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Let T be a subnormal, nonnormal operator on a Hilbert space and suppose 
that the point spectrum of T* is empty. Then there exist vectors x # 0 for 
which (T* - zI)-ts exists and is weakly continuous for all z. It is shown 
that under certain conditions, the Cauchy integral of this vector function 
taken around an appropriate contour, not necessarily lying in the resolvent 
set of T*, leads to a proper (nontrivial) invariant subspace of T*. 

1. INTRODUCTION 

Let T be a subnormal operator on an infinite-dimensional Hilbert 
space $ with the minimal normal extension N on R 3 $. It was 
shown by Bram [I] that sp( T) is obtained by combining sp(N) 
with some of the holes of this latter set (cf. [8], p. 102). (A hole 
in a compact set X is a bounded component of its complement 
C - X.) Thus, if x E sp(T) - sp(N), then z belongs to one of these 
holes. Moreover, if x ranges over the unit vectors in $j then 
inf /I( T* - Z)X 11 = 0, while 

inf j/(T - z)x I/ = inf /(N - z)x 11 2 dist(z, sp(T)) > 0, 

and hence z belongs to the point spectrum of T*. In particular, 
T surely has a nontrivial invariant subspace (# 0, 5~) if sp(iV) is 
a proper subset of sp(T). 

For any compact set X, let C(X) denote the continuous functions 
on X, and R(X) the functions on X which are uniformly approximable 
on X by rational functions with poles off X. It was shown by Clancey 
and Putnam [4] that if U is any open disk satisfying sp( T) n U f 1z1 
and if R(sp( 2’) n U-) = C(sp( T) n U-) then T has a normal part, 
thus, T = TX @ N, where N (# 0) is normal. In view of the earlier 
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remarks, it is clear that if sp(N) A U f o and if R(sp(N) n U-) = 
C(sp(N) 17 U-), then T has a nontrivial invariant subspace. In the 
special case in which li(sp(N)) = C(sp(N)), this result is essentially 
contained in Wermer [18]. (Actually, Wermer considers the case 
where sp(N) has planar measure 0, so that R(sp(N)) = C(sp(N)) 
by the Hartogs-Rosenthal Theorem; see also Brennan [2] and 
Yoshino [19].) 

A closed subset Q of a compact set X is said to be a peak set of 
R(X) if there is a function f~ R(X) for which f(z) = 1 for z E Q 
and If(.z)I < 1 f or x E X - Q (see [6], p. 56). It has recently been 
shown by Lautzenheiser ([lo], p. 84), that if T is subnormal, or 
even if sp( T) is a spectral set of T, and if Q is a proper peak set of 
R(sp( T)) with the property that 

Q Q (UP - Q>-9 (1.1) 

then T has a nontrivial reducing subspace. The condition (I .l) 
is used to ensure that a certain direct sum representation of T is 
nontrivial. It may be remarked that Lautzenheiser also extends 
certain results of Sarason [ 151 on the existence of reducing spaces 
of an operator T and that the methods of both authors involve the 
notion of Gleason parts of uniform algebras. 

In this paper use will be made of the projection “operator” 
P = PC defined by 

Px = P,x = -(2ni)--1 J’ (T” - t)-‘x dt, for xEL, (14 
C 

where T is subnormal, L is the class of vectors defined in (1.7) below, 
and C is the rectifiable boundary of a bounded region (connected 
open set) S. It will be assumed that C consists of an outer rectifiable 
simple closed curve and possibly also a finite number of noninter- 
secting inner rectifiable simple closed curves having disjoint interiors 
and lying inside the outer curve, and that C is oriented positively 
with respect to S. It is not assumed however that C lies in the resolvent 
set of T* (as is the usual case, cf. Riesz and Sz-Nagy [12], p. 421). 
By int(C) and ext(C) will be meant the sets S and C - S-, respec- 
tively. The notion of a peak set will again play a role in establishing 
the existence of nontrivial invariant (though possibly not reducing) 
spaces of certain subnormals T, even though the condition (1.1) 
need not hold. First, some preliminaries will be set forth. 

Since T is subnormal, it is also hyponormal, i.e., 

T*T-TT*=D>O. (1.3) 
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Suppose that 

the point spectrum of T* is empty, (1.4) 

and hence, by (1.3), the point spectrum of T is also empty, and 
let D have the spectral resolution 

D = 
s 

m t dF,. 
0 

(1.5) 

Since T,*T, = T,T,* + D > D, where T, = T - z, it follows 
from Putnam [ll] that if x = F(s, 00)x, where s > 0, then, for 
any y in 5 

F(z) = ((T* - z)-’ x, y) is continuous in C and analytic for z # sp( T*). (1.6) 

Note that such vectors x are dense in the range of D. Further, it is 
clear that (1.6) remains valid if x is replaced by T*nx for n = 0, 1, 2,..., 
(To = I). Hence, if L denotes the linear manifold of finite linear 
combinations of these vectors, so that 

ix= g T*nF(s, ,m)r,:s,>O,x,t~), (1.7) 
n-1 

then (1.6) holds for any x in L. Next, let 5’ denote a region with 
boundary C, as described above, and define Px = Pcx by (1.2). 
(Note that (Px, y) = JcF(t) dt exists as a Riemann integral.) For later 
use, note that the linear manifold P,(L) = {Pcx: x EL) is invariant 
under T*. 

Incidentally, there exist subnormal operators which are not normal 
and for which (1.4) holds; examples have been given by Clancey 
and Morrel [3], using a result of Brennan [2]. 

There will be proved the following two lemmas. 

LEMMA 1. Let T be subnormal on Sj with the minimal normal 
extension N on $3 3 5 and suppose (1.4). Let N* have the spectral 
resolution 

N* = t dE,, 
s U.8) 

let S, C and Pcx be defined as above, and let 

Wt) = d II -WC~II~, XEL, (1.9) 
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as a Stieltjes dt#eerential. Then 

where f(t) = -((T* - t)-lx, P,x)/2ni (which is continuous in C), 
K = sp(T*), and K, = K u S- (= K u (int(C))-). 

LEMMA 2. Under the conditions of Lemma 1, let Q be a peak set 
of R(K,) and suppose that 

meas,(Q n C) = 0, (1.11) 

the measure denoting arc length on C. Then 

If, in addition, 

E(Q) Pcx = 0. (1.12) 

E(Q) f 0 ati P,(L) # 0, (1.13) 

where L is de$ned in (1.7), then Mc = (P,(L))- is a nontrivial invariant 
subspace of T* satisfying 

MC I Iho) . (1.14) 

The proofs of the lemmas will be given in Sections 2 and 3. Various 
consequences concerning the existence of invariant spaces for certain 
subnormal operators will be obtained in the theorems of Sections 4-7. 

2 

Proof of Lemma 1. The vector function 

A,(z) = -(24-l jc (t - z)-’ (T* - Q-1 x dt 

is clearly analytic for z 4 C, in particular, for 2 E ext(C) (= C - 69). 
Since T* - z = T* - t + (t - x), one sees that (T* - z) A,(z) = 
Px (= Pcx) for z E ext(C) and hence, in particular, that 

G(z) = ((I’” - z)-1 Px, Px), (2-l) 
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is analytic for z E ext(C). If z $ sp( T*), then 

G(z) = (Px, (T - z)-’ Px) = (Px, (N - %)-’ Px) = ((N* - z)-’ Px, Px). 

(Note that if u = (2’ - x)-l Px, then Px = (T - Z))U = (N - ,%)u 
and hence u = (N - 5)--l Px.) Consequently, by (1.8), 

h(z) = G(z), z 4 sPv*h (2.2) 

where r%(z) denotes the Cauchy transform 

lit(z) = 1 (t - z)-1 dm(t), &n(t) = a! 11 E,Px 112. (2.3) 

(For properties of the Cauchy transform, see [6], p. 46, [20], p. 118, 
or, for a detailed exposition, [7], Chap. II.) 

Next, note that G(z) of (2.1) has the representation G(z) = 
-(2+-l Jc (t - x)-l ((T* - t)%, Px) dt, for z E ext(C), so that if 
f(x) = Jc (t - x)-l &z(t), w  h ere n denotes the measure on C defined 
by &r(t) = -((T* - t)-lx, Px) &@A, then G(z) = i;(x) for z E ext(C). 
Consequently, if &z,(x) = &n(z) - &z(z), then, by (2.2), 

?fQ(z) = 1 (t - z)-1 &n,(t) = 0 for z E ext(C) - sp(T*). (2.4) 

Hence, relation (1 .lO) holds for rational functions F with poles 
off K, = K u (int(C))-, while its validity for any FE R(K,,) follows 
by taking uniform limits. 

3 

Proof of Lemma 2. Let h E R(K,) be a peak function of Q, so 
that h = 1 on Q and 1 h 1 < 1 on K,, - Q. If F = F, = h” for 
n = 1, 2,..., in (l.lO), then F, E R(K,), 1 F, 1 < 1 on K,, and 
F,(t) --f 1 or 0 according as t E Q or t E K0 - Q. Hence, by (l.lO), 
(1.11) and Lebesgue’s uniform boundedness term by term integration 
theorem, lKno dm(t) = 0, that is, since E(C - K) = 0, the relation 
(1.12). 

Next, suppose that (1.13) holds. Then clearly MC # 0 is an 
invariant space of T* satisfying (1.14), and there remains only to 
show that MC # 5. But if MC = 8, then, by (1.14), REcO) C 5l @ $3 
and hence .$ C R @ REtO) . Since this last space clearly reduces N, 
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it follows from the. minimal property of N that R @ RE(o) = 9, 
that is, E(Q) = 0, in contradiction to (1.13). This completes the 
proof of Lemma 2. 

4 

THEOREM 1. Let T be subnormal on 8 with the minimal normal 
extension N. Suppose that T is not normal and that the point spectrum 
of T* is empty. Let N* have the spectral resolution (1.8) and let C 
be any rectijiable simple closed curve. Let K,, = K v (int(C))- and 
K, = KU (U- - (int(C))), w h ere K = sp(T*) and U is some open 
disk containing K and C. Suppose that, for j = 0 and 1, Qj is a peak 
set of R(K,) and that meas,(Qj n C) = 0 and E(Q& # 0. Then T* 
has a non-trivial invariant subspace M satisfying either M 1 RE(oO) 

or M I RE(O1) . 

Proof. If the linear manifold P,(L) # 0, the theorem is a con- 
sequence of Lemma 2 with Q corresponding to Q,, . On the other 
hand, if P,(L) = 0, then let C, denote the (positively oriented) 
region U - (int(C))-. The b oundary of U surrounds K, and so 
Pqx = x - PC x = x for any x in L of (1.7). Since T is not normal, 
then P,$L) = L # 0, hence also MFl = (Pcl(L))- # 0. Since 
Qs n C, = Qj n C (j = 0, l), th en, in particular, meas,(Ql n Cl) = 0. 
Consequently, Lemma 2, with Q, K0 and C replaced by Q1, KI 
and C,, can be again applied and this completes the proof of 
Theorem 1. 

5 

THEOREM 2. Let T be subnormal on $s with the minimal normal 
extension N. Suppose that T is not normal and that the point spectrum 
of T” is empty. Let N* have the spectral resolution (1.8) and let C 
be a rectifiable simple closed curve satisfying 

K f3 (int(C)) = %, K = sp(T*). (5.1) 

Suppose that Q C (K n C) and that Q is a peak set of K, = U- - int( C) 
(IK), where U is some open disk containing K and C, and that also 
E(Q) # 0 and meas,(Q n C) = 0. Then T* has ‘a nontrivial inoariant 
subspace M satisfying M 1 RE(o) . 
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Proof. Let C’ be a rectifiable simple closed curve, and consider 
the vector Pcrx defined by (1.2) with C = C’, thus 

Pc,x = -(274-l Ic, (T* - t>-1 N dt, 

for any fixed x # 0, x EL. If C’ C int(C), then PC/x = 0 by (5.1), 
(1.6), and Cauchy’s Theorem. Since, by (1.6), (T* - t)-‘x is a 
weakly continuous function of t in C, then clearly Pc,x is also a 
weakly continuous function of C’ under continuous deformations 
of C’ in which also the arc length of C’ varies continuously. It follows 
that P,(L) = 0. If C, is defined as in Section 4, the remainder of 
the proof is like that of Theorem 1. 

COROLLARY OF THEOREM 2. Let T be subnormal on $ with the 
minimal normal extension N. Suppose that T is not normal and that 
the point spectrum of T* is empty, and let N* have the spectral resolution 
(1.8). Let C be a circle satisfying K n (int(C)) = 0 and K n C = {z,,>, 
where K = sp( T*), and suppose that E(z,) # 0, that is, z0 is in the 
point spectrum of N *. Then T* has a nontrivial invariant subspace M 
satisfying M 1 REtz,) . 

Proof. One need only note that z,, is a peak set of R(K,), where 
K1 = V - int(C) and U is any open disk containing K and C. 
In fact, if z1 is any point in the interior of a segment joining z,, to 
the center of C thenf(z) = (zO - zl)(z - zl)-’ is a peak function. 

6 

THEOREM 3 (Lautzenheiser). Let T be subnormal on 5. Let C be a 
simple closed curve of class C2 which separates K = sp(T*), so that 
both int(C) n K and ext(C) n K are non-empty. Suppose that 

meas,(C n K) = 0, (6.1) 

where the measure denotes arc length on C. Then T has a non-trivial 
invariant subspace. 

Remark. Actually, Theorem 3 is only a special case of what 
Lautzenheiser has proved. Among other things, he has shown that 
T even has a nontrivial reducing subspace. Further, although his 
proof involves the notion of Gleason parts and ours that of the 
projection operator, parts of the arguments overlap, in particular, 

5WI7/3-3 
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those involving references to Davie and 0ksenda1, Rudin and 
Vitushkin. 

For other results concerning invariant spaces of certain operators 
having “almost disconnected” spectra see Stampfli [16]. 

Proof. It will b e supposed that T is not normal and that the 
point spectrum of T* is empty (otherwise, the assertion of the 
Theorem is trivial). Further, it can be supposed that Pcx of (1.2) 
satisfies 

p,x # 0, for some x EL. (6.2) 

(In case Pcx = 0 for all x EL, one replaces C by C u Cl where 
C, is a large circle surrounding C u K. This amounts to replacing 

Pcx by (I- Pc) x and entails minor modifications of the ensuing 
argument.) As in [IO], one can use a result of Rudin as given in 
Hoffman [9], p. 81 (cf. also [13]) t o conclude the existence of a function 
h defined and continuous on (int(C))-, analytic inside C and such 
that h = 1 on C n K (cf. (6.1)) and j h 1 < 1 otherwise. If F is 
defined on Kl = KU (int(C))- = K’ u K”, where K’ = (int(C))- 
and K” = (ext(C))- n K, by F = h on K’ and F = 1 on K”, then 
FE C(K,), f / K’ E R(K’) (by Mergelyan’s Theorem or its generaliza- 
tion, see, e.g., Rudin [14], pp. 386, 390) and f 1 K” E R(K”). Since 
K’ n K” is a subset of a C2 curve it is analytically negligible ([17]; 
cf. [6], p. 237). It then follows from a result of Davie and 0ksendal 
[5] that FE R(K,). Th us, Q = K” is a peak set of R(KJ and 
meas,(Q n C) = 0. Th e assertion of Theorem 3 now follows from 
Lemma 2. 

7. FURTHER RESULTS ON ALMOST DISCONNECTED SPECTRA 

Whether the C2 hypothesis on C of Theorem 3 can be weakened 
to the requirement that C be rectifiable or even of class Cl is not 
known. However, one can obtain a certain Cr variation of Theorem 3 
in Theorem 4 below. First, some preliminaries will be needed. 

Consider a family C, , where 0 < t < I, of simple closed curves, 
where C1 C int(C,,) if t < t’, parametrized as follows. 

C, = {(x, y) : x = x(t, u) and y  = y(t, u), 0 < u < l}, (7.1) 

where x, y are of class Cl on [0, l] x [0, 11. Suppose that the mapping 
is 1 :l from {(t, u): 0 < t, u < I} onto M = {(X, y): x = x(t, U), 
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y = r(t, u)} and that J = a(~, r)/a(t, U) # 0. For each fixed t E [0, 11, 
let ds denote the element of arc length on C, , so that ds = 
(x,” + yu2)1/2 du. Th e e ement of area dA on M is then given by 1 
dA = 1 J 1 dt du and hence 

ds dt = (xu2 + yu2)1/2 1 J 1-l dA < (const.) dA. 

There will be proved the following theorem. 

(7.2) 

THEOREM 4. Let T be subnormal on 5. Let a rectifiable simple 
closed curve C and a vector x be chosen so that Pox of (1.2) satisfies 
Pox # 0 for some x EL. In addition, suppose that there exists a family, 
C, , of Cl curves, as described above, for which 

(int(C,))- C ext(C) for O<t<l; (7.3) 

for which, in addition, each C, separates sp( T*), so that (int(C,)) n K # 
s and ext(C,) n K # 0, for 0 < t < 1 and K = sp( T*); and, 

finally, for which there exists some subset E of [0, I] satisfying 

and 

mea,(E) > 0, (7.4) 

meas,(C, n K) = 0 for t EE, K = sp(T*), (7.5) 

where the latter measure denotes arc length on C, . Then T has a non- 
trivial invariant subspace. 

Remark. The gist of the hypothesis of Theorem 4 as against 
that of Theorem 3 is that, rather than having a single curve separating 
sp( T*) as in Theorem 3, one now has many such curves C, (t E E, 
meas, > 0). H owever, the somewhat delicate concept of analytic 
negligibility can now be avoided and, instead, replaced by the more 
primitive notions involved in Fubini’s theorem. In this way, the 
smoothness requirement is thus reduced from C2 to Cl. Incidentally, 
in both Theorems 3 and 4, the full smoothness on C or on the C, 
can be relaxed to some type of piecewise smoothness on the corre- 
sponding curves. 

Proof. As before, it can be supposed that T is not normal and 
that the point spectrum of T* is empty. If p denotes any (finite, 
complex) measure with compact support X, then 

j(z) = j- (t - z)-’ d?(t) 
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is analytic off X and 

jy (jx I t - 27 1-l d I P I (4) d/l < a (dA = dxdy), (7.6) 

where, say, Y is any compact set in the plane (cf. [6], p. 46). If, 
as in Lemma 1, &z(x) is defined by (1.9) for an x satisfying Pcx # 0, 
then d / m 1 = dm and, by (7.6) with p = m, together with (7.2) 
and Fubini’s Theorem, we have 

jE (jet (i,, I u - z 1-l dm(u)) 1 dz I) dt < CO, Kl = Ku @t(C))-, (7.7) 

where ! d.z 1 (= ds) is the element of arc length on C, . 
Since G(z) of (2.1) is analytic outside C, it follows from (2.4), 

(7.7) and Fubini’s Theorem that 

0 = ki)fl I, ( jcc h(z) dz) dt = (27ri)-’ s, [ 1; (I, (u - .z)-’ dz) dm(u)] dt 

=I [S E KnintCc,) 
wf4] dt 3 j [ [Inint(C ) dW] 4 

E 0 

where C, denotes the innermost curve of the family C, . (Note 
that SC, dm(u) = 0 for almost all t in E, in view of (7.7).) It follows 
from (7.4) that the last integrand [--*] = 0 and hence, if Q = 
K n int(C,), that E(Q) PC x = 0. Since C,, separates K then E(Q) # 0, 
so that, since Pcx # 0, relation (1.13) holds. Although it is not now 
claimed that Q is a peak set of an algebra, nevertheless, the argument 
of the last paragraph of Section 3 shows that T has a nontrivial 
invariant subspace. This completes the proof of Theorem 4. 
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