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1. INTRODUCTION

In this paper, our purpose is twofold. First, we introduce a concept of a
fuzzy mapping, i.e., mapping from an arbitrary set to one subfamily of fuzzy
sets in a metric linear space X. Each element of this family is interpreted as
an approximate quantity. We also introduce a notion of distance between
such quantities and give some properties of it.

Then we prove the fixed point theorem for fuzzy mappings. This theorem
is a generalization of the fixed point theorem for point-to-set maps [1, 2]
arising from the set-representation of fuzzy sets [3].

2. Fuzzy MAPPINGS

Let X be any metric linear space and d be any metric in X. A fuzzy set in
X is a function with domain X and values in [0, 1]. If 4 is a fuzzy set and
x € X, the function-value A(x) is called the grade of membership of x in 4.
The collection of all fuzzy sets in X is denoted by .# (X).

Let 4 € F(X) and a € [0, 1]. The a-level set of 4, denoted A, is defined
by

A, ={x:4(x) > a} if a€(0,1],
Ay = {x:A(x) > 0},

whenever B is the closure of set (nonfuzzy) B.
Now we distinguish from the collection # (X) a subcollection of approx-
imate quantities, denoted 2Z7(X).

DEeFINITION 2.1. A fuzzy subset 4 of X is an approximate quantity iff its
a-level set is a compact convex subset (nonfuzzy) of X for each a¢ € [0, 1],
and sup A(x)=1.

X

566
0022-247X/81/100566—04$02.00/0

Copyright © 1981 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82594975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FUZZY MAPPINGS AND FIXED POINT THEOREM 567

When 4 € Z(X) and A(x,)=1 for some x, € X, we will identify A with an
approximation of x,.
Then we shall define a distance between two approximate quantities.

DEFINITION 2.2. Let 4, BE #Z(X), a € |0, 1]. Define

a4, B) = xeAn}feBn d(x. y),

D (4, B)=dist(4,, B,),
D(A, B) =sup D (4, B),

whenever dist is Hausdorf distance. The function p,, is called a a-space, D, a
a-distance, and D a distance between 4 and B.

It is easy to see that p, is nondecreasing function of a.
We shall also define an order on the family Z(X), which characterizes
accuracy of a given quantity.

DEFINITION 2.3. Let 4, BE #7(X). An approximate quantity 4 is more
accurate than B, denoted 4 < B, iff A(x) < B(x), for each x € X.

It is easy to see that relation < is a partial order determined on the
family Z(X). ‘

Now we introduce a notion of fuzzy mapping, i.e., a mapping with value
in the family of approximate quantities.

DEFINITION 2.4. Let X be an arbitrary set and Y any metric linear space.
F is called a fuzzy maping iff F is mapping from the set X into Z(Y), i.e.,
F(x) e Z(Y) for each x € X.

A fuzzy mapping F is a fuzzy subset on X X Y with membership function
F(x, y). The function-value F(x, y) is the grade of membership of y in F(x).
Let A € #(X), B € F (Y). The fuzzy set F(4) in #(Y) is defined by

FA)p)=sup (Fx)) NAD)), »€Y,
and the fuzzy set F~'(B) in # (X) is defined by

F7(B)(x) = sup (F(x.») A B()),  x€X

3. Fixep PoINT THEOREM

First of all, we shall give here the basic properties of a-space and a-
distance between some approximate quantities.
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LEmMA 3.1. Let x€EX, A€W (X), and {x} be a fuzzy set with
membership function equal a characteristic function of set |x}. If {x} <A,
then p,(x,A)=0 for each a € [0, 1].

Proof. 1If {x} <A, then x€ A4 for each a € |0, 1].

D (x,A)= irLf d(x,y)=0.
YEA,

LEmMMA 3.2,
D (6 A)<d(x, )+ p, (. 4) for any x,y€X.
Proof.
Palx, 4) = zi&fa dx, z) < inf (d(x, ) + d(y, 2))

=d(x,y) +p,(»,4).

LemMma 3.3. If {x,} < A4, then p (x,, B) < D (4, B) for each B € #(X).
Proof.

Po(Xo, B) = yien)}; d(xg, ) < fg/ﬁ ylgn d(x, y)
<D,4,B).

Now we prove a generalization to fuzzy sets of the fixed point theorem for
the contraction mappings.

THEOREM 3.1. Let X be a complete metric linear space and F be a fuzzy
mapping from X to #(X) satisfying the following condition: there exists
g € (0, 1) such that

D(F(x), F(y)) < qd(x,y)  for each x,y € X.

Then there exists x* € X such that {x*} c F(x*).

Proof. Let xy€ X and {x,} < F(x,). Then there exists x, € X such that
{x;} < F(x,) and d(x,,x,) < D,(F(x,), F(x,)). Continuing in this way we
produce a sequence (x,) in X such that {x,}<F(x, ,) and
d(x,, %, 1) <D (F(x,_,), F(x,)) for each n € N. We shall now show that
(x,) is a Cauchy sequence.

d(x 11> X)) < Dy(F(x), F(x_ 1)) < D(F(x,), F(x, 1))
< gd(x,, X, _y) whenever g € (0, 1).



FUZZY MAPPINGS AND FIXED POINT THEOREM 569

k+m—1 k+m—1

A(X 4 m> Xi) < Z d(x;, 1 X;) < Zk qid(xl,xo)
j=k j=

<g"/(1—q) - d(xy, xo).

g* converges to 0 as k — co. Then, since X is a complete space and (x,) is

Cauchy sequence, there exists a limit of sequence (x,). Let lim,_,  x, = x*.
Polx*, F(x*)) < d(x*, x,) + po(x» F(x*)) (3.1
d(x*, x,) + Dy(F(x,_,), F(x*)) (3-2)

<
< d(X*’ xn) + qd(xn—l 5 X*)'

d(x*, x,) converges to 0 as n— oo. Hence, by Lemma 3.1 we conclude that
{x*} < F(x*). Inequality (3.1) follows from Lemma3.2 and (3.2) from
Lemma 3.3.
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