
J. Math. Anal. Appl. 377 (2011) 841–852

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Perturbed sampling formulas and local reconstruction in shift invariant
spaces

Nikolaos D. Atreas

Department of Mathematics, Physics and Computational Sciences, Faculty of Engineering, Aristotle University of Thessaloniki, 54-124, Thessaloniki, Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 September 2010
Available online 7 December 2010
Submitted by Steven G. Krantz

Keywords:
Non-uniform sampling
Perturbations
Local reconstruction

Let Vφ be a closed subspace of L2(R) generated from the integer shifts of a continuous
function φ with a certain decay at infinity and a non-vanishing property for the function
Φ†(γ ) = ∑

n∈Z
φ(n)e−inγ on [−π,π ]. In this paper we determine a positive number δφ so

that the set {n + δn}n∈Z is a set of stable sampling for the space Vφ for any selection of the
elements δn within the ranges ±δφ . We demonstrate the resulting sampling formula (called
perturbation formula) for functions f ∈ Vφ and also we establish a finite reconstruction
formula approximating f on bounded intervals. We compute the corresponding error and
we provide estimates for the jitter error as well.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Vφ,0 be a subspace of L2(R) (the space of all measurable square integrable functions on R with usual inner product
〈·,·〉L2 and norm ‖ · ‖L2 ) containing all finite linear combinations of the integer shifts of a generator function φ ∈ L2(R). We
say that the set {φ(· − n)}n∈Z forms a Riesz basis for the L2-closure of Vφ,0 defined by

Vφ =
{∑

n∈Z

cnφ(· − n): {cn}n∈Z ∈ �2(Z)

}
, (1.1)

if there exist two positive constants A and B such that

A‖c‖2
�2(Z) �

∥∥∥∥
∑
n∈Z

cnφ(· − n)

∥∥∥∥
2

L2

� B‖c‖2
�2(Z) for all c ∈ �2(Z). (1.2)

Here and hereafter, �p(X) (p � 1) is the space of all p-summable sequences over the index set X with usual norm ‖ · ‖�p(X) .
Whenever X = Z we write �p for brevity.

By imposing regularity requirements on Vφ (for example the function φ is continuous on R with some decay at infinity)
and by assuming that the infinite matrix (or operator) Φ = {Φk,n = φ(k − n)}k,n∈Z is bounded and has bounded inverse
Φ−1 = {Φ−1

k,n }k,n∈Z on �2 we can prove that Vφ is a sampling space, i.e. any function f ∈ Vφ is stably reconstructed from the
sample set L( f ) = { f (n)}n∈Z by the formula

f (x) =
∑
n∈Z

f (n)S(x − n) (1.3)
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pointwise on R, where S(x) = ∑
k∈Z

Φ−1
k,0φ(x − k) [18,19]. Eq. (1.3) is an example of a regular sampling expansion includ-

ing classical Shannon-type sampling theorems, wavelet sampling expansions and sampling expansions in shift invariant
spaces [13,23,24].

In a variety of applications the sampling process becomes more efficient if the uniform sampling set τ = Z is shifted or
perturbed by a bounded sequence 	 = {δn}n∈Z (called perturbation sequence) due to fluctuations of the signal or possible
delay due to channel cognition. 	 may be also unknown if it is caused from disturbances of the acquisition device or jitter.
In both cases we are led to a non-uniform sampling scheme [7,16] and a basic problem is to examine whether the resulting
irregular sampling set {n + δn}n∈Z continues to be a set of stable sampling for the space Vφ in the sense that there exist
positive constants C, D such that

C‖ f ‖2
L2

�
∥∥{

f (n + δn)
}∥∥2

�2
� D‖ f ‖2

L2
for all f ∈ Vφ. (1.4)

If this double inequality holds then there exists another Riesz basis {ψ	
n (·)}n∈Z for the space Vφ providing a stable recon-

struction formula for elements f ∈ Vφ of the form

f (x) =
∑
n∈Z

f (n + δn)ψ
	
n (x) (1.5)

and a perturbation of regular sampling formula (1.3) is obtained. Notice that the largest bound of the perturbation set 	

for which (1.4) holds is called maximum perturbation of 	.
The existence of stable perturbed sampling sets and formulas has been studied in spaces of band-limited functions

(see [12] and references therein), in wavelet spaces [5,15] and in shift invariant spaces [6,14,25] but the resulting sampling
formulas are complicated. We mention that certain estimates on the maximum perturbation have been established, based
on decay assumptions on the generator function φ [6,25]. In [19, Theorem 3.2] a perturbation formula for non-necessarily
shift-invariant spaces was established. Also in [19, Theorem 6.2] a partial reconstruction formula suitable for numerical
implementation was derived and error estimates were obtained based on Wiener’s lemma for a suitable Gramian matrix.

Our motivation for this work originates from [19]. More precisely, the first tenet of this work is to derive a class of
perturbed sampling expansions (1.5) for the space Vφ under a certain decay assumption on φ and a non-vanishing property
for the function Φ†(γ ) = ∑

n∈Z
φ(n)e−inγ on [−π,π ].

In Section 2 we determine a maximum perturbation δφ so that the set τδ = {n + δn: |δn| � δ}n∈Z is a set of stable sam-
pling for the space Vφ for any 0 � δ < δφ . Then in Theorem 1 of Section 2 we demonstrate the corresponding reconstruction
formula and we present certain examples where we compare the ranges of the perturbations with the ranges obtained in [1,
17,25]. Notice that our sampling formula is different from the reconstruction formula obtained in [19], however it is com-
plicated because it requires evaluation of the inverse of an infinite matrix.

In Section 3 we state our second main result. In Theorem 2 we establish a partial reconstruction formula for Vφ suitable
for numerical implementation and we provide estimates to the corresponding error based on Wiener’s lemma for infinite
matrices and the finite section method [10]. Notice that the resulting decay rate estimates are smaller compared to the
estimates obtained in [19].

Finally in Section 4 we deal with the case where the uniform sampling set τ = Z is distorted without our knowledge.
In this case when we reconstruct f using (1.3) we are facing jitter error [2–4]. In Proposition 1 we address this problem
and we determine a number δφ,ε so that for any perturbation 	 bounded by the number δφ,ε the jitter error is less than a
pre-determined error ε .

2. Perturbed reconstruction formulas for Vφ

In this section we establish stable perturbation sampling formulas for the space Vφ under the following assumptions
on φ (notice that we have already assumed that the set {φ(· − n)}n∈Z forms a Riesz basis for Vφ ):

(P1) φ : R → C is a continuous function on R satisfying φ(x) = φ(−x) for every x ∈ R and φ belongs in the weighted
Wiener amalgam space

W p(L∞,uα ) = {
f : ‖ f ‖W p(L∞,uα ) = ∥∥{∥∥uα(· − n)φ(· − n)

∥∥
L∞[−1/2,1/2]

}
n∈Z

∥∥
�p

< ∞}
,

where 1 � p � +∞ and uα(x) = (1 + |x|)α for some α > 1 − 1
p .

(P2) The 2π -periodic function Φ†(γ ) = ∑
n∈Z

φ(n)e−inγ has no real zeros on [−π,π ].

The assumption α > 1 − 1
p on the exponent of the polynomial weight uα ensures that if φ ∈ W p(L∞,uα ) then φ ∈

W1(L∞,u0), i.e. φ ∈ L1(R) ∩ L2(R). Indeed if q is the conjugate exponent of p (i.e. 1 + 1 = 1), then
p q
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‖φ‖W1(L∞,u0 ) = ∥∥(φuα)u−1
α

∥∥
W1(L∞,u0 )

� ‖φ‖W p(L∞,uα )

(∑
n∈Z

1

(|n| + 1/2)αq

)1/q

� C‖φ‖W p(L∞,uα ) < ∞. (2.1)

Notice also that if φ satisfies condition (P1) then the 2π -periodic function Φ†(γ ) is real-valued and continuous and so if
condition (P2) holds then Φ†(γ ) is a positive (or negative) function on [−π,π ].

Under the above assumptions on φ the infinite matrix

Φ = {
Φm,n = φ(m − n)

}
m,n∈Z

(2.2)

as an operator on �2 is self-adjoint, bounded and has bounded inverse on �2. More precisely, it is easy to see that the
operator Φ satisfies the following double inequality

∥∥Φ†
∥∥

0‖c‖�2 � ‖Φc‖�2 �
∥∥Φ†

∥∥∞‖c‖2 for all c ∈ �2, (2.3)

where

∥∥Φ†
∥∥

0 = inf
γ ∈[−π,π ]

∣∣Φ†(γ )
∣∣ > 0 and

∥∥Φ†
∥∥∞ = sup

γ ∈[−π,π ]
∣∣Φ†(γ )

∣∣ < ∞.

Let us define a distortion of the above matrix Φ by

Φτδ = {
(Φτδ )m,n = φ(τm − n)

}
m,n∈Z

,

where τδ = {τn = n + δn: |δn| � δ}n∈Z is a sampling set on R for some δ > 0 and τδ is also an ordered and ε-separated
sampling set, i.e.,

τm+1 − τm � ε > 0 for all m ∈ Z and for some ε > 0. (2.4)

In addition let us determine a positive real number

δφ = inf
{

x > 0: Gφ(x) �
∥∥Φ†

∥∥
0

}
, (2.5)

where

Gφ : R
+ → R

+: Gφ(x) =
∑
n∈Z

sup
|y|�x

∣∣φ(y + n) − φ(n)
∣∣ (2.6)

and ‖Φ†‖0 > 0 by assumption (P2). Taking into account (2.1) we see that the function Gφ(x) is well defined on R
+ and

moreover it is continuous, increasing and unbounded on R
+ with G(0) = 0. Therefore 0 < δφ < +∞.

Definition 1. Let φ,τδ,Φτδ and δφ be as above. Given φ we say that the infinite matrix Φτδ belongs in the class Fδφ if the
matrix Φτδ is produced from a sampling set τδ such that 0 � δ < δφ .

Lemma 1. If the infinite matrix (or operator) Φτδ belongs in the above class Fδφ , then there exist two positive constants C and D such
that

C‖c‖2
�2

�
∣∣〈Φτδ c, c〉�2

∣∣ � D‖c‖2
�2

for all c ∈ �2 (2.7)

and this double inequality holds for the adjoint operator Φ∗
τδ

as well.

Proof. Let Φ be as in (2.2). Then for any c ∈ �2 we have

∣∣〈Φc, c〉�2

∣∣ =
∣∣∣∣
∑
m∈Z

∑
n∈Z

φ(m − n)cncm

∣∣∣∣ = 1

2π

∣∣∣∣∣
π∫

−π

∣∣ fc(γ )
∣∣2

Φ†(γ )dγ

∣∣∣∣∣ �
∥∥Φ†

∥∥
0‖c‖2

�2
, (2.8)

where fc(γ ) = ∑
n∈Z

cne−inγ and Φ†(γ ) = ∑
n∈Z

φ(n)e−inγ . Since the function Φ†(γ ) is positive (or negative) on [−π,π ]
as we mentioned above, the last inequality in (2.8) is immediately obtained.

Let Φτδ ∈ Fδφ where Fδφ as in Definition 1. Then

∣∣〈Φτδ c, c〉�2

∣∣ �
∣∣∣∣〈Φc, c〉�2

∣∣ − ∣∣〈(Φτδ − Φ)c, c
〉
�2

∣∣∣∣. (2.9)

First we compute
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∣∣〈(Φτδ − Φ)c, c
〉
�2

∣∣ �
∑
m∈Z

∑
n∈Z

∣∣φ(τm − n) − φ(m − n)
∣∣|cn||cm|

�
∑
m∈Z

|cm|
(∑

n∈Z

|cn|2
∣∣φ(τm − n) − φ(m − n)

∣∣)1/2(∑
n∈Z

∣∣φ(τm − n) − φ(m − n)
∣∣)1/2

� ‖c‖2
�2

(
sup
m∈Z

∑
n∈Z

∣∣φ(τm − n) − φ(m − n)
∣∣)1/2(

sup
n∈Z

∑
m∈Z

∣∣φ(τm − n) − φ(m − n)
∣∣)1/2

. (2.10)

But Φτδ ∈ Fδφ and τm = m + δm where |δm| � δ < δφ < +∞, so

sup
n∈Z

∑
m∈Z

∣∣φ(τm − n) − φ(m − n)
∣∣ = sup

n∈Z

∑
r∈Z

∣∣φ(δn+r + r) − φ(r)
∣∣

�
∑
r∈Z

sup
|x|�δ

∣∣φ(x + r) − φ(r)
∣∣ = Gφ(δ), (2.11)

where the function Gφ(x) is defined in (2.6). Similarly, supm∈Z

∑
n∈Z

|φ(τm − n) − φ(m − n)| � Gφ(δ). We omit the proof
here. Substituting the bound (2.11) into (2.10) we obtain∣∣〈(Φτδ − Φ)c, c

〉
�2

∣∣ � Gφ(δ)‖c‖2
�2

. (2.12)

Substituting the bounds (2.12) and (2.8) into (2.9) we obtain the lower inequality of (2.7) with C = ‖Φ†‖0 − Gφ(δ). Clearly
C > 0 because Φτδ ∈ Fδφ and so 0 � δ < δφ with δφ as in (2.5).

To derive the upper bound of (2.7) we observe that

∥∥(Φτδ − Φ)c
∥∥2

�2
�

∑
m∈Z

(∑
n∈Z

|cn|2
(∣∣φ(τm − n) − φ(m − n)

∣∣)∑
n∈Z

∣∣φ(τm − n) − φ(m − n)
∣∣)

� G2
φ(δ)‖c‖2

�2
(2.13)

as we showed above. Using (2.13) and (2.3) and recalling (2.1) we obtain

‖Φτδ c‖�2 � ‖Φc‖�2 + ∥∥(Φτδ − Φ)c
∥∥

�2
�

(∥∥Φ†
∥∥∞ + Gφ(δ)

)‖c‖�2

�
(∥∥Φ†

∥∥∞ + 2‖φ‖W1(L∞,u0 )

(
2
δ� + 1

))‖c‖�2 , (2.14)

where 
x� is the ceiling of a real number x. Indeed

Gφ(δ) �
∑
n∈Z


δ�∑
k=
−δ�+1

sup
|y−k|�1/2

∣∣φ(y + n) − φ(n)
∣∣

�
(
−δ� + 
δ� + 2

)∑
n∈Z

sup
|y|�1/2

(∣∣φ(y + n)
∣∣ + ∣∣φ(n)

∣∣)

� 2‖φ‖W1(L∞,u0 )

(
2
δ� + 1

)
.

Therefore the upper bound of (2.7) is obtained with D = 2‖φ‖W1(L∞,u0 )(2
δ� + 1) and D < +∞ because δ < δφ < +∞.
Following the same proof as above it is easy to see that (2.7) holds for the adjoint operator Φ∗

τδ
as well. We omit the

proof here. �
Corollary 1. Every infinite matrix Φτδ ∈ Fδφ as an operator on �2 is bounded and has bounded inverse on �2 . More precisely, there
exist two positive constants C, D as in Lemma 1 such that

C‖c‖�2 � ‖Φτδ c‖�2 � D‖c‖2 for all c ∈ �2 (2.15)

and the same double inequality holds for the adjoint operator Φ∗
τδ

as well.

Proof. From the lower inequality of (2.7) we get

C‖c‖2
�2

�
∣∣〈Φτδ c, c〉�2

∣∣ � ‖Φτδ c‖�2‖c‖�2 for all c ∈ �2

and so the lower inequality of (2.15) is obtained. The upper inequality of (2.15) is obtained directly from (2.14). Therefore
the operator Φτδ is injective and the inverse operator Φ−1

τδ
is bounded on RΦτδ

, the range of Φτδ . Since the adjoint operator
Φ∗

τδ
satisfies (2.7), by using similar arguments as above we deduce that Φ∗

τδ
satisfies (2.15) as well and so RΦτδ

= �2, i.e.
the operator Φτδ is onto. �
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Theorem 1. Let Vφ be a subspace of L2(R) as in (1.1) and let the generator function φ satisfy the aforementioned conditions (P1)

and (P2). Furthermore let τδ = {τn = n + δn: |δn| � δ}n∈Z be an ordered and ε-separated sampling set on R for some δ � 0. If δφ is a
positive real number as in (2.5), then for any 0 � δ < δφ the set τδ is a set of stable sampling for the space Vφ , i.e. (1.4) holds. Moreover
every function f ∈ Vφ is uniquely reconstructed from the set of samples Lτδ ( f ) = { f (τn)}n∈Z (for every selection of a stable sampling
set τδ) by the formula

f (x) =
∑
n∈Z

f (τn)ψ
τδ
n (x) (2.16)

pointwise on R, where

ψτδ
n (x) =

∑
k∈Z

(Φτδ )
−1
k,nφ(x − k) (2.17)

and Φ−1
τδ

is the inverse of an infinite matrix Φτδ ∈ Fδφ as above. Furthermore the set {ψτδ
n (·)}n∈Z is a Riesz basis for the space Vφ , i.e.

the reconstruction is stable.

Proof. Let φ, Vφ, τδ, δφ,Φτδ and Fδφ be as above, Φτδ ∈ Fδφ and f ∈ Vφ . Then there exists a unique sequence c ∈ �2 such
that f (x) = ∑

k∈Z
ckφ(x − k) and

Lτδ ( f ) = Φτδ c

where Lτδ ( f ) = { f (τn)}n∈Z . Substituting the above equality into (2.15) and using (1.2) it is easy to prove that (1.4) holds for
any f ∈ Vφ , i.e. the set τδ is a set of stable sampling for Vφ . In addition, since the matrix Φτδ is invertible on �2 as a result
of Corollary 1 we have

f (x) =
∑
k∈Z

ckφ(x − k) =
∑
k∈Z

(
Φ−1

τδ
Lτδ ( f )

)
kφ(x − k)

=
∑
n∈Z

f (τn)

(∑
k∈Z

(Φτδ )
−1
k,nφ(x − k)

)
=

∑
n∈Z

f (τn)ψ
τδ
n (x)

and so Eqs. (2.16) and (2.17) are obtained. By assumption the set {φ(· − n)}n∈Z is a Riesz basis for Vφ and by (2.17) the set
{ψτδ

n (·)}n∈Z is the image of {φ(· − n)}n∈Z by means of the bijective operator Φ−1
τδ

. Therefore the set {ψτδ
n (·)}n∈Z is a Riesz

basis for Vφ and we are done. �
Below we present some examples.

Example 1. All sampling functions φ(x) as above produce a maximum perturbation 0 < δφ < +∞ as in (2.5) (not optimal
in general). Recall that φ(x) is a sampling function if φ(n) = δ0,n , where δ0,n is the Kronecker delta symbol. Then Φ†(γ ) =∑

n∈Z
φ(n)e−inγ = 1 for all γ in [−π,π ] and so

δφ = inf
{

x ∈ R
+: Gφ(x) � 1

}
(2.18)

where Gφ(x) as in (2.6). For example we consider the B2-spline φ(x) = 1 − |x| if |x| � 1 and φ(x) = 0 elsewhere. For any
0 � x � 1 we observe that

Gφ(x) = sup
|y|�x

(
1 − ∣∣φ(y)

∣∣) + sup
|y|�x

∣∣φ(y − 1)
∣∣ + sup

|y|�x

∣∣φ(y + 1)
∣∣ = 3x. (2.19)

Then we use the above Eqs. (2.18) and (2.19) to obtain a maximum perturbation

δφ = inf
{

x ∈ [0,1]: 3x � 1
} = 1

3
.

Notice that if 	 = {δn}n∈Z is a positive (or negative) sequence then δφ = 1
2 is an estimate obtained in [6,15] as well.

Moreover this estimate is optimal in the sense that for δφ = 1
2 the resulting sampling set is not stable [1]. In [17] the

authors provided the estimate δφ = 1
3 − 2

9N , N � 1 for stable sampling sets when some suitable kernels K N are used to
reconstruct the linear spline space.

Let us present another sampling function. Consider the function φ(x) = (
sin(πx)

πx )4, x ∈ R. In this case for any 0 � x � 1/2
we have

Gφ(x) = 1 − φ(x) + 2
∞∑

φ(n − x)

n=1
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and from this equality we obtain numerically a maximum perturbation

δφ = inf
{

x ∈ R
+: Gφ(x) � 1

} ≈ 0.455.

Example 2. Consider functions of the form φc(x) = e−c|x| , c > 0. In this case we use the Poisson summation formula to
obtain

Φ†(γ ) = 2c
∑
n∈Z

1

c2 + (γ + 2nπ)2
, γ ∈ [−π,π ].

Since ‖Φ†‖0 = Φ†(π) we have δφ = inf{x ∈ R
+: Gφ(x) � Φ†(π)} where

Gφ(x) = 1 − φ(x) + 2
∞∑

n=1

(
φ(n − x) − φ(n)

)

for 0 � x � 1/2. For example if c = 1 we find numerically that δφ ≈ 0.21. We work similarly for functions of the form

φ(x) = e−cx2
, c > 0.

3. A finite reconstruction formula for Vφ

The exact reconstruction formula (2.16) is difficult to be implemented numerically because we must know an infinite
number of sampled data and we need to compute the inverse of the infinite matrix Φ−1

τδ
. In this section we establish a

finite reconstruction formula approximating elements of the space Vφ on bounded intervals.
In the previous section we considered infinite matrices Φτδ produced from a function φ ∈ W p(L∞,uα ), where uα(x) =

(1 +|x|)α is a polynomial weight with exponent α > 1 − 1
p . It turns out that all these matrices belong in the Gröchenig–Shur

class A p,uα which contains infinite matrices A = {am,n}m,n∈Z with norm

‖A‖A p,uα
= sup

n∈Z

∥∥{
uα(m − n)am,n

}
m∈Z

∥∥
�p

+ sup
m∈Z

∥∥{
uα(m − n)am,n

}
n∈Z

∥∥
�p

< ∞.

Furthermore if we assume that Φτδ ∈ Fδφ (recall Definition 1 of the previous section), then every matrix (or operator) in
this class belongs also in the space B2 containing all bounded operators on �2 with usual norm ‖ · ‖B2 and it has a bounded
inverse Φ−1

τδ
∈ B2. Therefore Wiener’s lemma for infinite matrices can be applied on elements of the class Fδφ , see Lemma 2

below. For more details about Wiener’s lemma for infinite matrices we refer to [8,9,11,20–22] and references therein.

Lemma 2. If Φτδ ∈ Fδφ , then both matrices Φτδ and Φ−1
τδ

belong in the Gröchenig–Shur class A p,uα .

Proof. Let Φτδ ∈ Fδφ and τδ = {τn = n + δn: |δn| � δ}n∈Z for some number δ bounded by the number δφ as in (2.5). Fix an
integer i. Then for any j ∈ Z we have

1 + δ + |τi − j| �
{

1 + δ + |i − j| − |δi| � 1 + |i − j|, |δi| � |i − j|,
1 + δ + |δi | − |i − j| � 1 + |δi| � 1 + |i − j|, |δi| � |i − j|.

Therefore if uα(x) is the polynomial weight related to the decay of φ (recall condition (P1)), then for any 1 � p < +∞ we
have ∥∥{

uα(i − j)(Φτδ )i, j
}

j∈Z

∥∥p
�p

=
∑
j∈Z

((
1 + |i − j|)α∣∣φ(τi − j)

∣∣)p

�
∑
j∈Z

((
1 + δ + |τi − j|)α∣∣φ(τi − j)

∣∣)p = (1 + δ)αp
∑
j∈Z

(
1 + |τi − j|

1 + δ

)αp∣∣φ(τi − j)
∣∣p

< (1 + δ)αp
∑
j∈Z

((
1 + |τi − j|)α∣∣φ(τi − j)

∣∣)p � (1 + δ)αp‖φ‖p
W p(L∞,uα ) < ∞

and for p = +∞ we obtain a similar estimate. Notice that the same bound holds for sup j∈Z ‖{uα(i − j)(Φτδ )i, j}i∈Z‖p
�p

as
well. We omit the proof here. Therefore the matrix Φτδ belongs in the Gröchenig–Shur class A p,uα . Since Φτδ ∈ Fδφ we have
Φτδ ,Φ

−1
τδ

∈ B2 as a result of Corollary 1 and so Wiener’s lemma is applied on Φτδ stating that the inverse matrix Φ−1
τδ

belongs in the Gröchenig–Shur class A p,uα as well, i.e. there exists a constant C ′ such that∥∥Φ−1
τδ

∥∥
A p,uα

� C ′ < ∞ (3.1)

(see [20, Theorem 4.1] with X = Z, w = uα (uα is a (1,2) admissible weight for any α > 1 − 1
p ), ρ is the usual metric on R

and μc the usual counting measure). �
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Remark 1. According to [20, Theorem 4.1], the constant C ′ in (3.1) depends on the norms ‖Φτδ ‖A1,uα
and ‖Φ−1

τδ
‖B2 and on

some other constants which are affected only from the weight uα .

Corollary 2. If Φτδ ∈ Fδφ ⊂ A p,uα for some selection of τδ = {τn}n∈Z as above and if {ψτδ
n (·)}n∈Z is the Riesz basis related to the

reconstruction formula (2.16), then
∥∥∥∥{

uα(· − τn)ψ
τδ
n (·)}n∈Z

∥∥
�p

∥∥
L∞ < +∞. (3.2)

Proof. Let {ψτδ
n (·)}n∈Z be as in (2.17), n ∈ Z, x ∈ R and Yn,x = {k ∈ Z: |k − x| � |n−x|

2 }. Then for 1 � p < +∞ we have

∥∥{
uα(· − τn)ψ

τδ
n (·)}n∈Z

∥∥p
�p

=
∑
n∈Z

∣∣∣∣
( ∑

k∈Yn,x

+
∑

k/∈Yn,x

)
uα(x − τn)

(
Φ−1

τδ

)
k,nφ(x − k)

∣∣∣∣
p

� 2p−1
∑
n∈Z

( ∑
k∈Yn,x

∣∣uα(x − τn)
∣∣∣∣(Φ−1

τδ

)
k,n

∣∣∣∣φ(x − k)
∣∣)p

+ 2p−1
∑
n∈Z

( ∑
k/∈Yn,x

∣∣uα(x − τn)
∣∣∣∣(Φ−1

τδ

)
k,n

∣∣∣∣φ(x − k)
∣∣)p

� 2p−1
∑
n∈Z

∑
k∈Yn,x

∣∣uα(x − τn)
∣∣p∣∣(Φ−1

τδ

)
k,n

∣∣p∣∣φ(x − k)
∣∣( ∑

k∈Yn,x

∣∣φ(x − k)
∣∣)p−1

+ 2p−1
∑
n∈Z

∑
k/∈Yn,x

∣∣uα(x − τn)
∣∣p∣∣φ(x − k)

∣∣p∣∣(Φ−1
τδ

)
k,n

∣∣( ∑
k/∈Yn,x

∣∣(Φ−1
τδ

)
k,n

∣∣)p−1

� 2p−1(1 + δ)αp‖φ‖p−1
W∞(L1,u0 )

∑
n∈Z

∑
k∈Yn,x

∣∣uα(x − n)
∣∣p∣∣(Φ−1

τδ

)
k,n

∣∣p∣∣φ(x − k)
∣∣

+ 2p−1(1 + δ)αp
∥∥Φ−1

τδ

∥∥p−1
A1,u0

∑
n∈Z

∑
k/∈Yn,x

∣∣uα(x − n)
∣∣p∣∣φ(x − k)

∣∣p∣∣(Φ−1
τδ

)
k,n

∣∣ (3.3)

because φ ∈ W∞(L1,u0) (see (2.1)), Φ−1
τδ

∈ A p,uα ⊂ A1,u0 by Lemma 2 and

uα(x − τn) = (
1 + ∣∣(x − n) + (n − τn)

∣∣)α �
(
1 + δ + |x − n|)α

= (1 + δ)α
(

1 + |x − n|
1 + δ

)α

� (1 + δ)αuα(x − n).

We work with the first term in the right-hand side of (3.3). We observe that for any k ∈ Yn,x we have

uα(x − n) � 2α

(
1 + |x − n|

2

)α

� 2α
(
1 + |n − x| − |k − x|)α � 2αuα(k − n),

and by Lemma 2 we obtain the bound 2p−12αp(1 + δ)αp‖φ‖p
W∞(L1,u0 )‖Φ−1

τδ
‖p

A p,uα
. For the second term in the right-hand

side of (3.3) we observe that for k /∈ Yn,x we have

uα(x − n) � 2α

(
1 + |x − n|

2

)α

� 2αuα(x − k)

and so we obtain a bound 2p−12αp(1 + δ)αp‖Φ−1
τδ

‖p
A1,u0

‖φ‖p
W∞(Lp,uα ) .

If p = +∞ we easily obtain
∥∥{

uα(· − τn)ψ
τδ
n (·)}n∈Z

∥∥
�∞ � 2α(1 + δ)α

(‖φ‖W∞(L1,u0 )

∥∥Φ−1
τδ

∥∥
A∞,uα

+ ∥∥Φ−1
τδ

∥∥
A1,u0

‖φ‖W∞(L∞,uα )

)
and the proof is complete. �

In order to produce a numerically implementable reconstruction formula for the space Vφ approximating the sampling
formula (2.16) we replace the infinite matrix Φ−1

τδ
appearing in the representation of the basis functions ψ

τδ
n (see (2.17))

with the inverse (if it exists) of a finite square matrix of the form {φ(τm −n)} and examine if the new formula approximates
the original sampling formula in some sense. The finite section method [10] provides answers to these questions. First we
give some definitions.
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We consider a finite set X containing successive integers and for any positive integer R we define the R-neighborhood
of X by

XR = {inf X − R, . . . , sup X + R}.
Let

P XR :�2(Z) → H XR : P XR c =
{

cn, n ∈ XR ,

0, elsewhere
(3.4)

be the projection of a sequence c ∈ �2 onto a finite dimensional subspace H XR and let

Φτδ,Y =
{

(Φτδ )m,n, m,n ∈ Y ,

0, elsewhere
(3.5)

be the finite section of a matrix Φτδ ∈ Fδφ on Y × Y ⊂ Z
2. Then we have

Lemma 3. Let XR be the R-neighborhood of the set X as above and P XR be a projection operator as in (3.4). If Φτδ,XR is the finite
section of a matrix Φτδ ∈ Fδφ as in (3.5), then there exist two positive constants C, D as in Lemma 1 such that

C‖P XR c‖�2 �
∥∥(Φτδ,XR )c

∥∥
�2

� D‖P XR c‖�2 for all c ∈ �2. (3.6)

Proof. Since Φτδ ∈ Fδφ the inequality (2.7) holds for any element of the space H XR (the range of the operator P XR ), so

C‖P XR c‖2
�2

�
∣∣〈Φτδ P XR c, P XR c〉�2

∣∣ � D‖P XR c‖2
�2

.

From this inequality we easily obtain C‖P XR c‖2
�2

� |〈Φτδ,XR c, c〉�2 | � D‖P XR c‖2
�2

and then (3.6). �
Lemma 4. Let Φτδ,XR be the finite section of a matrix Φτδ ∈ Fδφ ⊂ A p,uα . Then the matrices Φτδ,XR and Φ−1

τδ,XR
belong in A p,uα .

Furthermore there exists a positive constant C0 independent of the selection of the set X and the positive integer R such that

sup
m,n∈XR

{∥∥{
uα(m − n)(Φτδ )

−1
m,n

}
m

∥∥
�p(XR )

,
∥∥{

uα(m − n)(Φτδ )
−1
m,n

}
n

∥∥
�p(XR )

}
� C0.

Proof. For any finite set Y ⊂ Z there holds

‖Φτδ,Y ‖A p,uα
� ‖Φτδ‖A p,uα

< ∞. (3.7)

Let |XR | be the cardinality of a set XR as above and let

Φ
†
XR

=
∑
λ∈Z

Φτδ,Y XR ,λ

be a block-diagonal infinite matrix where Y XR ,λ = {s + λ|XR |: s ∈ XR}. Then for any c ∈ �2 we have

∥∥Φ
†
XR

c
∥∥2

�2
=

∑
m∈Z

∣∣(Φ†
XR

c
)

m

∣∣2 =
∑
s∈XR

∑
l∈Z

∣∣(Φ†
XR

c
)

s+l|XR |
∣∣2

=
∑
s∈XR

∑
l∈Z

∣∣(Φτδ,Y XR ,l c)s
∣∣2 =

∑
l∈Z

‖Φτδ,Y XR ,l c‖2
�2

.

By (3.6) we obtain

C2‖c‖2
�2

= C2
∑
l∈Z

‖P Y XR ,l c‖2
�2

�
∑
l∈Z

‖Φτδ,Y XR ,l c‖2
�2

� D2
∑
l∈Z

‖P Y XR ,l c‖2
�2

= D2‖c‖2
�2

and so

C‖c‖2 �
∥∥Φ

†
XR

c
∥∥

2 � D‖c‖2 for all c ∈ �2 (3.8)

for some positive constants C, D as in Lemma 3. As a result the operator Φ
†
XR

is bounded on �2 and has bounded inverse
given by

(
Φ

†
XR

)−1 =
∑

(Φτδ,Y XR ,λ
)−1 (3.9)
λ∈Z
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and thus by applying Wiener’s lemma for infinite matrices we obtain

∥∥(
Φ

†
XR

)−1∥∥
A p,uα

� C0

for some constant C0 independent of the set X and the positive integer R (see Remark 1 and combine with Eqs. (3.7)
and (3.8)). Since from (3.9) there holds

(
Φ

†
XR

)−1
i, j = (Φτδ,XR )−1

i, j

for any i, j ∈ XR the result is proved. �
Now we can prove the main result of this section.

Theorem 2. Consider a space Vφ as in (1.1) generated from the integer shifts of a function φ as above and assume that Vφ admits a
stable reconstruction formula (2.16) with respect to an ordered and ε-separated perturbed sampling set τδ = {τn}n∈Z . For any f ∈ Vφ

and for any bounded interval X define by

f ∗(x) =
∑

n∈XR

f (τn)ϕ
τδ
n (x) (3.10)

the finite reconstruction approximation of f on X , where the set XR is the R-neighborhood of the set X = {n ∈ Z: τn ∈ X },

ϕτδ
n (x) =

∑
m∈X3R

(Φτδ,X3R )−1
m,nφ(x − m)

and Φ−1
τδ,X3R

is the inverse of a square matrix Φτδ,X3R as in (3.5). Then there exists a positive constant C independent of the bounded
interval X , the set X , the positive integer R and the function f such that the error when we reconstruct f on X using the finite
reconstruction approximation f ∗(x) is bounded by

sup
x∈X

∣∣ f (x) − f ∗(x)
∣∣ < C

(‖{ f (τn)}‖�2(XR )

R2α− 3
2q

+ ‖{ f (τn)}‖�2(Z−XR )

Rα− 1
2q

)
.

Here, the number α > 1 − 1
p (p � 1) is the exponent of the polynomial weight uα(x) = (1 + |x|)α related to the decay rate of φ and

q is the conjugate exponent of p.

Proof. For any f ∈ Vφ and for any x ∈ X we have

f (x) − f ∗(x) =
∑

n∈XR

f (τn)
(
ψτδ

n (x) − ϕτδ
n (x)

) +
∑

n/∈XR

f (τn)ψ
τδ
n (x), (3.11)

where the functions ψ
τδ
n (x) are as in (2.17). First we deal with the second term in the right-hand side of (3.11) and we have

∣∣∣∣
∑

n/∈XR

f (τn)ψ
τδ
n (x)

∣∣∣∣ �
∥∥{

f (τn)
}∥∥

�2(Z−XR )

( ∑
n/∈XR

∣∣ψτδ
n (x)

∣∣2
)1/2

.

Let X = {n ∈ Z: τn ∈ X } and let XR be the R-neighborhood of X . By assumption the set τδ is an ordered and ε-separated
set satisfying (2.4), so for any x ∈ X we have

|x − τn| =
{

x − τn � τinf X−1 − τn � ε(inf X − 1 − n), inf X > n,

τn − x � τn − τsup X+1 � ε(n − sup X − 1), sup X < n.

Taking into account the above relation we compute

sup
x∈X

∑
n/∈XR

∣∣ψτδ
n (x)

∣∣2 = sup
x∈X

∑
n/∈XR

∣∣uα(x − τn)ψ
τδ
n (x)

∣∣2
u−2

α (x − τn)

� sup
x∈X

∥∥{(
uα(x − τn)ψ

τδ
n (x)

)2}
n

∥∥
�p(Z−XR )

∥∥{
uα(x − τn)

−2}
n

∥∥
�q(Z−XR )

� sup
x∈X

∥∥{(
uα(x − τn)ψ

τδ
n (x)

)}
n

∥∥2
�p(Z−XR )

∥∥{
uα(εn)−2}∥∥

�q(Z−{−R,...,R})

� C0
∥∥{

uα(εn)−2}∥∥
�q(Z−{−R,...,R}) <

C1

2α− 1 (3.12)

R q
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for some positive constant C1 depending on α,ε,q, C0. Here the constant C0 is as in (3.2), α > 1 − 1
p for some p � 1 is

the exponent of a polynomial weight α(x) = (1 + |x|)α related with the decay of the generator φ (see condition (P1) at the
beginning of Section 2 and compare with Corollary 2), q is the conjugate exponent of p and the number ε is as in (2.4).

In order to compute an upper bound for the first term in (3.11) we need estimates for supx∈X
∑

n∈XR
|ψτδ

n (x) − ϕτδ
n (x)|2.

By definition ψ
τδ
n (x) = ∑

m∈Z
(Φτδ )

−1
m,nφ(x − m) or equivalently

φ(x − l) =
∑
n∈Z

(Φτδ )n,lψ
τδ
n (x) =

∑
n∈X3R

φ(τn − l)ψτδ
n (x) +

∑
n/∈X3R

φ(τn − l)ψτδ
n (x).

Since the projection matrix Φτδ,X3R = {φ(τn − l): n, l ∈ X3R} is invertible as a result of Lemma 3, we multiply both sides of
the above equality with the inverse matrix Φ−1

τδ,X3R
and we obtain

∑
k∈XR

∣∣ψτδ

k (x) − ϕτδ

k (x)
∣∣2 =

∑
k∈XR

∣∣∣∣
∑

l∈X3R

(Φτδ,X3R )−1
l,k

∑
n/∈X3R

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2

� 2
∑

k∈XR

∣∣∣∣
∑

l∈X2R

(Φτδ,X3R )−1
l,k

∑
n/∈X3R

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2

+ 2
∑

k∈XR

∣∣∣∣
∑

l∈X3R−X2R

(Φτδ,X3R )−1
l,k

∑
n/∈X3R

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2

. (3.13)

First we deal with the first term of the right-hand side of (3.13). Taking into account the decay estimates obtained in
Lemmas 2 and 4 we compute

sup
x∈X

∑
k∈XR

∣∣∣∣
∑

l∈X2R

(Φτδ,X3R )−1
l,k

∑
n/∈X3R

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2

� sup
x∈X

∑
k∈XR

( ∑
l∈X2R

∣∣(Φτδ,X3R )−1
l,k

∣∣) ∑
l∈X2R

∣∣∣∣
∑

n/∈X3R

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2∣∣(Φτδ,X3R )−1

l,k

∣∣

�
∥∥Φ−1

τδ,X3R

∥∥2
A1,u0

sup
x∈X

∑
l∈X2R

∣∣∣∣
∑

n/∈X3R

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2

�
∥∥Φ−1

τδ,X3R

∥∥2
A1,u0

sup
x∈X

∑
l∈X2R

( ∑
n/∈X3R

∣∣(Φτδ )n,l
∣∣) ∑

n/∈X3R

∣∣ψτδ
n (x)

∣∣2∣∣(Φτδ )n,l
∣∣

�
∥∥Φ−1

τδ,X3R

∥∥2
A1,u0

(
sup

l∈X2R

∑
n/∈X3R

∣∣(Φτδ )n,l
∣∣)(

sup
n/∈X3R

∑
l∈X2R

∣∣(Φτδ )n,l
∣∣)(

sup
x∈X

∑
n/∈X3R

∣∣ψτδ
n (x)

∣∣2
)

�
∥∥Φ−1

τδ,X3R

∥∥2
A1,u0

∥∥Φτδ

∥∥2
A p,uα

(
sup

l∈X2R

∥∥{
uα(n − l)

}
n

∥∥
�q(Z−X3R )

)

×
(

sup
n/∈X3R

∥∥{
uα(n − l)

}
l

∥∥
�q(Z−X2R )

)(
sup
x∈X

∑
n/∈X3R

∣∣ψτδ
n (x)

∣∣2
)

<
∥∥Φ−1

τδ,X3R

∥∥2
A1,u0

‖Φτδ‖2
A p,uα

C2

R2α−2/q

C1

R2α−1/q
= C ′

R4α− 3
q

, (3.14)

where the constant C1 is as in (3.12) and the constant C2 depends on α and q. We notice that the overall constant C ′ does
not depend on the set X or the positive integer R because the norm ‖Φ−1

τδ,X3R
‖A1,u0

is independent of the set X and the
positive integer R as we showed in Lemma 4.

We work similarly for the second term of (3.13). In this case we have

sup
x∈X

∑
k∈XR

∣∣∣∣
∑

l∈X3R−X2R

(Φτδ,X3R )−1
l,k

∑
n/∈X3R

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2

� sup
x∈X

∑ ( ∑ ∣∣(Φτδ,X3R )−1
l,k

∣∣)( ∑ ∣∣∣∣
∑

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2∣∣(Φτδ,X3R )−1

l,k

∣∣)

k∈XR l∈X3R−X2R l∈X3R−X2R n/∈X3R
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�
(

sup
k∈XR

∑
l∈X3R−X2R

∣∣(Φτδ,X3R )−1
l,k

∣∣)(
sup

l∈X3R−X2R

∑
k∈XR

∣∣(Φτδ,X3R )−1
l,k

∣∣)(
sup
x∈X

∑
l∈X3R−X2R

∣∣∣∣
∑

n/∈X3R

(Φτδ )n,lψ
τδ
n (x)

∣∣∣∣
2)

�
∥∥Φ−1

τδ,X3R

∥∥2
A p,uα

(
sup

k∈XR

∥∥{
u−1

α (l − k)
}

l

∥∥
�q(X3R−X2R )

)(
sup

l∈X3R−X2R

∥∥{
u−1

α (l − k)
}

k

∥∥
�q(XR )

)

×
( ∑

l∈X3R−X2R

∣∣(Φτδ )n,l
∣∣) sup

x∈X

( ∑
l∈X3R−X2R

∑
n/∈X3R

∣∣ψτδ
n (x)

∣∣2∣∣(Φτδ )n,l
∣∣)

<
∥∥Φ−1

τδ,X3R

∥∥2
A p,uα

‖Φτδ‖2
A1,u0

C3

R2α−2/q
sup
x∈X

∑
n/∈X3R

∣∣ψτδ
n (x)

∣∣2

<
∥∥Φ−1

τδ,X3R

∥∥2
A p,uα

‖Φτδ‖2
A1,u0

C3

R2α−2/q

C1

R2α−1/q
= C ′′

R4α− 3
q

, (3.15)

where the constant C1 is as in (3.12) and the constant C3 depends on α and q. The overall constant C ′′ does not depend
on the set X or the positive integer R for the same reasons as above. The bound (3.15) and the bound (3.14) are applied
to (3.13). The resulting bound together with the bound (3.12) are applied to (3.11) and for C = max{C1, C ′ + C ′′} the result
is obtained. �
Remark 2. We notice that the decay rate obtained in Theorem 2 is smaller than the decay rate obtained in [19, Theorem 6.2].

4. Jitter error

The sampling reconstruction formula (2.16) and the local reconstruction formula (3.10) can be applied if we are aware of
the sampling values τn = n + δn , n ∈ Z. In some cases sampled data f (n) are perturbed without our knowledge (i.e. 	 = {δn}
is unknown). Then when we reconstruct the signal using (1.3) we are facing jitter. In this section we deal with the following
problem:

Let Vφ be a subspace of L2(R) as above and let {n + δn}n∈Z be a set of stable sampling for Vφ for any perturbation
	 = {δn}n∈Z bounded by a positive number δφ as in (2.5). Given a function f ∈ Vφ , a set of sampled data L( f ) = { f (τn)}n∈Z

on a sampling set τδ = {n + δn}n∈Z (where the elements δn are unknown) and a pre-determined error ε > 0 we want to find
a number δφ,ε such that for any perturbation 	 bounded by δφ,ε there holds

sup
x∈R

∣∣∣∣ f (x) −
∑
n∈Z

f (τn)ψ
τ
n (x)

∣∣∣∣ < ε

where τ = Z and ψτ
n (x), n ∈ Z as in (2.17). We have

Proposition 1. If the space Vφ admits a stable reconstruction formula as in (2.16) with respect to a sampling set τδ = {τn}n∈Z , then
for any f ∈ Vφ with norm ‖ f ‖L2 � c < ∞ we have

sup
x∈R

∣∣∣∣ f (x) −
∑
n∈Z

f (τn)ψ
τ
n (x)

∣∣∣∣ �
c‖φ‖W2(L∞,u0 )

A‖Φ†‖0
Gφ(δ),

where τ = Z and ψτ
n as in (2.17). Here the functions Φ†(γ ) and Gφ(x) are as in (2.3) and (2.6) respectively and A is the lower Riesz

bound of the set {φ(· − n)}n∈Z as in (1.2).

Proof. We have

sup
x∈R

∣∣∣∣ f (x) −
∑
n∈Z

f (τn)ψ
τ
n (x)

∣∣∣∣ � sup
x∈R

∑
n∈Z

∣∣ f (τn) − f (n)
∣∣∣∣ψτ

n (x)
∣∣

�
(∑

n∈Z

∣∣ f (τn) − f (n)
∣∣2

)1/2

sup
x∈R

(∑
n∈Z

∣∣ψτ
n (x)

∣∣2
)1/2

. (4.1)

Let F (x) = {φ(x − m)}m∈Z and Φ be as in (2.2). Recalling (2.17) and using (2.3) we have

∑
n∈Z

∣∣ψτ
n (x)

∣∣2 =
∑
n∈Z

∣∣∣∣
∑
m∈Z

Φ−1
m,nφ(x − m)

∣∣∣∣
2

= ∥∥Φ−1 F (x)
∥∥2

�2

�
∥∥Φ−1

∥∥2
2

∥∥F (x)
∥∥2 �

∥∥Φ†
∥∥−2‖φ‖2

W (L ). (4.2)
B �2 0 2 ∞,u0
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On the other hand if f (τn) = ∑
m∈Z

cmφ(τn − m) for some unique c ∈ �2 and if Φτδ is an infinite matrix as in Definition 1,
then from (3.12) and (1.2) we compute

∑
n∈Z

∣∣ f (τn) − f (n)
∣∣2 = ∥∥(Φτδ − Φ)c

∥∥2
�2

� G2
φ(δ)‖c‖2

�2
�

G2
φ(δ)

A2
‖ f ‖2

L2
, (4.3)

where the function Gφ(x) is as in (2.6). Substituting (4.2) and (4.3) into (4.1) we get the result. �
Corollary 3. Under the assumptions of Proposition 1 there exists a positive real number

δφ,ε = inf

{
δ ∈ R

+: Gφ(δ) � A‖Φ†‖0

c‖φ‖W2(L∞,u0 )

}

such that for any selection of a function f ∈ Vφ with norm ‖ f ‖L2 � c and for any selection of an ordered and ε-separated perturbed
sampling set τδ with δ < min{δφ,ε, δφ} we have

sup
x∈R

∣∣∣∣ f (x) −
∑
n∈Z

f (τn)ψ
τ
n (x)

∣∣∣∣ < ε.

Proof. Immediate consequence of Proposition 1. �
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