

Available online at www.sciencedirect.com

Topology and its Applications 141 (2004) 197–206

www.elsevier.com/locate/topol

On closed subsets of *M*1-spaces

Takemi Mizokami

Department of Mathematics, Joetsu University of Education, Joetsu, Niigata 943-8512, Japan

Abstract

We show that every closed subset of an M_1 -space has a closure-preserving open neighborhood base. This answers a question of Ceder, and gives positive solutions to other problems on adjunction spaces and countable sums of M_1 -spaces. 2004 Elsevier B.V. All rights reserved.

MSC: 54E20

*Keywords: M*1-spaces; Closure-preserving; Mosaic; *M*3-spaces

1. Introduction

All spaces are assumed to be regular T_1 . For a space X , we denote the topology of X by *τ*(*X*) or *τ*. For a subset *A* of *X*, we denote the subspace topology of *A* by *τ*(*A*). N always denotes all positive integers. The letters n, k, i are assumed to run through N. For families *U*, *V* of subsets of *X*, the operators *U* ∧ *V* and *U* \vee *V* are families {*U* ∩ *V* | *U* ∈ *U*, *V* ∈ *V*} and $\{U \cup V \mid U \in \mathcal{U}, V \in \mathcal{V}\}\)$, respectively. For the case $\mathcal{V} = \{V\}$, we simply write $\mathcal{U}|V$ in place of $U \wedge V$. For brevity, let "CP" stand for the term *"closure-preserving*". In 1961, Ceder [1] introduced M_i -spaces $(i = 1, 2, 3)$ as generalized metric spaces and proposed the following problems on M_1 -spaces:

- (1) Does any closed subset of an *M*1-space have a CP open neighborhood base?
- (2) Is any adjunction space of M_1 -spaces M_1 ?
	- (Strictly speaking, Ceder himself proposed weaker problems than (1) and (2), but essentially (1) and (2) are better to pose as open problems.) In this paper, we give a positive answer to (1), which implies a positive answer to (2) as well as the following problem of Gruenhage [3]:
- (3) If an *M*3-space *X* is a countable union of closed *M*1-spaces, is *X M*1?

E-mail address: mizokami@juen.ac.jp (T. Mizokami).

^{0166-8641/\$ –} see front matter \odot 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2003.12.007

Finally, we simply recall the definitions of *Mi*-spaces. A space *X* is called an *M*1-*space* if there exists a σ -CP base for *X*, an *M*₂-*space* if there exists a σ -CP quasi-base *B* for *X*, where *B* is a quasi-base whenever $x \in U$ with *U* open in *X*, there exists $B \in \mathcal{B}$ such that $x \in \text{Int } B \subset B \subset U$, and an *M*₃-*space* if there exists a *σ*-cushioned pair-base or equivalently there exists a stratification for *X*. For more detail and the properties of these spaces, it is better to refer to [4]. It is worthy to be noted that M_2 -spaces and M_3 -spaces coincide with each other by the famous independent study of Junnila and Gruenhage (see Theorem 5.27 in [4]).

2. The class P of M_1 -spaces

Let P be the class of M_1 -spaces whose every closed subset has a CP open neighborhood base. Then Ceder's problem (1) above is nothing but whether every M_1 -space belongs to P . As for the properties of P , Mizokami showed the following result:

- (i) Every adjunction spaces of spaces in P belongs to P [7, Corollary 3].
- (ii) If an M_3 -spaces *X* is the countable union of closed subspaces in P , then $X \in P$ [8, Theorem 3.16].

These results are used later to give the corollaries. Previously, Ito have obtained two important results about P as follows:

- (1) Every M_3 -space whose every point has a CP open neighborhood base belongs to $\mathcal P$ [6].
- (2) Every hereditarily M_1 -space belongs to \mathcal{P} [5].

On the other hand, it is well known that every M_1 -space with $\text{Ind} \leq 0$ belongs to P . And now, we come to the final stage. To prepare for the proof, we list up some known facts and prove two lemmas.

Fact 1 [9, Fact 4]. *Let* B *be a CP family of closed subsets of an M*3*-space X. Then there exists a pair* $\langle \mathcal{F}, \mathcal{V} \rangle$ *of families of subsets of X satisfying the following:*

- (i) \mathcal{F} *is a* σ -discrete closed cover of X and $V = \{V(F) | F \in \mathcal{F}\}\$ *is a point-finite* σ *discrete open cover of X such that* $F \subset V(F)$ *for each* $F \in \mathcal{F}$ *,*
- (ii) *for each* $F \in \mathcal{F}$ *and* $B \in \mathcal{B}$ *,* $F \cap B \neq \emptyset$ *if and only if* $F \subset B$ *and if* $F \cap B = \emptyset$ *, then V* (*F*) ∩ *B* = Ø. (*We call F the mosaic of B and V the frill of F*.)

Fact 2 [11]. Let (\mathcal{B}_i) be a sequence of CP families of closed subsets of an M_3 -space X. *Then there is a weaker metric topology* τ_m *of* $\tau(X)$ *such that for each i,* \mathcal{B}_i *is a CP family of closed subsets of* (X, τ_m) *.*

Lemma 2.1. *Let M be a closed subset of an M*3*-space X. Then there exists a family* $\mathcal{B} = \{B(O) \mid O \in \tau(X)\}\$ *satisfying the following*:

- (i) $\mathcal{B} | (X \setminus M)$ *is a CP family of closed subsets of* $X \setminus M$;
- (ii) *for each* $O \in \tau(X)$ *,*

$$
O \cap M = B(O) \cap M \subset \text{Int } B(O) \subset B(O) \subset O;
$$

(iii) *for each* $O \in \tau(X)$, $\overline{B(O)} \cap M \subset \overline{O \cap M}$;

(iv) *for each* O_1 , $O_2 \in \tau(X)$ *with* $O_1 \cap O_2 \cap M = \emptyset$ *, then* $B(O_1) \cap B(O_2) = \emptyset$ *.*

Proof. By [8, Lemma 3.1] there exists $\mathcal{B}_1 = \{B_1(O) \mid O \in \tau(X)\}\$ satisfying the following:

(1) $\mathcal{B}_1|(X \setminus M)$ is a CP family of closed subsets of $X \setminus M$;

(2) for each $O \in \tau(X)$,

$$
O \cap M = B_1(O) \cap M \subset \text{Int } B_1(O) \subset B_1(O) \subset O.
$$

- By [2, Theorem 2.2], there exists a function $κ : τ(M) \rightarrow τ(X)$ satisfying the following:
- (3) $\kappa(O) \cap M = O \cap M$, $O \in \tau(M)$;
- (4) if O_1 , $O_2 \in \tau(M)$ and $O_1 \cap O_2 = \emptyset$, then $\kappa(O_1) \cap \kappa(O_2) = \emptyset$.

For each $O \in \tau(X)$, take

$$
B(O) = B_1\bigl(\operatorname{Int} B_1(O) \cap \kappa(O \cap M)\bigr) \in \mathcal{B}_1.
$$

Then it is easy to see that $\mathcal{B} = \{B(O) \mid O \in \tau(X)\}$ satisfies the required conditions. \Box

We call B the L1-*extension* of $\tau(M)$ in X. Let U be a family of subsets of a space X and let $x \in X$. We call that U is CP at x in X if whenever $x \in \overline{U/U_0}$, $U_0 \subset U$, $x \in \overline{U}$ for some *U* ∈ U_0 , equivalently, if whenever $x \notin \overline{U}$ for each $U \in U_0$, where $U_0 \subset U$, there exists an open neighborhood *O* of *x* in *X* such that $O \cap (\bigcup \mathcal{U}_0) = \emptyset$.

In the proof of the main theorem later, we use the fact that if $\mathcal{O} \subset \tau(X)$ and $\mathcal{O}|M$ is CP in *M*, then ${B(O) | O \in O}$ is CP in *X*. This follows from the above lemma as a corollary:

Corollary 2.2. *Let M be a closed subset of an M*3*-space X. Let* V *be a CP family of open subsets of* M *and let* B *be the* $L1$ *-extension of* $\tau(M)$ *in* X *. Then*

 $B(V) = {B \in B \mid B \cap M = V \text{ for some } V \in V}$

is a CP family of open subsets of X such that for each $V \in V$ *,* $\mathcal{B}(V)$ *is an open neighborhood base of V in X.*

Proof. For each $V \in \mathcal{V}$, let

 $O(V) = \{ O \in \tau(X) \mid O \cap M = V \},\$

and let

 $\mathcal{B}(V) = \{B(O) \mid O \in \mathcal{O}(V)\}.$

Then $\mathcal{B}(V)$ is an open neighborhood base of V in X, and obviously

$$
\mathcal{B}(\mathcal{V}) = \bigcup \big\{ \mathcal{B}(V) \mid V \in \mathcal{V} \big\}.
$$

We show that $B(V)$ is CP in *X*. It is obvious that $B(V)$ is CP at each point of $X \setminus M$ in *X* by virtue of the property (i) of L1-extension β . So, it remains to show that $\beta(\mathcal{V})$ is CP at each point of *M* in *X*. To this end, let $p \in M$ and suppose $p \notin \bigcup \overline{B_0}$, where

$$
\mathcal{B}_0 = \bigcup \{ \mathcal{B}_0(V) \mid V \in \mathcal{V}_0 \},\
$$

 $B_0(V) \subset B(V)$ for each $V \in V_0$ and $V_0 \subset V$. Since V is CP at p in X, there exists an open neighborhood *O* of *p* in *X* such that $O \cap (\bigcup V_0) = \emptyset$. Hence by the property (iv) above, $B(O)$ is an open neighborhood of *p* in *X* such that

$$
B(O) \cap (\bigcup \mathcal{B}_0) = \emptyset.
$$

This proves that $\mathcal{B}(V)$ is CP at p in X. \Box

Fact 3 [10]. *Let M be a closed subset of a metric space. Then there exists a family* V *of open subsets of X satisfying the following*:

- (i) ${M} \vee \vee$ *is CP in X*;
- (ii) *for each* $O \in \tau(X)$ *, there exists* $V \in V$ *such that*

$$
V \cap M = O \cap M \subset V \subset O, \qquad \overline{V} \cap (X \setminus M) \subset O.
$$

Lemma 2.3. *Let* B *be a CP family of closed subsets of a metric space X. Then there exists families* $\{V(B) \mid B \in \mathcal{B}\}$ *of open subsets of X satisfying the following*:

(i) $\left[\left\{ \{B\} \vee \mathcal{V}(B) \mid B \in \mathcal{B} \right\} \text{ is } CP \text{ in } X; \right]$

(ii) *for each* $O \in \tau(X)$ *and* $B \in \mathcal{B}$ *, there exists* $V \in V(B)$ *such that*

$$
O \cap B = V \cap B \subset V \subset O, \qquad \overline{V} \cap (X \setminus B) \subset O.
$$

Proof. By Fact 1, there exists a pair $\langle \mathcal{F}, \mathcal{V} \rangle$ of the mosaic \mathcal{F} of B and its frill \mathcal{V} in X. Let $\mathcal{F} = \bigcup_n \mathcal{F}_n$, where each \mathcal{F}_n is discrete in *X*. Assume that for each $F \in \mathcal{F}_n$, $F \subset V(F) \subset$ ${x \in X \mid d(x, F) < \frac{1}{n}}$, where *d* is a metric of *X*. Since *X* is a metric space, by Fact 3, for each $F \in \mathcal{F}_n, n \in \mathbb{N}$, there exists a family $V(F)$ of open subsets of X satisfying the following:

(1) $\{F\} \vee \mathcal{V}(F)$ is CP in *X* and $\bigcup \mathcal{V}(F) \subset V(F)$;

(2) for each $O \in \tau(X)$, there exists $V \in \mathcal{V}(F)$ such that

$$
F \cap O = V \cap F \subset V \subset O, \qquad \overline{V} \cap (X \setminus F) \subset O.
$$

For each $B \in \mathcal{B}$, let $\mathcal{F}(B) = \{F \in \mathcal{F} \mid F \subset B\}.$

For each

$$
\delta = \langle V(F) \rangle_{F \in \mathcal{F}(B)} \in \prod \{ \mathcal{V}(F) \mid F \in \mathcal{F}(B) \},\
$$

define

$$
W(\delta) = \bigcup \{ V(F) \mid F \in \mathcal{F}(B) \}.
$$

Let

$$
\mathcal{V}(B) = \left\{ W(\delta) \mid \delta \in \prod \{ \mathcal{V}(F) \mid F \in \mathcal{F}(B) \} \right\}
$$

for each $B \in \mathcal{B}$. Then it is easily checked that $\{V(B) \mid B \in \mathcal{B}\}$ are the required families. \Box

We call $\{\mathcal{V}(B) \mid B \in \mathcal{B}\}\$ the L2-*extension* of \mathcal{B} in X.

Theorem 2.4. *If X is an* M_1 *-space, then* $X \in \mathcal{P}$ *.*

Proof. By [6], it suffices to show that for each $p \in X$ there exists a CP neighborhood base of *p* consisting of regular closed subsets of *X*. There exists a sequence *(Om)* of open neighborhoods of *p* in *X* such that

$$
\{p\} = \bigcap_{m} O_m, \quad \overline{O_{m+1}} \subset O_m, \quad m \in \mathbb{N}.
$$

Let $\bigcup \{\mathcal{B}_m \mid m \in \mathbb{N}\}\$ be a quasi-base for *X* such that for each *m*, $\mathcal{B}_m \subset \mathcal{B}_{m+1}$ and \mathcal{B}_m is a CP family of regular closed subsets of *X*. Let $m \in \mathbb{N}$ be fixed for a while, and let

$$
\mathcal{B}'_m = \{ B \in \mathcal{B}_m \mid p \in \text{Int}\,B \} = \{ B_\alpha \mid \alpha \in A_m \}.
$$

We shall construct a CP family ${G(\alpha) | \alpha \in A_m}$ of regular closed neighborhoods of p in *X* such that $G(\alpha) \subset O_m \cap B_\alpha$ for each $\alpha \in A_m$. Since *X* is an *M*₃-space, there exists a CP closed neighborhood base \mathcal{B}_0 of *p* in *X*. By Fact 1, there exists a pair $\langle \mathcal{F}, \mathcal{V} \rangle$, where \mathcal{F} is a mosaic of the CP family

$$
\mathcal{B}' = \mathcal{B}_0 \cup \mathcal{B}'_m \cup \{X \setminus O_m\}
$$

and V is its frill. Let $\mathcal{F} = \bigcup_n \mathcal{F}_n$, where each \mathcal{F}_n is discrete in X. Let

$$
X(n) = \bigcup \mathcal{F}_n, \qquad Y(n) = X(1) \cup \cdots \cup X(n),
$$

\n
$$
Z(n) = Y(n) \setminus Y(n-1), \quad Y(0) = \emptyset, \quad n \in \mathbb{N}.
$$

For each *n*, there exists the L1-extension $\mathcal{B}(n)$ of $\tau(Y(n))$ in *X*. By Fact 2, there exists a weaker metric topology τ_m of $\tau(X)$ satisfying the following:

(M₁) $\{X(n) | n \in \mathbb{N}\}\)$ is a closed cover of (X, τ_m) ;

 (M_2) for each *k*,

$$
\mathcal{B}[k] = \mathcal{B}(k) \vee \{Y(k)\}
$$

is a CP family of closed subsets of (X, τ_m) ; *(M*₃*)* B_0 is a CP family of closed subsets of (X, τ_m) .

For each $\alpha \in A_m$, let

$$
N(\alpha) = \{k \in \mathbb{N} \mid B_{\alpha} \cap Z(k) \neq \emptyset\}.
$$

Then obviously

$$
B_{\alpha} \subset \bigcup \big\{ Z(k) \mid k \in N(\alpha) \big\},\
$$

$$
B_{\alpha} \cap \left(\bigcup \big\{ Z(k) \mid k \in \mathbb{N} \setminus N(\alpha) \big\} \right) = \emptyset.
$$

Let $N(\alpha) = \{n(i) \mid i \in \mathbb{N}\}\$ with $n(1) < n(2) < \cdots$. Let $\Delta[k]$ be the totality of finite unions of members of

$$
\mathcal{B}_0\cup\Big(\bigcup\big\{\mathcal{B}[i]\mid 1\leqslant i\leqslant k\big\}\Big).
$$

Obviously, by (M_1) , (M_2) , (M_3) , $\Delta[k]$ is a CP family of closed subsets of (X, τ_m) . Since $(Y(k), \tau_m(Y(k)))$ is a metric subspace, there exists the L2-extension

$$
\big\{\mathcal{V}_k\big(B\cap Y(k)\big) \mid B\in \Delta[k-1]\big\}
$$

of $\Delta[k-1] | Y(k)$ in $(Y(k), \tau_m(Y(k)))$. To construct a subset $G(\alpha)$ of B_α , let us fix $\alpha \in A_m$. Take $B(\alpha, n(0)) \in \mathcal{B}_0$ such that

$$
B(\alpha, n(0)) \cap (X \setminus O_m) = \emptyset, \qquad B(\alpha, n(0)) \subset \text{Int } B_\alpha.
$$

Define

$$
V(\alpha, n(1)) = B(\alpha, n(0)) \cap Z(n(1)).
$$
\n^(*)

Note that

$$
V(\alpha, n(1)) = B(\alpha, n(0)) \cap Y(n(1)).
$$

Since F is the mosaic of B', $V(\alpha, n(1))$ is clopen in $Y(n(1))$. Since $\mathcal{B}(n(1))$ is the L1extension of $\tau(Y(n(1)))$ in *X*, there exists $B(\alpha, n(1)) \in B(n(1))$ such that

$$
B(\alpha, n(1)) \cap Y(n(1)) = V(\alpha, n(1)) \subset \text{Int } B(\alpha, n(1)),
$$

\n
$$
B(\alpha, n(1)) \cap Y(n(1)) = V(\alpha, n(1)),
$$

\n
$$
B(\alpha, n(1)) \cap (X \setminus O_m) = \emptyset.
$$

Let

$$
C(\alpha, n(1)) = \bigcup \left\{ B \in \bigcup \{ \mathcal{B}(i) \mid n(1) \leq i < n(2) \} \right\}
$$
\n
$$
| B \cap (B(\alpha, n(0)) \cup B(\alpha, n(1))) = \emptyset \right\}
$$

and take

$$
V(\alpha, n(2)) \in V_{n(2)}(B(\alpha, n(0)) \cup B(\alpha, n(1)) \cup Y(n(1))) \cap Y(n(2))
$$

such that

$$
V(\alpha, n(2)) \cap (C(\alpha, n(1)) \cup (X \setminus O_m)) = \emptyset,
$$

\n
$$
V(\alpha, n(2)) \cap (B(\alpha, n(0)) \cup B(\alpha, n(1)) \cup Y(n(1)))
$$

\n
$$
= (B(\alpha, n(0)) \cup B(\alpha, n(1))) \cap Z(n(2)).
$$

Assume that ${B(\alpha, n(i)) \mid i \leq k}$, ${V(\alpha, n(i)) \mid i \leq k}$ and ${C(\alpha, n(i)) \mid i \leq k}$ have been chosen. Choose

$$
V(\alpha, n(k+1)) \in \mathcal{V}_{n(k+1)}\left(\left(\bigcup_{i=0}^{k} B(\alpha, n(i))\right)\right) \cup Y(n(k)) \cap Y(n(k+1))
$$

such that

$$
\overline{V(\alpha, n(k+1))} \cap \left(\bigcup_{i=1}^{k} C(\alpha, n(i)) \cup (X \setminus O_m) \right) = \emptyset,
$$

$$
V(\alpha, n(k+1)) \cap \left(\bigcup_{i=0}^{k} B(\alpha, n(i)) \cup Y(n(k)) \right)
$$

$$
= \bigcup_{i=0}^{k} B(\alpha, n(i)) \cap Z(n(k+1)).
$$

Take

$$
B(\alpha, n(k+1)) \in \mathcal{B}(n(k+1))
$$

such that

$$
B(\alpha, n(k+1)) \cap Y(n(k+1)) = V(\alpha, n(k+1)) \subset \text{Int } B(\alpha, n(k+1)),
$$

\n
$$
\overline{B(\alpha, n(k+1))} \cap Y(n(k+1)) = \overline{V(\alpha, n(k+1))},
$$

\n
$$
B(\alpha, n(k+1)) \cap \left(\bigcup_{i=1}^{k} C(\alpha, n(i)) \cup (X \setminus O_m)\right) = \emptyset.
$$

Let

$$
C(\alpha, n(k+1))
$$

=
$$
\bigcup \left\{ B \in \bigcup \{ B(i) \mid n(k+1) \leq i < n(k+2) \} \middle| B \cap \left(\bigcup_{i=0}^{k+1} B(\alpha, n(i)) \right) = \emptyset \right\}.
$$

In this way, we can obtain three sequences

$$
(B(\alpha, n(i)))_i, \qquad (V(\alpha, n(i)))_i, \qquad (C(\alpha, n(i)))_i.
$$

Define $G(\alpha)$ as follows:

$$
G(\alpha) = \left(\bigcup_{i=1}^{\infty} \overline{V(\alpha, n(i))}\right) \cap B_{\alpha}.
$$

Claim 1. $G(\alpha)$ *is a regular closed neighborhood of p in X.*

Proof. Since

 $B(\alpha, n(0)) \cap B_\alpha \subset G(\alpha)$,

and both $B(\alpha, n(0))$ and B_α are neighborhoods of *p* in *X*, $G(\alpha)$ is a neighborhood of *p* in *X*. To see that $G(\alpha)$ is closed in B_α , let $x \in B_\alpha \setminus G(\alpha)$. There exists $n(k) \in N(\alpha)$ such that $x \in Z(n(k))$. Since $x \notin \overline{V(\alpha, n(k))}$, there exists an open neighborhood O of x in the subspace $Z(n(k))$ such that $O \cap V(\alpha, n(k)) = \emptyset$. Since $\mathcal{B}(n(k))$ is the L1-extension of $\tau(Y(n(k)))$ in *X*, there exists a $B \in \mathcal{B}(n(k))$ such that *B* is a neighborhood of *x* in *X* such that

$$
B \cap Y(n(k)) = O \subset \text{Int } B, \qquad B \cap \left(\bigcup_{i=0}^{k} B(\alpha, n(i)) \right) = \emptyset.
$$

Note that this *B* is contained in $C(\alpha, n(k))$. Therefore by the choice of $\{V(\alpha, n(i))\}$, we have

$$
B\cap \bigg(\bigcup_{i\geqslant k}V(\alpha,n(i))\bigg)=\emptyset.
$$

Hence $B \cap B_\alpha$ is a neighborhood of *x* in B_α missing $G(\alpha)$, proving that $G(\alpha)$ is closed in *Bα*.

Next, we show that $G(\alpha)$ is regular closed in *X*. For brevity, let $Z(\alpha) = \int |Z(n(i))| i \in$ N}, where $N(\alpha) = \{n(i) | i \in \mathbb{N}\}\$. By the same discussion as above, we can observe that

$$
\overline{\bigcup}\{V(\alpha,n(i)) \mid i \in \mathbb{N}\} \cap Z(\alpha) = \bigcup\{\overline{V(\alpha,n(i))} \cap Z(n(i)) \mid i \in \mathbb{N}\},\
$$
\n
$$
\overline{\bigcup_{i>k} V(\alpha,n(i))} \cap Z(n(k)) \subset \overline{V(\alpha,n(k))}, \quad k \in \mathbb{N}.
$$
\n(1)

Since F is the mosaic of B', for each *i*, $B_\alpha \cap Z(n(i))$ is clopen in the subspace $Z(n(i))$, we have

$$
\overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i)) = \overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i)).
$$
\n(2)

Then we can show the following:

$$
\overline{\bigcup_{i=1}^{\infty} V(\alpha, n(i)) \cap B_{\alpha}} = \bigcup_{i=1}^{\infty} \overline{V(\alpha, n(i)) \cap B_{\alpha}} \cap Z(n(i)).
$$
\n(3)

For, if *x* is an arbitrary point of the left term of (3), then by (1) and by the fact $B_\alpha \subset Z(\alpha)$, there exists $i \in \mathbb{N}$ such that

$$
x \in \overline{V(\alpha, n(i))} \cap Z(n(i)).
$$

Hence by (2) we have

$$
x\in \overline{V(\alpha,n(i))}\cap B_{\alpha}\cap Z\big(n(i)\big),
$$

proving that the left term is contained in the right. Since the reverse inclusion is trivial, we have the equality (3). Using (1) –(3) we have the following expression:

$$
G(\alpha) = \left(\bigcup_{i=1}^{\infty} \overline{V(\alpha, n(i))}\right) \cap B_{\alpha}
$$

=
$$
\bigcup_{i=1}^{\infty} (\overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i)))
$$
 (by (1))

$$
= \bigcup_{i=1}^{\infty} (\overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i))) \text{ (by (2))}
$$

$$
= \overline{\left(\bigcup_{i=1}^{\infty} V(\alpha, n(i))\right) \cap B_{\alpha} \text{ (by (3))}}.
$$

Since for each *i*

$$
V(\alpha, n(i)) \subset \text{Int } B(\alpha, n(i)),
$$

we have

$$
\left(\bigcup_{i=1}^{\infty} V(\alpha, n(i))\right) \cap Z(\alpha) = \left(\bigcup_{i=0}^{\infty} \text{Int } B(\alpha, n(i))\right) \cap Z(\alpha).
$$

These imply that

$$
G(\alpha) = \overline{\left(\bigcup_{i=0}^{\infty} \text{Int } B(\alpha, n(i))\right) \cap B_{\alpha}}.
$$

Therefore $G(\alpha)$ is regular closed in B_{α} . Since B_{α} is regular closed in *X*, so is $G(\alpha)$ in *X*. □

Claim 2.

$$
\mathcal{G}(m) = \{ G(\alpha) \mid \alpha \in A_m \}
$$

is CP in X.

Proof. Suppose *Ω* ⊂ *Am* and

$$
x \in X \setminus \bigcup \big\{ G(\alpha) \, | \, \alpha \in \Omega \big\}.
$$

Let $Ω$ be divided into $Ω_1$ and $Ω_2$ as

$$
\Omega_1 = \{ \alpha \in \Omega \mid x \notin B_{\alpha} \}, \qquad \Omega_2 = \{ \alpha \in \Omega \mid x \in B_{\alpha} \}.
$$

Since \mathcal{B}_m is CP in *X*, there exists a neighborhood *O* of *p* in *X* such that

$$
O\cap\left(\bigcup\bigl\{G(\alpha)\mid\alpha\in\Omega_1\bigr\}\right)=\emptyset.
$$

There exists a unique $n \in \mathbb{N}$ such that $x \in Z(n)$. It follows that for each $\alpha \in \Omega_2$, $n \in N(\alpha)$ and $n = n(k_\alpha)$ for some $k_\alpha \in \mathbb{N}$. By the above discussion to see the regular closedness of *G*(α), we can easily observe the following: If $\alpha \in \Omega_2$ and $n = n(k_\alpha)$ with $k_\alpha \in N$, then

 $G(\alpha) \cap Z(n) = V(\alpha, n(k_{\alpha})) \cap Z(n).$

If we recall the definition *(*∗*)*, then it follows that

$$
\{V(\alpha, n(k_{\alpha})) \mid n(k_{\alpha}) = \min N(\alpha), \alpha \in \Omega_2\}
$$

is CP at *x* in *X*. If we recall that

$$
\big\{\mathcal{V}_n\big(B\cap Y(n)\big) \mid B\in\Delta[n-1]\big\}
$$

is the L2-extension of $\Delta[n-1]|Y(n)$ in $(Y(k), \tau_m(Y(n))$, then it follows that

 $\{V(\alpha, n(k_{\alpha})) \cap Z(n) \mid \alpha \in \Omega_2\}$

is CP at *x* in *X*. Hence there exists an open neighborhood *P* of *x* in *X* such that $P \cap Y$ (*n* − 1) = Ø and

 $P \cap V(\alpha, n(k_{\alpha})) = \emptyset, \quad \alpha \in \Omega_2.$

Since $\mathcal{B}(n)$ is the L1-extension of $\tau(Y(n))$ in *X*, there exists $C \in \mathcal{B}(n)$ such that

 $C \cap Y(n) = P \cap Y(n) \subset \text{Int } C \subset C \subset P.$

Note that this *C* is contained in $C(\alpha, n(k_{\alpha}))$ for each $\alpha \in \Omega_2$. This implies

$$
C\cap \left(\bigcup\bigl\{G(\alpha)\mid \alpha\in\Omega_2\bigr\}\right)=\emptyset.
$$

Hence $O \cap C$ is a neighborhood of x in X missing all $G(\alpha)$, $\alpha \in \Omega$, which proves that $\mathcal{G}(m)$ is CP in *X*. \Box

Set

$$
\mathcal{G} = \bigcup \{ \mathcal{G}(m) \mid m \in \mathbb{N} \}.
$$

Then it is easy to see that G is a CP neighborhood base of p in X consisting of regular closed subsets of X . \Box

Since we have no difference between M_1 -spaces and P , the next corollaries follow from the known results stated in the beginning of this section.

Corollary 2.5 [7, Corollary 3]. *Every adjunction space of M*1*-spaces is M*1*.*

Corollary 2.6 [8, Theorem 3.16]. *If an M*3*-space X is the countable union of closed M*1 *spaces, then X is an M*1*-space.*

References

- [1] J.G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961) 105–125.
- [2] E.K. van Douwen, Simultaneous extension of continuous functions, Ph.D. Thesis, Vrije Universiteit, Amsterdam, 1975.
- [3] G. Gruenhage, On the $M_3 \Rightarrow M_1$ question, Topology Proc. 5 (1980) 77–104.
- [4] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 423–501.
- [5] M. Ito, The closed image of a hereditary *M*1-space is *M*1, Pacific J. Math. 113 (1984) 85–91.
- [6] M. Ito, *M*3-spaces whose every point has a closure preserving outer base are *M*1, Topology Appl. 19 (1985) 65–69.
- [7] T. Mizokami, On a certain class of *M*1-spaces, Proc. Amer. Math. Soc. 87 (1983) 357–362.
- [8] T. Mizokami, On *M*-structures, Topology Appl. 17 (1984) 63–89.
- [9] T. Mizokami, N. Shimane, On the *M*3 versus *M*1 problem, Topology Appl. 105 (2000) 1–13.
- [10] K. Nagami, The equality of dimensions, Fund. Math. 106 (1980) 239-246.
- [11] S. Oka, Dimension of stratifiable spaces, Trans. Amer. Math. Soc. 275 (1983) 231–243.