

Available online at www.sciencedirect.com

Topology and its Applications 141 (2004) 197-206

Topology and its Applications

www.elsevier.com/locate/topol

On closed subsets of M_1 -spaces

Takemi Mizokami

Department of Mathematics, Joetsu University of Education, Joetsu, Niigata 943-8512, Japan

Abstract

We show that every closed subset of an M_1 -space has a closure-preserving open neighborhood base. This answers a question of Ceder, and gives positive solutions to other problems on adjunction spaces and countable sums of M_1 -spaces. © 2004 Elsevier B.V. All rights reserved.

MSC: 54E20

Keywords: M1-spaces; Closure-preserving; Mosaic; M3-spaces

1. Introduction

All spaces are assumed to be regular T_1 . For a space X, we denote the topology of X by $\tau(X)$ or τ . For a subset A of X, we denote the subspace topology of A by $\tau(A)$. \mathbb{N} always denotes all positive integers. The letters n, k, i are assumed to run through \mathbb{N} . For families \mathcal{U}, \mathcal{V} of subsets of X, the operators $\mathcal{U} \wedge \mathcal{V}$ and $\mathcal{U} \vee \mathcal{V}$ are families $\{U \cap V \mid U \in \mathcal{U}, V \in \mathcal{V}\}$ and $\{U \cup V \mid U \in \mathcal{U}, V \in \mathcal{V}\}$, respectively. For the case $\mathcal{V} = \{V\}$, we simply write $\mathcal{U}|V$ in place of $\mathcal{U} \wedge \mathcal{V}$. For brevity, let "CP" stand for the term "*closure-preserving*". In 1961, Ceder [1] introduced M_i -spaces (i = 1, 2, 3) as generalized metric spaces and proposed the following problems on M_1 -spaces:

- (1) Does any closed subset of an M_1 -space have a CP open neighborhood base?
- (2) Is any adjunction space of M_1 -spaces M_1 ?
 - (Strictly speaking, Ceder himself proposed weaker problems than (1) and (2), but essentially (1) and (2) are better to pose as open problems.) In this paper, we give a positive answer to (1), which implies a positive answer to (2) as well as the following problem of Gruenhage [3]:
- (3) If an M_3 -space X is a countable union of closed M_1 -spaces, is X M_1 ?

E-mail address: mizokami@juen.ac.jp (T. Mizokami).

^{0166-8641/\$ –} see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2003.12.007

Finally, we simply recall the definitions of M_i -spaces. A space X is called an M_1 -space if there exists a σ -CP base for X, an M_2 -space if there exists a σ -CP quasi-base \mathcal{B} for X, where \mathcal{B} is a quasi-base whenever $x \in U$ with U open in X, there exists $B \in \mathcal{B}$ such that $x \in \text{Int } B \subset B \subset U$, and an M_3 -space if there exists a σ -cushioned pair-base or equivalently there exists a stratification for X. For more detail and the properties of these spaces, it is better to refer to [4]. It is worthy to be noted that M_2 -spaces and M_3 -spaces coincide with each other by the famous independent study of Junnila and Gruenhage (see Theorem 5.27 in [4]).

2. The class \mathcal{P} of M_1 -spaces

Let \mathcal{P} be the class of M_1 -spaces whose every closed subset has a CP open neighborhood base. Then Ceder's problem (1) above is nothing but whether every M_1 -space belongs to \mathcal{P} . As for the properties of \mathcal{P} , Mizokami showed the following result:

- (i) Every adjunction spaces of spaces in \mathcal{P} belongs to \mathcal{P} [7, Corollary 3].
- (ii) If an M_3 -spaces X is the countable union of closed subspaces in \mathcal{P} , then $X \in \mathcal{P}$ [8, Theorem 3.16].

These results are used later to give the corollaries. Previously, Ito have obtained two important results about \mathcal{P} as follows:

- (1) Every M_3 -space whose every point has a CP open neighborhood base belongs to \mathcal{P} [6].
- (2) Every hereditarily M_1 -space belongs to \mathcal{P} [5].

On the other hand, it is well known that every M_1 -space with $\text{Ind} \leq 0$ belongs to \mathcal{P} . And now, we come to the final stage. To prepare for the proof, we list up some known facts and prove two lemmas.

Fact 1 [9, Fact 4]. Let \mathcal{B} be a CP family of closed subsets of an M_3 -space X. Then there exists a pair $\langle \mathcal{F}, \mathcal{V} \rangle$ of families of subsets of X satisfying the following:

- (i) \mathcal{F} is a σ -discrete closed cover of X and $\mathcal{V} = \{V(F) \mid F \in \mathcal{F}\}$ is a point-finite σ -discrete open cover of X such that $F \subset V(F)$ for each $F \in \mathcal{F}$,
- (ii) for each $F \in \mathcal{F}$ and $B \in \mathcal{B}$, $F \cap B \neq \emptyset$ if and only if $F \subset B$ and if $F \cap B = \emptyset$, then $V(F) \cap B = \emptyset$. (We call \mathcal{F} the mosaic of \mathcal{B} and \mathcal{V} the frill of \mathcal{F} .)

Fact 2 [11]. Let (\mathcal{B}_i) be a sequence of CP families of closed subsets of an M_3 -space X. Then there is a weaker metric topology τ_m of $\tau(X)$ such that for each i, \mathcal{B}_i is a CP family of closed subsets of (X, τ_m) .

Lemma 2.1. Let *M* be a closed subset of an M_3 -space *X*. Then there exists a family $\mathcal{B} = \{B(O) \mid O \in \tau(X)\}$ satisfying the following:

- (i) $\mathcal{B}|(X \setminus M)$ is a CP family of closed subsets of $X \setminus M$;
- (ii) for each $O \in \tau(X)$,

$$O \cap M = B(O) \cap M \subset \operatorname{Int} B(O) \subset B(O) \subset O;$$

(iii) for each $O \in \tau(X)$, $\overline{B(O)} \cap M \subset \overline{O \cap M}$;

(iv) for each $O_1, O_2 \in \tau(X)$ with $O_1 \cap O_2 \cap M = \emptyset$, then $B(O_1) \cap B(O_2) = \emptyset$.

Proof. By [8, Lemma 3.1] there exists $\mathcal{B}_1 = \{B_1(O) \mid O \in \tau(X)\}$ satisfying the following:

(1) $\mathcal{B}_1|(X \setminus M)$ is a CP family of closed subsets of $X \setminus M$;

(2) for each $O \in \tau(X)$,

$$O \cap M = B_1(O) \cap M \subset \operatorname{Int} B_1(O) \subset B_1(O) \subset O.$$

- By [2, Theorem 2.2], there exists a function $\kappa : \tau(M) \to \tau(X)$ satisfying the following:
- (3) $\kappa(O) \cap M = O \cap M, \ O \in \tau(M);$
- (4) if $O_1, O_2 \in \tau(M)$ and $O_1 \cap O_2 = \emptyset$, then $\kappa(O_1) \cap \kappa(O_2) = \emptyset$.

For each $O \in \tau(X)$, take

$$B(O) = B_1(\operatorname{Int} B_1(O) \cap \kappa(O \cap M)) \in \mathcal{B}_1.$$

Then it is easy to see that $\mathcal{B} = \{B(O) \mid O \in \tau(X)\}$ satisfies the required conditions. \Box

We call \mathcal{B} the L1-*extension* of $\tau(M)$ in X. Let \mathcal{U} be a family of subsets of a space X and let $x \in X$. We call that \mathcal{U} is CP *at* x *in* X if whenever $x \in \bigcup \mathcal{U}_0, \mathcal{U}_0 \subset \mathcal{U}, x \in \overline{\mathcal{U}}$ for some $U \in \mathcal{U}_0$, equivalently, if whenever $x \notin \overline{\mathcal{U}}$ for each $U \in \mathcal{U}_0$, where $\mathcal{U}_0 \subset \mathcal{U}$, there exists an open neighborhood O of x in X such that $O \cap (\bigcup \mathcal{U}_0) = \emptyset$.

In the proof of the main theorem later, we use the fact that if $\mathcal{O} \subset \tau(X)$ and $\mathcal{O}|M$ is CP in *M*, then $\{B(O) \mid O \in \mathcal{O}\}$ is CP in *X*. This follows from the above lemma as a corollary:

Corollary 2.2. Let M be a closed subset of an M_3 -space X. Let V be a CP family of open subsets of M and let \mathcal{B} be the L1-extension of $\tau(M)$ in X. Then

 $\mathcal{B}(\mathcal{V}) = \{ B \in \mathcal{B} \mid B \cap M = V \text{ for some } V \in \mathcal{V} \}$

is a CP family of open subsets of X such that for each $V \in \mathcal{V}$, $\mathcal{B}(\mathcal{V})$ is an open neighborhood base of V in X.

Proof. For each $V \in \mathcal{V}$, let

 $\mathcal{O}(V) = \{ O \in \tau(X) \mid O \cap M = V \},\$

and let

 $\mathcal{B}(V) = \{ B(O) \mid O \in \mathcal{O}(V) \}.$

Then $\mathcal{B}(V)$ is an open neighborhood base of V in X, and obviously

$$\mathcal{B}(\mathcal{V}) = \bigcup \{ \mathcal{B}(V) \mid V \in \mathcal{V} \}.$$

We show that $\mathcal{B}(\mathcal{V})$ is CP in X. It is obvious that $\mathcal{B}(\mathcal{V})$ is CP at each point of $X \setminus M$ in X by virtue of the property (i) of L1-extension \mathcal{B} . So, it remains to show that $\mathcal{B}(\mathcal{V})$ is CP at each point of M in X. To this end, let $p \in M$ and suppose $p \notin \bigcup \overline{\mathcal{B}_0}$, where

 $\mathcal{B}_0 = \bigcup \big\{ \mathcal{B}_0(V) \mid V \in \mathcal{V}_0 \big\},\$

 $\mathcal{B}_0(V) \subset \mathcal{B}(V)$ for each $V \in \mathcal{V}_0$ and $\mathcal{V}_0 \subset \mathcal{V}$. Since \mathcal{V} is CP at p in X, there exists an open neighborhood O of p in X such that $O \cap (\bigcup \mathcal{V}_0) = \emptyset$. Hence by the property (iv) above, B(O) is an open neighborhood of p in X such that

$$B(O) \cap \left(\bigcup \mathcal{B}_0\right) = \emptyset.$$

This proves that $\mathcal{B}(\mathcal{V})$ is CP at *p* in *X*. \Box

Fact 3 [10]. Let M be a closed subset of a metric space. Then there exists a family V of open subsets of X satisfying the following:

- (i) $\{M\} \lor \mathcal{V}$ is CP in X;
- (ii) for each $O \in \tau(X)$, there exists $V \in \mathcal{V}$ such that

$$V \cap M = O \cap M \subset V \subset O, \qquad \overline{V} \cap (X \setminus M) \subset O.$$

Lemma 2.3. Let \mathcal{B} be a CP family of closed subsets of a metric space X. Then there exists families $\{\mathcal{V}(B) \mid B \in \mathcal{B}\}$ of open subsets of X satisfying the following:

- (i) $\bigcup \{\{B\} \lor \mathcal{V}(B) \mid B \in \mathcal{B}\}$ is CP in X;
- (ii) for each $O \in \tau(X)$ and $B \in \mathcal{B}$, there exists $V \in \mathcal{V}(B)$ such that

$$O \cap B = V \cap B \subset V \subset O, \qquad V \cap (X \setminus B) \subset O.$$

Proof. By Fact 1, there exists a pair $\langle \mathcal{F}, \mathcal{V} \rangle$ of the mosaic \mathcal{F} of \mathcal{B} and its frill \mathcal{V} in X. Let $\mathcal{F} = \bigcup_n \mathcal{F}_n$, where each \mathcal{F}_n is discrete in X. Assume that for each $F \in \mathcal{F}_n$, $F \subset V(F) \subset \{x \in X \mid d(x, F) < \frac{1}{n}\}$, where d is a metric of X. Since X is a metric space, by Fact 3, for each $F \in \mathcal{F}_n$, $n \in \mathbb{N}$, there exists a family $\mathcal{V}(F)$ of open subsets of X satisfying the following:

(1) $\{F\} \lor \mathcal{V}(F)$ is CP in X and $\bigcup \mathcal{V}(F) \subset V(F)$; (2) for each $O \in \tau(X)$, there exists $V \in \mathcal{V}(F)$ such that

$$F \cap O = V \cap F \subset V \subset O, \qquad \overline{V} \cap (X \setminus F) \subset O.$$

For each $B \in \mathcal{B}$, let $\mathcal{F}(B) = \{F \in \mathcal{F} \mid F \subset B\}$.

For each

$$\delta = \left\langle V(F) \right\rangle_{F \in \mathcal{F}(B)} \in \prod \left\{ \mathcal{V}(F) \mid F \in \mathcal{F}(B) \right\},\$$

define

$$W(\delta) = \bigcup \{ V(F) \mid F \in \mathcal{F}(B) \}.$$

Let

$$\mathcal{V}(B) = \left\{ W(\delta) \mid \delta \in \prod \left\{ \mathcal{V}(F) \mid F \in \mathcal{F}(B) \right\} \right\}$$

for each $B \in \mathcal{B}$. Then it is easily checked that $\{\mathcal{V}(B) \mid B \in \mathcal{B}\}$ are the required families. \Box

We call { $\mathcal{V}(B) \mid B \in \mathcal{B}$ } the L2-*extension* of \mathcal{B} in *X*.

Theorem 2.4. If X is an M_1 -space, then $X \in \mathcal{P}$.

Proof. By [6], it suffices to show that for each $p \in X$ there exists a CP neighborhood base of p consisting of regular closed subsets of X. There exists a sequence (O_m) of open neighborhoods of p in X such that

$$\{p\} = \bigcap_{m} O_m, \quad \overline{O_{m+1}} \subset O_m, \quad m \in \mathbb{N}.$$

Let $\bigcup \{\mathcal{B}_m \mid m \in \mathbb{N}\}\$ be a quasi-base for *X* such that for each *m*, $\mathcal{B}_m \subset \mathcal{B}_{m+1}$ and \mathcal{B}_m is a CP family of regular closed subsets of *X*. Let $m \in \mathbb{N}$ be fixed for a while, and let

$$\mathcal{B}'_m = \{B \in \mathcal{B}_m \mid p \in \operatorname{Int} B\} = \{B_\alpha \mid \alpha \in A_m\}.$$

We shall construct a CP family $\{G(\alpha) \mid \alpha \in A_m\}$ of regular closed neighborhoods of p in X such that $G(\alpha) \subset O_m \cap B_\alpha$ for each $\alpha \in A_m$. Since X is an M_3 -space, there exists a CP closed neighborhood base \mathcal{B}_0 of p in X. By Fact 1, there exists a pair $\langle \mathcal{F}, \mathcal{V} \rangle$, where \mathcal{F} is a mosaic of the CP family

$$\mathcal{B}' = \mathcal{B}_0 \cup \mathcal{B}'_m \cup \{X \setminus O_m\}$$

and \mathcal{V} is its frill. Let $\mathcal{F} = \bigcup_n \mathcal{F}_n$, where each \mathcal{F}_n is discrete in X. Let

$$X(n) = \bigcup \mathcal{F}_n, \qquad Y(n) = X(1) \cup \dots \cup X(n),$$
$$Z(n) = Y(n) \setminus Y(n-1), \qquad Y(0) = \emptyset, \quad n \in \mathbb{N}.$$

For each *n*, there exists the L1-extension $\mathcal{B}(n)$ of $\tau(Y(n))$ in *X*. By Fact 2, there exists a weaker metric topology τ_m of $\tau(X)$ satisfying the following:

 $(M_1) \{X(n) \mid n \in \mathbb{N}\}$ is a closed cover of (X, τ_m) ;

 (M_2) for each k,

$$\mathcal{B}[k] = \mathcal{B}(k) \vee \{Y(k)\}$$

is a CP family of closed subsets of (X, τ_m) ; (*M*₃) \mathcal{B}_0 is a CP family of closed subsets of (X, τ_m) .

For each $\alpha \in A_m$, let

$$N(\alpha) = \left\{ k \in \mathbb{N} \mid B_{\alpha} \cap Z(k) \neq \emptyset \right\}.$$

Then obviously

$$B_{\alpha} \subset \bigcup \{ Z(k) \mid k \in N(\alpha) \},\$$

$$B_{\alpha} \cap \left(\bigcup \left\{ Z(k) \mid k \in \mathbb{N} \setminus N(\alpha) \right\} \right) = \emptyset.$$

Let $N(\alpha) = \{n(i) \mid i \in \mathbb{N}\}$ with $n(1) < n(2) < \cdots$. Let $\Delta[k]$ be the totality of finite unions of members of

$$\mathcal{B}_0 \cup \Big(\bigcup \big\{ \mathcal{B}[i] \mid 1 \leqslant i \leqslant k \big\} \Big).$$

Obviously, by (M_1) , (M_2) , (M_3) , $\Delta[k]$ is a CP family of closed subsets of (X, τ_m) . Since $(Y(k), \tau_m(Y(k)))$ is a metric subspace, there exists the L2-extension

$$\left\{\mathcal{V}_k\big(B\cap Y(k)\big) \mid B \in \Delta[k-1]\right\}$$

of $\Delta[k-1] | Y(k)$ in $(Y(k), \tau_m(Y(k)))$. To construct a subset $G(\alpha)$ of B_{α} , let us fix $\alpha \in A_m$. Take $B(\alpha, n(0)) \in \mathcal{B}_0$ such that

$$B(\alpha, n(0)) \cap (X \setminus O_m) = \emptyset, \qquad B(\alpha, n(0)) \subset \operatorname{Int} B_{\alpha}.$$

Define

$$V(\alpha, n(1)) = B(\alpha, n(0)) \cap Z(n(1)).$$
(*)

Note that

$$V(\alpha, n(1)) = B(\alpha, n(0)) \cap Y(n(1)).$$

Since \mathcal{F} is the mosaic of \mathcal{B}' , $V(\alpha, n(1))$ is clopen in Y(n(1)). Since $\mathcal{B}(n(1))$ is the L1-extension of $\tau(Y(n(1)))$ in *X*, there exists $B(\alpha, n(1)) \in \mathcal{B}(n(1))$ such that

$$B(\alpha, n(1)) \cap Y(n(1)) = V(\alpha, n(1)) \subset \operatorname{Int} B(\alpha, n(1)),$$

$$\overline{B(\alpha, n(1))} \cap Y(n(1)) = V(\alpha, n(1)),$$

$$B(\alpha, n(1)) \cap (X \setminus O_m) = \emptyset.$$

Let

$$C(\alpha, n(1)) = \bigcup \left\{ B \in \bigcup \{ \mathcal{B}(i) \mid n(1) \leq i < n(2) \} \\ \mid B \cap (B(\alpha, n(0)) \cup B(\alpha, n(1))) = \emptyset \right\}$$

and take

$$V(\alpha, n(2)) \in \mathcal{V}_{n(2)}(B(\alpha, n(0)) \cup B(\alpha, n(1)) \cup Y(n(1))) \cap Y(n(2))$$

such that

$$V(\alpha, n(2)) \cap (C(\alpha, n(1)) \cup (X \setminus O_m)) = \emptyset,$$

$$V(\alpha, n(2)) \cap (B(\alpha, n(0)) \cup B(\alpha, n(1)) \cup Y(n(1)))$$

$$= (B(\alpha, n(0)) \cup B(\alpha, n(1))) \cap Z(n(2)).$$

Assume that $\{B(\alpha, n(i)) \mid i \leq k\}$, $\{V(\alpha, n(i)) \mid i \leq k\}$ and $\{C(\alpha, n(i)) \mid i \leq k\}$ have been chosen. Choose

$$V(\alpha, n(k+1)) \in \mathcal{V}_{n(k+1)}\left(\left(\bigcup_{i=0}^{k} B(\alpha, n(i))\right)\right) \cup Y(n(k)) \cap Y(n(k+1))$$

such that

$$\overline{V(\alpha, n(k+1))} \cap \left(\bigcup_{i=1}^{k} C(\alpha, n(i)) \cup (X \setminus O_m)\right) = \emptyset,$$
$$V(\alpha, n(k+1)) \cap \left(\bigcup_{i=0}^{k} B(\alpha, n(i)) \cup Y(n(k))\right)$$
$$= \bigcup_{i=0}^{k} B(\alpha, n(i)) \cap Z(n(k+1)).$$

Take

$$B(\alpha, n(k+1)) \in \mathcal{B}(n(k+1))$$

such that

$$B(\alpha, n(k+1)) \cap Y(n(k+1)) = V(\alpha, n(k+1)) \subset \operatorname{Int} B(\alpha, n(k+1)),$$

$$\overline{B(\alpha, n(k+1))} \cap Y(n(k+1)) = \overline{V(\alpha, n(k+1))},$$

$$B(\alpha, n(k+1)) \cap \left(\bigcup_{i=1}^{k} C(\alpha, n(i)) \cup (X \setminus O_m)\right) = \emptyset.$$

Let

$$C(\alpha, n(k+1)) = \bigcup \left\{ B \in \bigcup \{ \mathcal{B}(i) \mid n(k+1) \leq i < n(k+2) \} \mid B \cap \left(\bigcup_{i=0}^{k+1} B(\alpha, n(i)) \right) = \emptyset \right\}.$$

In this way, we can obtain three sequences

$$(B(\alpha, n(i)))_i, (V(\alpha, n(i)))_i, (C(\alpha, n(i)))_i$$

Define $G(\alpha)$ as follows:

$$G(\alpha) = \left(\bigcup_{i=1}^{\infty} \overline{V(\alpha, n(i))}\right) \cap B_{\alpha}.$$

Claim 1. $G(\alpha)$ is a regular closed neighborhood of p in X.

Proof. Since

 $B(\alpha, n(0)) \cap B_{\alpha} \subset G(\alpha),$

and both $B(\alpha, n(0))$ and B_{α} are neighborhoods of p in X, $G(\alpha)$ is a neighborhood of p in X. To see that $G(\alpha)$ is closed in B_{α} , let $x \in B_{\alpha} \setminus G(\alpha)$. There exists $n(k) \in N(\alpha)$ such that $x \in Z(n(k))$. Since $x \notin \overline{V(\alpha, n(k))}$, there exists an open neighborhood O of x in the subspace Z(n(k)) such that $O \cap V(\alpha, n(k)) = \emptyset$. Since $\mathcal{B}(n(k))$ is the L1-extension of

 $\tau(Y(n(k)))$ in X, there exists a $B \in \mathcal{B}(n(k))$ such that B is a neighborhood of x in X such that

$$B \cap Y(n(k)) = O \subset \operatorname{Int} B, \qquad B \cap \left(\bigcup_{i=0}^{k} B(\alpha, n(i))\right) = \emptyset.$$

Note that this *B* is contained in $C(\alpha, n(k))$. Therefore by the choice of $\{V(\alpha, n(i))\}$, we have

$$B \cap \left(\bigcup_{i \ge k} V(\alpha, n(i))\right) = \emptyset.$$

Hence $B \cap B_{\alpha}$ is a neighborhood of x in B_{α} missing $G(\alpha)$, proving that $G(\alpha)$ is closed in B_{α} .

Next, we show that $G(\alpha)$ is regular closed in X. For brevity, let $Z(\alpha) = \bigcup \{Z(n(i)) \mid i \in \mathbb{N}\}$, where $N(\alpha) = \{n(i) \mid i \in \mathbb{N}\}$. By the same discussion as above, we can observe that

$$\bigcup_{i>k} \{V(\alpha, n(i)) \mid i \in \mathbb{N}\} \cap Z(\alpha) = \bigcup_{i>k} \{\overline{V(\alpha, n(i))} \cap Z(n(i)) \mid i \in \mathbb{N}\}, \\
\bigcup_{i>k} V(\alpha, n(i)) \cap Z(n(k)) \subset \overline{V(\alpha, n(k))}, \quad k \in \mathbb{N}.$$
(1)

Since \mathcal{F} is the mosaic of \mathcal{B}' , for each i, $B_{\alpha} \cap Z(n(i))$ is clopen in the subspace Z(n(i)), we have

$$\overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i)) = \overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i)).$$
⁽²⁾

Then we can show the following:

$$\bigcup_{i=1}^{\infty} V(\alpha, n(i)) \cap B_{\alpha} = \bigcup_{i=1}^{\infty} \overline{V(\alpha, n(i)) \cap B_{\alpha}} \cap Z(n(i)).$$
(3)

For, if *x* is an arbitrary point of the left term of (3), then by (1) and by the fact $B_{\alpha} \subset Z(\alpha)$, there exists $i \in \mathbb{N}$ such that

$$x \in \overline{V(\alpha, n(i))} \cap Z(n(i)).$$

Hence by (2) we have

$$x \in \overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i)),$$

proving that the left term is contained in the right. Since the reverse inclusion is trivial, we have the equality (3). Using (1)–(3) we have the following expression:

$$G(\alpha) = \left(\bigcup_{i=1}^{\infty} \overline{V(\alpha, n(i))}\right) \cap B_{\alpha}$$
$$= \bigcup_{i=1}^{\infty} \left(\overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i))\right) \quad (by (1))$$

$$= \bigcup_{i=1}^{\infty} \left(\overline{V(\alpha, n(i))} \cap B_{\alpha} \cap Z(n(i)) \right) \quad (by (2))$$
$$= \overline{\left(\bigcup_{i=1}^{\infty} V(\alpha, n(i)) \right) \cap B_{\alpha}} \quad (by (3)).$$

Since for each *i*

$$V(\alpha, n(i)) \subset \operatorname{Int} B(\alpha, n(i)),$$

we have

$$\left(\bigcup_{i=1}^{\infty} V(\alpha, n(i))\right) \cap Z(\alpha) = \left(\bigcup_{i=0}^{\infty} \operatorname{Int} B(\alpha, n(i))\right) \cap Z(\alpha).$$

These imply that

$$G(\alpha) = \overline{\left(\bigcup_{i=0}^{\infty} \operatorname{Int} B(\alpha, n(i))\right) \cap B_{\alpha}}$$

Therefore $G(\alpha)$ is regular closed in B_{α} . Since B_{α} is regular closed in X, so is $G(\alpha)$ in X. \Box

Claim 2.

$$\mathcal{G}(m) = \left\{ G(\alpha) \mid \alpha \in A_m \right\}$$

is CP in X.

Proof. Suppose $\Omega \subset A_m$ and

$$x \in X \setminus \bigcup \big\{ G(\alpha) \, | \, \alpha \in \Omega \big\}.$$

Let Ω be divided into Ω_1 and Ω_2 as

$$\Omega_1 = \{ \alpha \in \Omega \mid x \notin B_\alpha \}, \qquad \Omega_2 = \{ \alpha \in \Omega \mid x \in B_\alpha \}.$$

Since \mathcal{B}_m is CP in X, there exists a neighborhood O of p in X such that

$$O \cap \left(\bigcup \{ G(\alpha) \mid \alpha \in \Omega_1 \} \right) = \emptyset.$$

There exists a unique $n \in \mathbb{N}$ such that $x \in Z(n)$. It follows that for each $\alpha \in \Omega_2$, $n \in N(\alpha)$ and $n = n(k_{\alpha})$ for some $k_{\alpha} \in \mathbb{N}$. By the above discussion to see the regular closedness of $G(\alpha)$, we can easily observe the following: If $\alpha \in \Omega_2$ and $n = n(k_{\alpha})$ with $k_{\alpha} \in N$, then

 $G(\alpha) \cap Z(n) = \overline{V(\alpha, n(k_{\alpha}))} \cap Z(n).$

If we recall the definition (*), then it follows that

$$\left\{V(\alpha, n(k_{\alpha})) \mid n(k_{\alpha}) = \min N(\alpha), \alpha \in \Omega_2\right\}$$

is CP at x in X. If we recall that

$$\left\{\mathcal{V}_n\big(B\cap Y(n)\big)\mid B\in\Delta[n-1]\right\}$$

is the L2-extension of $\Delta[n-1]|Y(n)$ in $(Y(k), \tau_m(Y(n)))$, then it follows that

$$\left\{\overline{V(\alpha, n(k_{\alpha}))} \cap Z(n) \mid \alpha \in \Omega_2\right\}$$

is CP at x in X. Hence there exists an open neighborhood P of x in X such that $P \cap Y(n-1) = \emptyset$ and

 $P \cap \overline{V(\alpha, n(k_{\alpha}))} = \emptyset, \quad \alpha \in \Omega_2.$

Since $\mathcal{B}(n)$ is the L1-extension of $\tau(Y(n))$ in *X*, there exists $C \in \mathcal{B}(n)$ such that

 $C \cap Y(n) = P \cap Y(n) \subset \operatorname{Int} C \subset C \subset P.$

Note that this *C* is contained in $C(\alpha, n(k_{\alpha}))$ for each $\alpha \in \Omega_2$. This implies

$$C \cap \left(\bigcup \{ G(\alpha) \mid \alpha \in \Omega_2 \} \right) = \emptyset.$$

Hence $O \cap C$ is a neighborhood of x in X missing all $G(\alpha)$, $\alpha \in \Omega$, which proves that $\mathcal{G}(m)$ is CP in X. \Box

Set

$$\mathcal{G} = \bigcup \big\{ \mathcal{G}(m) \mid m \in \mathbb{N} \big\}.$$

Then it is easy to see that \mathcal{G} is a CP neighborhood base of p in X consisting of regular closed subsets of X. \Box

Since we have no difference between M_1 -spaces and \mathcal{P} , the next corollaries follow from the known results stated in the beginning of this section.

Corollary 2.5 [7, Corollary 3]. *Every adjunction space of M*₁*-spaces is M*₁.

Corollary 2.6 [8, Theorem 3.16]. If an M_3 -space X is the countable union of closed M_1 -spaces, then X is an M_1 -space.

References

- [1] J.G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961) 105-125.
- [2] E.K. van Douwen, Simultaneous extension of continuous functions, Ph.D. Thesis, Vrije Universiteit, Amsterdam, 1975.
- [3] G. Gruenhage, On the $M_3 \Rightarrow M_1$ question, Topology Proc. 5 (1980) 77–104.
- [4] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 423–501.
- [5] M. Ito, The closed image of a hereditary M_1 -space is M_1 , Pacific J. Math. 113 (1984) 85–91.
- [6] M. Ito, M_3 -spaces whose every point has a closure preserving outer base are M_1 , Topology Appl. 19 (1985) 65–69.
- [7] T. Mizokami, On a certain class of M1-spaces, Proc. Amer. Math. Soc. 87 (1983) 357–362.
- [8] T. Mizokami, On M-structures, Topology Appl. 17 (1984) 63-89.
- [9] T. Mizokami, N. Shimane, On the M₃ versus M₁ problem, Topology Appl. 105 (2000) 1–13.
- [10] K. Nagami, The equality of dimensions, Fund. Math. 106 (1980) 239–246.
- [11] S. Oka, Dimension of stratifiable spaces, Trans. Amer. Math. Soc. 275 (1983) 231-243.