≥ 0, 2C−y+C−x+26 ≥ 0, Cx+C−x−y+26 ≥ 0, 3C−x+2Cx−y+
26 ≥ 0, C−y + C−x−y + 26 ≥ 0, 3C−y + 2C−x+y + 26 ≥ 0, C−x−y + Cx−y + 52 ≥ 0}).

Cx := φ ∧ 10 + Cx/2 ∧ 23 + C−x−y ∧ (17 + 2C−x+y)/3

∧ Cy − 3 ∧ Cx+y + C−x − 3 ∧ C−x+y + Cx − 3

C−x := φ ∧ C−y + 3 ∧ C−x−y + Cx + 3 ∧ Cx−y + C−x + 3

Cy := φ ∧ C−x/2 ∧ (C−x−y + Cy)/2 ∧ (C−x+y + C−y)/2

C−y := φ ∧ Cx/2 ∧ (Cx+y + C−y)/2 ∧ (Cx−y + Cy)/2 ∧ 13 + C−y ∧ (13 + Cx−y)/3

Cx+y := φ ∧ C−x/2 + Cy − 3 ∧ 3C−x/2 + Cx+y − 3 ∧ (3Cy + C−x−y)/2− 3

∧ (Cy + C−x+y)/2− 3 ∧ (Cx+y + 3C−x+y)/4− 3 ∧ 10 + C−x ∧ 36 + 2C−x−y

∧ (4 + 2C−x+y)/3

C−x−y := φ ∧ Cx/2 + C−y + 3 ∧ 3Cx/2 + C−x−y + 3 ∧ (3C−y + Cx+y)/2 + 3

∧ (C−y + Cx−y)/2 + 3 ∧ (C−x−y + 3Cx−y)/4 + 3 ∧ 16 + 2C−y

Cx−y := φ ∧ 10 ∧ Cx/2 + Cy − 3 ∧ 3Cx/2 + C−x+y − 3 ∧ C−x/2 + Cx+y + 3

∧ (Cy + Cx+y)/2− 3 ∧ (3Cy + Cx−y)/2− 3

C−x+y := φ ∧ C−x/2 + C−y + 3 ∧ 3C−x/2 + Cx−y + 3 ∧ C−x/2 + Cx+y + 3

∧ (C−y + C−x−y)/2 + 3 ∧ (3C−y + C−x+y)/2 + 3

Fig. 1. Backward semantics of the transition s = (x − y ≤ 10; {x := −2y, y := x + 3}) in the octagon
domain, described as a system of equations. Each variable Cexp represents the maximum of exp in the
abstract element. We denote by alltrue the function which maps a set of constraints to ∞ if all constraints
are satisfiable, and −∞ otherwise.

One can see that φs is monotonic, order-concave and order-convex (since

fdom(φs) = ∅). Using the vertex principle of linear programming, we can express

ψi
s as the minimum of a finite number of linear expressions:

Lemma 4.5 There exists a finite (possibly empty) number of tuples (λ1, . . . , λk)

such that λj ≥ 0 and A′Tλj = Ti for all j and, for all ρ > −∞:

ψi
s(ρ) =

k∧
j=1

(ρ′ − b′)λj

This equality is also satisfied when some components of ρ are equal to +∞. In

this case, the matching component of λ must be equal to 0.

The number of linear expressions can be exponential in the number of variables.

Rather than computing all of them, we plan to lazily compute only the relevant

expressions during the selection of the strategy (see remark 4.9).

Example 4.6 With two variables x and y, s = (x−y ≤ 10; {x := −2y, y := x+3})
and the octagon template matrix [13], �s�� is represented Figure 1. This example

shows that the number of ∧ operators is related to the template domain, both in

order to deal with the potential non-canonicity of e and to ensure the canonicity

of �s� (e). For example, if the initial assignment is canonical, we have directly

C−y ≤ C−x−y+Cx and C−y ≤ Cx−y+C−x, hence the equation of C−x is equivalent

to C−x := φ ∧ C−y + 3.

From the previous lemma, we deduce:

Proposition 4.7 The backward abstract semantics of an affine program (N,E, st)

in a template matrix domain can be expressed as the greatest fixpoint of a system of
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equations of the form:

x := U1 ∨ U2 ∨ . . . ∨ Uk with Ui := φi ∧ u1i ∧ . . . ∧ uli

where φi is a monotonic function whose image is included in {−∞,+∞} and uji
are linear expressions.

Remark 4.8 If an overapproximation of the reachable states has been computed, it

can be included in the system of equations (if the abstract forward analysis returns

x = a, the equation becomes x := a ∧ (U1 ∨ . . . ∨ Uk)). This combination increases

the precision of the backward analysis [6].

Remark 4.9 Since the explicit computation of the system is too costly, we express

each Ui as φi ∧ ψi where ψi is a linear program. During the strategy selection

phase, an optimal uji is constructed by solving the linear program with the current

affectation ρ: if there is an optimal solution λ, then λ(ρ′ − b′) is used (if it is an

improvement compared with the current strategy), otherwise the strategy returns

+∞. The number of basic feasible solutions may be high, but most are related to

the canonicity of the abstract elements, so we can expect the number of selected

strategies to remain acceptable.

Similarly, we do not expect to compute explicitly φi as a set of constraints on ρ.

Rather, we check the feasibility of the domain at each strategy iteration.

4.2 Solving the system of equations

Following the policy iteration principle, we consider a strategy associating each

expression φi ∧ u1i ∧ . . . ∧ uli (or rather φi ∧ ψi) to either φi or a linear expression

uki . If ρ is the current assignment, the strategy πρ must satisfy:

πρ(φi ∧ u1i ∧ . . . ∧ uli) = min(φi(ρ), u
1
i (ρ), . . . , u

l
i(ρ))(4)

Since the image of φi is included in {−∞,+∞}, we can ensure that πρ(φi∧. . .) =
φi only when φi(ρ) = −∞. Furthermore, since φi is monotonic and we compute a

decreasing sequence, once φi(ρ) = −∞ the whole expression can be replaced by −∞.

Thus, the application of πρ gives a system of equations of the form (x := u1∨. . .∨uk)
where each ui is either −∞ (which can be ignored) or a linear expression. This

system is a system of disjunctive equations.

Given a postsolution ρ of a disjunctive system E , we want to compute gfp≤ρ �E�.

Since our approach is exactly the dual of the method proposed in [10], we just give

a definition of consistency and the final theorem here.

Definition 4.10 Given a disjunctive system E , a finite solution ν of E is said to be

feasible iff there exists ρ > ν such that �E� (ρ) < ρ. A finite postsolution ρ is feasible

iff gfp≤ρ �E� is finite and feasible. A disjunctive system is feasible iff it admits a

feasible solution.

Definition 4.11 Given a disjunctive system E , a postsolution ρ is said to be con-

sistent iff the following conditions are satisfied:

• �exp� ρ = ∞ implies exp = ∞ for every expression exp occurring in E ;
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• with ν = [gfp≤ρ �E�]f , the system E ′ on νf defined by replacing in the equations

of E any variable x ∈ ν∞ by ∞ and x ∈ ν−∞ by −∞ is feasible, and ρ|νf is a

feasible postsolution of E ′.

Theorem 4.12 ([10, Thm 3, dual]) Given a consistent postsolution ρ of a dis-

junctive system E, gfp≤ρ �E� can be computed by solving two LPs extractable from

E in linear time.

4.3 Strategy improvement

We still need to prove that the strategy improvement operator preserves consistency.

First we rewrite all equations x := U as x := +∞ ∧ U . The initial strategy π∞
associates each equation to +∞. In the associated system, (xi �→ +∞) is consistent.

Consistency is preserved under three conditions:

Lemma 4.13 Let π be a strategy, ρ an assignment and π′ an improved strategy

satisfying:

(i) for each maximum of order-convex expressions ∧U , if π(∧U)(ρ) = π′(∧U)(ρ),

then π(U) = π′(U);

(ii) if π(∧U) �= π′(∧U), then π′(∧U)(ρ) < π(∧U)(ρ);

(iii) if π′(∧U)(ρ) < ∞, then for all ρ′ ≥ ρ with [ρ′]f = [ρ]f , π
′(∧U)(ρ) < ∞.

Then any consistent solution of π(E) is a consistent postsolution of π′(E).

Conditions (i) and (ii) are consequences of the principle of strategy improvement.

The third one is satisfied because we use linear expressions. The termination of

the computation is guaranteed by the finite number of strategies. As mentioned in

remark 4.9, we expect the number of iterations to remain low, but more experiments

are needed to validate this hypothesis.

Finally, we can state the general result on whole programs:

Theorem 4.14 Given an affine program (N,E, st) and a template matrix T , the

algorithm terminates and returns the abstract semantics gfp pre�.

Example 4.15 We consider a program (N,E, i) with only one program point N =

{i} and E = {(i, s, i)} with s defined as in example 4.6. Figure 2 gives the sequences

of strategies (as systems of equations) and the fixpoints (as constraints on x and y).

The set of non-terminating states is included in each fixpoint (in this example, the

last fixpoint is exactly the set of non-terminating states). Thus, from any initial

state except (x = −2; y = 1), the program terminates.

5 Relationships with variant analysis

To compare our method with variant analysis, we search a correspondence between

the provability of termination with policy iteration and the kind of ranking functions

which can be used to prove the termination of the program.
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# Current strategy Fixpoint

1 Cx := +∞, C−x := +∞, Cy := +∞, C−y := +∞,
Cx+y := +∞, C−x−y := +∞, Cx−y := 10, C−x+y := +∞

x− y ≤ 10

2 Cx := +∞, C−x := +∞, Cy := +∞, C−y := (13 + Cx−y)/3,
Cx+y := +∞, C−x−y := +∞, Cx−y := 10, C−x+y := +∞

x− y ≤ 10, −23/3 ≤ y

3 Cx := +∞, C−x := 3 + C−y , Cy := +∞,
C−y := (13 + Cx−y)/3, Cx+y := +∞,
C−x−y := 3 + (Cx−y + C−y)/2, Cx−y := 10, C−x+y := +∞

−32/3 ≤ x, x− y ≤ 10,
−23/3 ≤ y,
−71/6 ≤ x+ y

4 Cx := 10 + C−x/2, C−x := 3 + C−y , Cy := C−x/2,
C−y := (13 + Cx−y)/3, Cx+y := 10 + C−x,
C−x−y := 3 + (Cx−y + C−y)/2, Cx−y := 10,
C−x+y := 3 + (C−x−y + C−y)/2

−32/3 ≤ x ≤ 46/3,
−51/4 ≤ x− y ≤ 10,
−23/3 ≤ y ≤ 16/3,
−71/6 ≤ x+ y ≤ 62/3

5 Cx := −3 + Cy , C−x := 3 + C−y , Cy := C−x/2,
C−y := (13 + Cx−y)/3, Cx+y := −3 + (C−x+y + Cy)/2,
C−x−y := 3 + (Cx−y + C−y)/2, Cx−y := 10,
C−x+y := 3 + (C−x−y + C−y)/2

−32/3 ≤ x ≤ 7/3,
−51/4 ≤ x− y ≤ 10,
−23/3 ≤ y ≤ 16/3,
−71/6 ≤ x+ y ≤ 145/24

6 Cx := −3 + Cy , C−x := 3 + C−y , Cy := C−x/2, C−y := Cx/2,
Cx+y := −3+ (C−x+y +Cy)/2, C−x−y := 3+ (Cx−y +C−y)/2,
Cx−y := −3 + (Cx+y +Cy)/2, C−x+y := 3 + (C−x−y +C−y)/2

x = −2, x− y = −3,
y = 1, x+ y = −1

Fig. 2. Computation of the abstract semantics for a single state program with one transition
(x − y ≤ 10; {x := −2y, y := x + 3}) in the octagon domain. The initial strategy (+∞) is omitted.

When the program is given, the result of the policy iteration-based analysis

depends only on the abstract domain, since it computes exactly gfp pre� where

pre� = α ◦ pre ◦ γ. First, we can see that a ranking function can be constructed

from the iteration sequence of pre�.

Lemma 5.1 Let Σ = N → ℘ (Rn) be the set of states of the program, and τ the

transition relation between elements of Σ. Let (W i) be the iteration sequence of pre�

starting from (x �→ +∞) and O an ordinal such that WO−1 = gfp pre�. Then the

function v defined from Z = Σ \ γT (gfp pre�) to O as:

v(σ) = min{i |σ /∈ γT (W
i)}

is a ranking function on (Z, τ).

Furthermore, for all n ∈ O, v−1({n′ ∈ O |n′ ≥ n}) ∪ γT (gfp pre�) is canonical.

This property can be reversed to deduce a condition on gfp pre� from the existence

of a ranking function:

Proposition 5.2 Let Z ⊆ Σ and Y = Σ \Z. Then γT (gfp pre
�) ⊆ Y if and only if

there exists a function v from Z to an ordinal O such that:

∀s ∈ Z, ∀s′ ∈ Σ, 〈s, s′〉 ∈ τ ⇒ (s′ ∈ Z ∧ v(s) > v(s′))

∀n ∈ O, v−1({n′ | n′ ≥ n}) ∪ Y ∈ γT (N → TT )

Hence, the abstract semantics would prove the termination for all inputs (i.e.

Z = Σ) if there exists a ranking function v for which the successive preimages

v−1(O), v−1(O \ {0}), v−1(O \ {0, 1}), . . . for every program point are of the form

TX ≤ B.

Corollary 5.3 If an affine program can be proved to terminate with a linear ranking

function X �→ RX, our method proves the termination of the program if −R is a

row of T .
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However, the program given in example 4.15 does not admit a linear ranking

function. Thus our method is not limited to linear ranking functions, and a global

characterization of the ranking functions remains to be stated.

6 Conclusion and future work

This paper is intended to show how policy iteration techniques can be applied to

termination analysis. We performed only a few experiments, and more comparisons

with related work needs to be done. Recently, Bozga et al. [2] presented several

results on the decision of conditional termination. Their framework is more restric-

tive (as they restrict themselves to integer variables), but may give more precise

results as it is not limited by the precision of the abstract domain.

To improve the analysis, we can extend previous work on policy iterations for

other abstract domains (e.g. quadratic zones [11]). Although we dealt only with

affine programs, we can also add linearization and non-determinism to extend the

framework. Finally, an interesting feature of greatest fixpoint overapproximation,

compared with least fixpoint overapproximation, is that the abstract domain can

be refined during the computation. To refine the precision of the analysis, we can

add new template constraints at any time, using for example decreasing iterations

on the domain of polyhedra.
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