JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 83, 566-569 (1981)

Fuzzy Mappings and Fixed Point Theorem

STANISŁAW HEILPERN

Academy of Economics, Wrocław, Poland Submitted by L. A. Zadeh

1. INTRODUCTION

In this paper, our purpose is twofold. First, we introduce a concept of a fuzzy mapping, i.e., mapping from an arbitrary set to one subfamily of fuzzy sets in a metric linear space X. Each element of this family is interpreted as an approximate quantity. We also introduce a notion of distance between such quantities and give some properties of it.

Then we prove the fixed point theorem for fuzzy mappings. This theorem is a generalization of the fixed point theorem for point-to-set maps [1, 2] arising from the set-representation of fuzzy sets [3].

2. FUZZY MAPPINGS

Let X be any metric linear space and d be any metric in X. A fuzzy set in X is a function with domain X and values in [0, 1]. If A is a fuzzy set and $x \in X$, the function-value A(x) is called the grade of membership of x in A. The collection of all fuzzy sets in X is denoted by $\mathscr{F}(X)$.

Let $A \in \mathscr{F}(X)$ and $\alpha \in [0, 1]$. The α -level set of A, denoted A_{α} , is defined by

$$A_{\alpha} = \{x : A(x) \ge \alpha\} \quad \text{if} \quad \alpha \in (0, 1],$$
$$A_{0} = \overline{\{x : A(x) > 0\}},$$

whenever B is the closure of set (nonfuzzy) B.

Now we distinguish from the collection $\mathscr{F}(X)$ a subcollection of approximate quantities, denoted $\mathscr{W}(X)$.

DEFINITION 2.1. A fuzzy subset A of X is an approximate quantity iff its α -level set is a compact convex subset (nonfuzzy) of X for each $\alpha \in [0, 1]$, and $\sup_{x \in Y} A(x) = 1$.

0022-247X/81/100566-04\$02.00/0 Copyright © 1981 by Academic Press, Inc. All rights of reproduction in any form reserved. When $A \in \mathcal{W}(X)$ and $A(x_0) = 1$ for some $x_0 \in X$, we will identify A with an approximation of x_0 .

Then we shall define a distance between two approximate quantities.

DEFINITION 2.2. Let A, $B \in \mathcal{W}(X)$, $\alpha \in [0, 1]$. Define

$$p_{\alpha}(A, B) = \inf_{\substack{x \in A_{\alpha}, y \in B_{\alpha}}} d(x, y),$$

$$D_{\alpha}(A, B) = \operatorname{dist}(A_{\alpha}, B_{\alpha}),$$

$$D(A, B) = \sup_{\alpha} D_{\alpha}(A, B),$$

whenever dist is Hausdorf distance. The function p_{α} is called a α -space, D_{α} a α -distance, and D a distance between A and B.

It is easy to see that p_{α} is nondecreasing function of α .

We shall also define an order on the family $\mathcal{W}(X)$, which characterizes accuracy of a given quantity.

DEFINITION 2.3. Let $A, B \in \mathcal{W}(X)$. An approximate quantity A is more accurate than B, denoted $A \subset B$, iff $A(x) \leq B(x)$, for each $x \in X$.

It is easy to see that relation \subset is a partial order determined on the family $\mathcal{W}(X)$.

Now we introduce a notion of fuzzy mapping, i.e., a mapping with value in the family of approximate quantities.

DEFINITION 2.4. Let X be an arbitrary set and Y any metric linear space. F is called a fuzzy maping iff F is mapping from the set X into $\mathcal{W}(Y)$, i.e., $F(x) \in \mathcal{W}(Y)$ for each $x \in X$.

A fuzzy mapping F is a fuzzy subset on $X \times Y$ with membership function F(x, y). The function-value F(x, y) is the grade of membership of y in F(x). Let $A \in \mathcal{F}(X)$, $B \in \mathcal{F}(Y)$. The fuzzy set F(A) in $\mathcal{F}(Y)$ is defined by

$$F(A)(y) = \sup_{x \in X} (F(x, y) \land A(y)), \qquad y \in Y,$$

and the fuzzy set $F^{-1}(B)$ in $\mathcal{F}(X)$ is defined by

$$F^{-1}(B)(x) = \sup_{y \in Y} (F(x, y) \wedge B(y)), \qquad x \in X.$$

3. FIXED POINT THEOREM

First of all, we shall give here the basic properties of α -space and α -distance between some approximate quantities.

LEMMA 3.1. Let $x \in X$, $A \in \mathcal{W}(X)$, and $\{x\}$ be a fuzzy set with membership function equal a characteristic function of set $\{x\}$. If $\{x\} \subset A$, then $p_{\alpha}(x, A) = 0$ for each $\alpha \in [0, 1]$.

Proof. If $\{x\} \subset A$, then $x \in A_{\alpha}$ for each $\alpha \in [0, 1]$.

$$p_{\alpha}(x,A) = \inf_{y \in A_{\alpha}} d(x,y) = 0.$$

Lemma 3.2.

$$p_{\alpha}(x, A) \leq d(x, y) + p_{\alpha}(y, A)$$
 for any $x, y \in X$.

Proof.

$$p_{\alpha}(x,A) = \inf_{z \in A_{\alpha}} d(x,z) \leq \inf_{z \in A_{\alpha}} (d(x,y) + d(y,z))$$
$$= d(x,y) + p_{\alpha}(y,A).$$

LEMMA 3.3. If $\{x_0\} \subset A$, then $p_{\alpha}(x_0, B) \leq D_{\alpha}(A, B)$ for each $B \in \mathcal{W}(X)$. Proof.

$$p_{\alpha}(x_0, B) = \inf_{y \in B_{\alpha}} d(x_0, y) \leq \sup_{x \in A_{\alpha}} \inf_{y \in B_{\alpha}} d(x, y)$$
$$\leq D_{\alpha}(A, B).$$

Now we prove a generalization to fuzzy sets of the fixed point theorem for the contraction mappings.

THEOREM 3.1. Let X be a complete metric linear space and F be a fuzzy mapping from X to $\mathcal{W}(X)$ satisfying the following condition: there exists $q \in (0, 1)$ such that

$$D(F(x), F(y)) \leq qd(x, y)$$
 for each $x, y \in X$.

Then there exists $x^* \in X$ such that $\{x^*\} \subset F(x^*)$.

Proof. Let $x_0 \in X$ and $\{x_1\} \subset F(x_0)$. Then there exists $x_2 \in X$ such that $\{x_2\} \subset F(x_1)$ and $d(x_2, x_1) \leq D_1(F(x_1), F(x_0))$. Continuing in this way we produce a sequence (x_n) in X such that $\{x_n\} \subset F(x_{n-1})$ and $d(x_n, x_{n+1}) \leq D_1(F(x_{n-1}), F(x_n))$ for each $n \in N$. We shall now show that (x_n) is a Cauchy sequence.

$$d(x_{k+1}, x_k) \leq D_1(F(x_k), F(x_{k-1})) \leq D(F(x_k), F(x_{k-1}))$$

$$\leq q d(x_k, x_{k-1}) \quad \text{whenever } q \in (0, 1).$$

$$d(x_{k+m}, x_k) \leqslant \sum_{j=k}^{k+m-1} d(x_{j+1}, x_j) \leqslant \sum_{j=k}^{k+m-1} q^j d(x_1, x_0)$$

$$\leqslant q^k / (1-q) \cdot d(x_1, x_0).$$

 q^k converges to 0 as $k \to \infty$. Then, since X is a complete space and (x_n) is Cauchy sequence, there exists a limit of sequence (x_n) . Let $\lim_{n\to\infty} x_n = x^*$.

$$p_0(x^*, F(x^*)) \le d(x^*, x_n) + p_0(x_n, F(x^*))$$
(3.1)

$$\leq d(x^*, x_n) + D_0(F(x_{n-1}), F(x^*))$$
 (3.2)

$$\leq d(x^*, x_n) + qd(x_{n-1}, x^*).$$

 $d(x^*, x_n)$ converges to 0 as $n \to \infty$. Hence, by Lemma 3.1 we conclude that $\{x^*\} \subset F(x^*)$. Inequality (3.1) follows from Lemma 3.2 and (3.2) from Lemma 3.3.

References

- 1. M. P. CHEN AND M. H. SHIN, Fixed point theorems for point-to-point and point-to-set maps, J. Math. Anal. Appl. 71 (1979), 515-524.
- 2. S. B. NADLER, JR., Multi-valued contraction mappings, *Pacific J. Math.* 30 (1969), 475-488.
- 3. H. T. NGUYEN, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64 (1978), 369-380.