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a b s t r a c t

In this paper we apply the classical control theory to a fractional diffusion equation in a
bounded domain. The fractional timederivative is considered in a Riemann–Liouville sense.
We first study the existence and the uniqueness of the solution of the fractional diffusion
equation in a Hilbert space. Thenwe show that the considered optimal control problem has
a unique solution. Interpreting the Euler–Lagrange first order optimality condition with
an adjoint problem defined by means of right fractional Caputo derivative, we obtain an
optimality system for the optimal control.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

LetN ∈ N∗ and� be a bounded open subset of RN with boundary ∂� of classC2. For a time T > 0, we setQ = �×(0, T )
and 6 = ∂� × (0, T ) and we consider the fractional diffusion equation:Dα

+
y − 1y = v in Q ,

y = 0 on 6,

I1−α
+

y(0+) = y0 in �

(1)

where 0 < α < 1, y0 ∈ H2(�) ∩ H0
1 (�), the control v belongs to L2(Q ). The fractional integral I1−α

+ and derivative Dα
+
are

understood here in the Riemann–Liouville sense, I1−α
+ y(0+) = limt→0+ I1−α

+ y(t).
A strong motivation for studying and investigating the solution and the properties for fractional diffusion equations

comes from the fact that they describe efficiently anomalous diffusion on fractals (physical objects of fractional dimension,
like some amorphous semiconductors or strongly porous materials; see [1,2] and references therein), fractional random
walk, etc. In [3], Oldham and Spanier discuss the relation between a regular diffusion equation and a fractional diffusion
equation that contains a first order derivative in space and a half order derivative in time. Mainardi [4], Mainardi and
Paradisi [5] and Mainardi and Pagnini [6] generalized the diffusion equation by replacing the first time derivative with a
fractional derivative of order α. These authors proved that the process changes from slow diffusion to classical diffusion,
then to diffusion-wave and finally to classical wave when α increases from 0 to 2. The fundamental solutions of the Cauchy
problems associated to these generalized diffusion equation (0 < α ≤ 2) are studied in [6,7]. By means of Fourier–Laplace
transforms, the authors expressed these solutions in term of Wright-type functions that can be interpreted as spatial
probability density functions evolving in time with similarity properties. Agrawal [8] studied the solutions for a fractional
diffusion wave equation defined in a bounded domain when the fractional time derivative is described in the Caputo sense.
Using Laplace transform and finite sine transform technique, the author obtained the general solution in terms of Mittag-
Leffler functions. Note also that the formulation of Mainardi et al. is extended to a fractional wave equation that contains
a fourth order space derivative term by Agrawal [9,10]. Wyss in [11] used Mellin transform theory to obtain a closed form
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solution of the fractional diffusion equation in terms of Fox’s H-function. In [12], Metzler and Klafter used the method of
images and the Fourier–Laplace transform technique to solve the fractional diffusion equation for different boundary value
problems.

In the area of calculus of variations and optimal control of fractional differential equations little has been done compared
to a differential equationwith integer time derivative. In [13], Agrawal presented a general formulation and solution scheme
for the fractional optimal control problem. That is an optimal control problem in which either the performance index or the
differential equations governing the dynamics of the system or both contain at least one fractional derivative term. In that
paper, the fractional derivative was defined in the Riemann–Liouville sense and the formulation was obtained by means of
the fractional variation principle [14] and the Lagrangemultiplier technique. Following the same technique, FredericoGastao
and Torres Delfim [15] obtained a Noether-like theorem for the fractional optimal control problem in the sense of Caputo.
Recently, Agrawal [16] presented an eigenfunction expansion approach for a class of distributed systems whose dynamics
are defined in the Caputo sense. Following the same approach as Agrawal, in [17] Özdemir investigated the fractional optimal
control problem of a distributed system in cylindrical coordinates whose dynamics are defined in the Riemann–Liouville
sense. Note that, for computational purposes, only a finite number of eigenfunctions are considered in both papers.

In this paper we are concerned with the following optimal control problem: find the control u = u(x, t) ∈ L2(Q ) that
minimizes the cost function

J(v) = ‖y(v) − zd‖2
L2(Q )

+ N‖v‖
2
L2(Q )

, zd ∈ L2(Q ) and N > 0

subject to the system (1).
To solve this problem, we prove that problem (1) has a unique solution in L2(Q ). Then we show that the optimal control

has a unique solution. Finally interpreting the Euler–Lagrange first order optimality condition with an adjoint problem
defined bymeans of a right fractional Caputo derivative, we obtain an optimality system for the optimal control. As far as we
know, the result presented here is new in fractional calculus since we give a complete theoretical study of the considered
optimal control and a way to compute this control.

The rest of the paper is organized as follows. Section 2 is devoted to some definitions and preliminary results. In Section 3
we prove the existence and uniqueness of the solution of (1). In Section 4 we show that our optimal control problem holds
and gives the optimality system for the optimal control. Concluding remarks are made in Section 5.

2. Preliminaries

Definition 2.1. Let f : R+ → R be a continuous function on R+ and α > 0. Then the expression

Iα
+
f (t) =

1
0(α)

∫ t

0
(t − s)α−1f (s)ds, t > 0

is called the Riemann–Liouville integral of order α.

Definition 2.2 ([18]). Let f : R+ → R. The Riemann–Liouville fractional derivative of order α of f is defined by

Dα
+
f (t) =

1
0(n − α)

dn

dtn

∫ t

0
(t − s)n−α−1f (s)ds, t > 0,

where α ∈ (n − 1, n), n ∈ N.

Definition 2.3 ([18]). Let f : R+ → R. The (left) Caputo fractional derivative of order α of f is defined by

Dα
0 f (t) =

1
0(n − α)

∫ t

0
(t − s)n−α−1f (n)(s)ds, t > 0,

where α ∈ (n − 1, n), n ∈ N.

The Caputo fractional derivative is a sort of regularization in the time origin for the Riemann–Liouville fractional
derivative.

Lemma 2.4 ([18,19]). Let T > 0, u ∈ Cm([0; T ]), p ∈ (m−1;m), m ∈ N and v ∈ C1([0; T ]). Then for t ∈ [0; T ], the following
properties hold:

D+
pv(t) =

d
dt

I1−p
+ v(t), m = 1, (2)

Dp
+I

p
+v(t) = v(t); (3)

Ip+D
p
0u(t) = u(t) −

m−1−
k=0

tk

k!
u(k)(0); (4)

lim
t→0+

Dp
0u(t) = lim

t→0+
Ip+u(t) = 0. (5)
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From now on we set:

Dα f (t) =
1

0(1 − α)

∫ T

t
(s − t)−α f ′(s)ds. (6)

Remark 2.5. −Dα f (t) is the so-called right fractional Caputo derivative. It represents the future state of f (t). For more
details on this derivative we refer to [18,19]. Note also that when T = +∞, Dα f (t) is the Weyl fractional integral of order
α of f ′ [20].

Lemma 2.6. For any ϕ ∈ C∞(Q ), we have∫ T

0

∫
�


Dα

+
y(x, t) − 1y(x, t)


ϕ(x, t)dxdt =

∫
�

ϕ(x, T )I1−α
+

y(x, T )dx −

∫
�

ϕ(x, 0)I1−α
+

y(x, 0+)dx

+

∫ T

0

∫
∂�

y
∂ϕ

∂ν
dσdt −

∫ T

0

∫
∂�

∂y
∂ν

ϕdσdt

+

∫
�

∫ T

0
y(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dxdt. (7)

Proof. Let ϕ ∈ C∞(Q ). We have∫ T

0

∫
�


Dα

+
y(x, t) − 1y(x, t)


ϕ(x, t)dxdt =

∫ T

0

∫
�

Dα
+
y(x, t)ϕ(x, t)dxdt −

∫ T

0

∫
�

1y(x, t)ϕ(x, t)dxdt.

We have

−

∫ T

0

∫
�

1y(x, t)ϕ(x, t)dxdt = −

∫ T

0

∫
∂�

∂y
∂ν

ϕdσdt +

∫ T

0

∫
∂�

y
∂ϕ

∂ν
dσdt −

∫ T

0

∫
�

y(x, t)1ϕ(x, t)dxdt. (8)

Using the notations above and (2), we have∫ T

0

∫
�

Dα
+
y(x, t)ϕ(x, t)dxdt =

∫
�

[∫ T

0
ϕ(x, t)

d
dt


I1−α
+

y(x, t)

dt

]
dx

=

∫
�

ϕ(x, T )I1−α
+

y(x, T )dx −

∫
�

ϕ(x, 0)I1−α
+

y(x, 0+)dx

−

∫
�

[∫ T

0
ϕ′(x, t)I1−α

+
y(x, t)dt

]
dx.

Since

−

∫
�

[∫ T

0
ϕ′(x, t)I1−α

+
y(x, t)dt

]
dx = −

∫
�

[∫ T

0
ϕ′(x, t)


1

0(1 − α)

∫ t

0
(t − s)−αy(x, s)ds


dt

]
dx

= −

∫
�

[∫ T

0
y(x, s)


1

0(1 − α)

∫ T

s
(t − s)−αϕ′(x, t)dt


ds

]
dx

= −

∫
�

[∫ T

0
y(x, s)Dαϕ(x, s)ds

]
dx

where Dαϕ(x, t) is given by (6), we deduce that∫ T

0

∫
�

Dα
+
y(x, t)ϕ(x, t)dxdt =

∫
�

ϕ(x, T )I1−α
+

y(x, T )dx −

∫
�

ϕ(x, 0)I1−α
+

y(x, 0+)dx

−

∫
�

[∫ T

0
y(x, t)Dαϕ(x, t)dt

]
dx. (9)

Hence adding (9) to (8), we obtain (7). �

Lemma 2.7. Let y be the solution of (1). Then for any ϕ ∈ C∞(Q ) such that ϕ(x, T ) = 0 in � and ϕ = 0 on 6, we have
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0

∫
�


Dα

+
y(x, t) − 1y(x, t)


ϕ(x, t)dxdt = −

∫
�

ϕ(x, 0)I1−α
+

y(x, 0+)dx

−

∫ T

0

∫
∂�

∂y
∂ν

ϕdσdt +

∫ T

0

∫
∂�

y
∂ϕ

∂ν
dσdt

+

∫ T

0

∫
�

y(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dxdt.

Proof. It is an immediate consequence of Lemma 2.6. �

Lemma 2.8 ([19]). Let 0 < α < 1. Let g ∈ Lp(0, T ), 1 ≤ p ≤ ∞ and φ :]0, T ] → R+ be the function defined by:

φ(t) =
t−α

0(1 − α)
.

Then for almost every t ∈ [0, T ], the function s → φ(t − s)g(s) is integrable on [0, T ]. Set

φ ⋆ g(t) =

∫ t

0
φ(t − s)g(s)ds.

Then φ ⋆ g ∈ Lp(0, T ) and

‖φ ⋆ g‖Lp(0,T ) ≤ ‖φ‖L1(0,T )‖g‖Lp(0,T ).

For more details on fractional integrals and derivatives with their applications see also [21].
Recall the so-called Mainardi function which is a particular Wright function [6,18,22]:

8α(z) =

+∞−
n=0

(−z)n

n!0(−αn + 1 − α)
=

1
2iπ

∫
G
λα−1e(λ−zλα)dλ, 0 < α < 1 (10)

where G is a contour which starts and ends at −∞ and encircles the origin once clockwise. We have the following relation
between the Wright function and the Mittag-Leffler function:

Eα(z) =

∫
∞

0
8α(t)eztdt, 0 < α < 1.

This means that Eα(−z) is the Laplace transform of 8α in the whole complex plane. Therefore 8α is a probability density
function, i.e.:

8α(t) ≥ 0 for all t > 0,∫
∞

0
8α(t)dt = 1.

3. Existence and uniqueness of the solution of (1)

Consider the following abstract fractional differential equation in a Banach space X:
Dα

+
y(t) = Ay(t) + f (t), t ∈ [0, T ]

I1−α
+

y(0) = y0, (11)

where (X, ‖.‖X) is a Banach space, 0 < α < 1, the operator A : D(A) ⊂ X → X is a linear closed operator defined on a
dense set D(A) of the Banach space X, y0 ∈ D(A) and f ∈ L2((0, T ); X).

There have been many papers on such an inhomogeneous fractional differential equation.
For instance, considering the following fractional differential equation:

Dα
0y(t) = Ay(t) + f (t), t ∈ [0, T ]

y(0) = y0. (12)

Baeumer et al. [23] developed an analytical formula for the solution when f = I1−α
0 r, f (0) = 0, r being a given function,

assuming thatA is the generator of C0-semigroup. Then they proved the existence and uniqueness of the solution considering
an equivalent equation of convolution type. Assuming that f satisfies a uniformHölder condition, El-Boraï in [24] proved the
existence and uniqueness of the solution of (12) when A is the generator of an analytic semigroup. We also refer to [25–29]
etc. for more literature on fractional differential equations.
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In this paper, by a Laplace transform of vector-valued functions, we prove the existence and uniqueness of the solution
to (11) assuming that A is the generator of a uniformly bounded C0-semigroup (Q (t))t≥0.

From now on we assume that A is the generator of a uniformly bounded C0-semigroup (Q (t))t≥0. That is there exists
K > 0 such that

sup
t≥0

‖Q (t)‖B(X) ≤ K , (13)

where (B(X), ‖.‖B(X)) is the Banach space of all linear bounded operators on X.

Remark 3.1. Note that if (A,D(A)) = (1,H2(�) ∩ H1
0 (�)) where 1 is the Laplacian operator then A is the generator of a

contraction semigroup [30]. So (13) is satisfied.

Theorem 3.2. Let 1/2 < α < 1. Assume that f ∈ L2((0, T ); X) and A is the generator of a C0-semigroup (Q (t))t≥0 on a Banach
space X satisfying (13). Then for any y0 ∈ D(A), problem (11) has a unique solution y ∈ L2((0, T ); X) given by:

y(t) = Pαy0 +

∫ t

0
Pα(t − τ)f (τ )dτ

where

Pα(t) = α

∫
∞

0
θ tα−18α(θ)Q (tαθ)dθ (14)

with 8α defined as in (10). Moreover

‖y‖L2((0,T );X) ≤
K

0(α)


2T 2α−1

(2α − 1)
‖y0‖X +


2T 3α

α3
‖f ‖L2((0,T );X)

 . (15)

Proof. Using the fact that the Laplace transform of Dα
+
y is given by

(Dα
+y)(λ) = λαy(λ) − I1−α

+
y(0+)

we deduce that the Laplace transform of the solution of (11)

y(λ) = (λα I − A)
−1 y0 + (λα I − A)

−1f (λ). (16)

Observing that for any h ∈ X, (λI − A)−1 h =


∞

0 e−λsQ (s)hds, and using (10) we get

(λα I − A)
−1 h =

∫
∞

0
e(−λα s)Q (s)hds

=

∫
∞

0

∫
∞

0
e−λs1/αuρα(u)Q (s)hduds

=

∫
∞

0
e−λt

∫
∞

0
s−1/αρα(ts−1/α)Q (s)hds


dt

where ρα represents the one side stable probability density whose Laplace transform is given by [24]:∫
∞

0
e−λτρα(τ )dτ = e(−λα) (17)

and which satisfies

α8α(θ) = θ−1−1/αρα(θ−1/α). (18)

Therefore using (18), we obtain

(λα I − A)
−1 h =

∫
∞

0
e−λt

∫
∞

0
s−1/αρα(ts−1/α)Q (s)hds


dt

=

∫
∞

0
e−λt

∫
∞

0
αstα−18α(t−αs)Q (s)hds


dt

=

∫
∞

0
e−λt

∫
∞

0
αθ tα−18α(θ)Q (tαθ)hdθ


dt.



G.M. Mophou / Computers and Mathematics with Applications 61 (2011) 68–78 73

Hence we deduce that

(λα I − A)
−1 h = P(λ)h (19)

with

Pα(t) =

∫
∞

0
αtα−1θ8α(θ)Q (tαθ)dθ.

It follows from (16) that

y(t) = Pα(t)y0 +

∫ t

0
Pα(t − s)f (s)ds.

Now we prove that (15) holds. Using (13) we have

‖y(t)‖X ≤

∫
∞

0
αtα−1θ8α(θ)‖Q (tαθ)y0‖Xdθ +

∫ t

0

∫
∞

0
α(t − s)α−1θ8α(θ)‖Q ((t − s)αθ)f (s)‖Xdθds

≤
K

0(α)
tα−1

‖y0‖X +
K

0(α)

∫ t

0
(t − s)α−1

‖f (s)‖Xds

since


∞

0 θ8α(θ)dθ =
1

0(1+α)
(see [7] for instance). Consequently using the fact that (t − s)α−1

∈ L1(0, T ) and f ∈ L2

((0, T ); X), we obtain

‖y(t)‖X ≤
K

0(α)
tα−1

‖y0‖X +
K

0(α)

∫ t

0


(t − s)α−11/2 

(t − s)α−1
‖f (s)‖2

X

1/2
ds

≤
K

0(α)
tα−1

‖y0‖X +
KTα

0(1 + α)

∫ t

0
(t − s)α−1

‖f (s)‖2
Xds

1/2

,

which implies that

‖y(t)‖2
X ≤

2K 2

(0(α))2
t2α−2

‖y0‖2
X +

2K 2T 2α

(0(1 + α))2

∫ t

0
(t − s)α−1

‖f (s)‖2
Xds.

Thus∫ T

0
‖y(t)‖2

Xdt ≤
2K 2

(0(α))2
‖y0‖2

X

∫ T

0
t2α−2dt +

2K 2T 2α

(0(1 + α))2

∫ T

0

∫ t

0
(t − s)α−1

‖f (s)‖2
Xdsdt

≤
2K 2T 2α−1

(2α − 1)(0(α))2
‖y0‖2

X +
2K 2T 2α

(0(1 + α))2

∫ T

0
‖f (s)‖2

X

∫ T

s
(t − s)α−1dtds

≤
2K 2T 2α−1

(2α − 1)(0(α))2
‖y0‖2

X +
2K 2T 3α

α3(0(α))2
‖f ‖2

L2((0,T );X)

and we deduce (15). �

Corollary 3.3. Let 0 < α < 1 and y0 ≡ 0. Assume that A is the generator of a C0-semigroup (Q (t))t≥0 on a Banach space X
satisfying (13). Then problem (11) has a unique solution y ∈ L2((0, T ); X) given by:

y(t) =

∫ t

0
Pα(t − τ)f (τ )dτ . (20)

Moreover

‖y‖L2((0,T );X) ≤
K

0(α)


T 3α

α3
‖f ‖L2((0,T );X). (21)

Theorem 3.4. Let 1/2 < α < 1, y0 ∈ H2(�) ∩ H1
0 (�) and v ∈ L2(Q ). Then (1) has a unique solution in L2(Q ). Moreover

‖y‖L2(Q ) ≤
1

0(α)


2T 2α−1

(2α − 1)
‖y0‖L2(�) +


2T 3α

α3
‖v‖L2(Q )

 . (22)

Proof. We apply Theorem 3.2 with A = 1, D(A) = H2(�) ∩ H1
0 (�), X = L2(�) and f = v. Note that (22) is obtained from

(15) by taking K < 1 since 1 generates a semigroup of contractions. �
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In view of Corollary 3.3, we have this other result:

Corollary 3.5. Let 0 < α < 1, y0 ≡ 0 and v ∈ L2(Q ). Then (1) has a unique solution in L2(Q ). Moreover

‖y‖L2(Q ) ≤
1

0(α)


T 3α

α3
‖v‖L2(Q ).

Now, consider the following fractional differential equation:
−Dαp(t) − Ap(t) = g(t), t ∈ [0, T ]

p(T ) = 0. (23)

where 0 < α < 1, g ∈ L2((0, T ); X) and A is the generator of a C0-semigroup (Q (t))t≥0 on a Banach space X.

Proposition 3.6. Assume that 0 < α < 1, A is the generator of a C0-semigroup (Q (t))t≥0 on a Banach spaceX satisfying (13) and
g ∈ L2((0, T ); X). Then problem (23) has a unique solution p ∈ L2(Q ) given by:

p(t) =

∫ t

0
Pα(t − τ)g(τ )dτ (24)

where P(t) is the operator defined by (14). Moreover

‖p‖L2((0,T );X) ≤
K

0(α)


T 3α

α3
‖g‖L2((0,T );X). (25)

Proof. We proceed in two steps.
Step 1.We prove that (23) is a backward fractional diffusion equation defined with a Captuto derivative.

Set

TTp(t) = p(T − t), t ∈ [0, T ]. (26)

Then d
dt TTp(t) = −p′(T − t) = −TTp′(t).

Next, making the change of variable t → T − t in

Dαp(t) =
1

0(1 − α)

∫ T

t
(s − t)−αp′(s)ds,

we have

Dαp(T − t) =
1

0(1 − α)

∫ T

T−t
(s − (T − t))−αp′(s)ds

=
1

0(1 − α)

∫ t

0
(t − u)−αp′(T − u)du

which according to the notation (26) can be rewritten as

DαTTp(t) = −
1

0(1 − α)

∫ t

0
(t − u)−α(TTp)′(u)du.

This means that

DαTTp(t) = −Dα
0TTp(t).

Finally, making the change of variable t → T − t in (23), we obtain
Dα
0TTp(t) − ATTp(t) = TTg(t), T − t ∈ [0, T ]

p(0) = 0

That is
Dα
0p(τ ) − Ap(τ ) = g(τ ), τ ∈ [0, T ]

p(0) = 0 (27)

Step 2.We show that (24) and (25) hold.
Using the fact that

(Dα
0p)(λ) = λαp(λ) − λα−1P(0)



G.M. Mophou / Computers and Mathematics with Applications 61 (2011) 68–78 75

we deduce that the Laplace transform of the solution of (27)p(λ) = (λα I − A)
−1g(λ).

Therefore using (19), we deduce that

p(t) =

∫ t

0
Pα(t − τ)g(τ )dτ .

Hence proceeding as for the proof of (22) in Theorem 3.2 we obtain

‖p‖L2((0,T );X) ≤
K

0(α)


T 3α

α3
‖g‖L2((0,T );X). �

Remark 3.7. The Laplace transform of vector-valued functions plays a key role in the proof of the above proposition as well
as in the proof of Theorem 3.2. For more information on the basic theory of the Laplace transform of vector-valued functions
and their nice applications to evolution equations, please see, e.g., [31–38].

4. Optimal control

In this section, wewant to control system (1). More precisely, wewant to approach the state y(v) of (1) by a desired state
zd in controlling v.

Let v ∈ L2(Q ). Then in view of the results of Section 3 we know that the solution y = y(v) of (1) belongs to L2(Q ). Thus
we can define the functional

J(v) = ‖y(v) − zd‖2
L2(Q )

+ N‖v‖
2
L2(Q )

(28)

where zd ∈ L2(Q ) and N > 0. The optimal control problem consists in finding u ∈ L2(Q ) such that

J(u) = inf
v∈L2(Q )

J(v). (29)

Proposition 4.1. Assume that the state of the system is given by (1). Then there exists a unique optimal control u such
that (29) holds.

Proof. Let vn ∈ L2(Q ) be a minimizing sequence such that

J(vn) → inf
v∈L2(Q )

J(v). (30)

Then yn = y(vn) is a solution of (1). This means that yn satisfies:

Dα
+
yn − 1yn = vn in Q , (31a)

yn = 0 on 6, (31b)

I1−α
+

yn(x, 0) = y0 in �. (31c)

Moreover, in view of (30), there exists C > 0 independent of n such that

‖vn‖L2(Q ) ≤ C,

‖yn‖L2(Q ) ≤ C

and it follows from (31a) that

‖Dα
+
yn − 1yn‖L2(Q ) ≤ C . (32)

Hence there exists u, y, δ in L2(Q ) and a subsequence extracted from (vn) and (yn) (still called (vn) and (yn)) such that

vn ⇀ u weakly in L2(Q ), (33)

yn ⇀ y weakly in L2(Q ), (34)

Dα
+
yn − 1yn ⇀ δ weakly in L2(Q ). (35)

We set

D(Q ) = {ϕ ∈ C∞(Q ) such that ϕ|∂� = 0, ϕ(x, 0) = ϕ(x, T ) = 0 in �}

and we denote by D′(Q ) the dual of D(Q ).
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In view of Lemma 2.7, we have∫ T

0

∫
�


Dα

+
yn(x, t) − 1yn(x, t)


ϕ(x, t)dxdt =

∫ T

0

∫
�

yn(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dxdt, ∀ϕ ∈ D(Q ).

Therefore in view of (34), we obtain for ϕ ∈ D(Q ),

lim
n→∞

∫ T

0

∫
�


Dα

+
yn(x, t) − 1yn(x, t)


ϕ(x, t)dxdt =

∫ T

0

∫
�

y(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dxdt

=

∫ T

0

∫
�


Dα

+
y(x, t) − 1y(x, t)


ϕ(x, t)dxdt.

This means that

Dα
+
yn − 1yn ⇀ Dα

+
y − 1y weakly in D′(Q ),

and we deduce that

Dα
+
y − 1y = δ ∈ L2(Q ). (36)

Hence, passing to the limit in (31a) while using (35), (33) and (36), we deduce that

Dα
+
y − 1y = u in Q . (37)

Dα
+
yn − 1yn ⇀ Dα

+
y − 1y weakly in L2(Q ). (38)

If y ∈ L2(Q ), then in view of Lemma 2.8, I1−α
+ y(x, t) ∈ L2(Q ). Therefore, on the one hand we have Dα

+
y(x, t) =

d
dt

I1−α
+ y(x, t) ∈ H−1((0, T ); L2(�)) and then,1y ∈ H−1((0, T ); L2(�)) since (36) holds. Thus y(t) ∈ L2(�) and1y(t) ∈ L2(�).
Hence, we deduce that y|∂� exists and belongs to H−1/2(∂�) (see [39]).

On the other hand,wehave1y ∈ L2((0, T );H−2(�)) and then,Dα
+
y(x, t) =

d
dt I

1−α
+ y(x, t) ∈ L2((0, T );H−2(�)) since (36)

holds. Thus I1−α
+ y(x, t) ∈ L2(Q ) and d

dt I
1−α
+ y(x, t) ∈ L2((0, T );H−2(�)). Consequently I1−α

+ y belongs to C([0, T ],H−1(�))

(see [40]). This means that I1−α
+ y(x, 0) exist and belongs to H−1(�).

Now, multiplying (31a) by ϕ ∈ C∞(Q ) with ϕ|∂� = 0 and ϕ(T , x) = 0 on �, and integrating by parts over Q , we obtain
by using Lemma 2.7,∫ T

0

∫
�


Dα

+
yn(x, t) − 1yn(x, t)


ϕ(x, t)dxdt = −

∫
�

ϕ(x, 0)y0dx +

∫ T

0

∫
�

yn(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dxdt.

Passing this latter identity to the limit when n → ∞ while using (38) and (34),∫ T

0

∫
�


Dα

+
y(x, t) − 1y(x, t)


ϕ(x, t)dxdt +

∫
�

ϕ(x, 0)y0dx =

∫ T

0

∫
�

y(x, t) (−Dαϕ(x, t) − 1ϕ(x, t)) dxdt. (39)

Integrating by parts the right side of (39) while using Lemma 2.6, we obtain∫ T

0

∫
�


Dα

+
y(x, t) − 1y(x, t)


ϕ(x, t)dxdt +

∫
�

ϕ(x, 0)y0dx = +

ϕ(x, 0), I1−α

+
y(x, 0+)


H1
0 (�),H−1(�)

−

∫ T

0


y,

∂ϕ

∂ν


H−1/2(∂�),H1/2(∂�)

dt +

∫ T

0

∫
�


Dα

+
y(x, t) − 1y(x, t)


ϕ(x, t)dxdt,

for all ϕ ∈ C∞(Q ) with ϕ|∂� = 0 and ϕ(x, T ) = 0 on � (40)

where ⟨., .⟩Y ,Y ′ represents the duality bracket between the spaces Y and Y ′.
Hence, (40) yields∫

�

ϕ(x, 0)y0dx = +

ϕ(x, 0), I1−α

+
y(x, 0+)


H1
0 (�),H−1(�)

−

∫ T

0


y,

∂ϕ

∂ν


H−1/2(0),H1/2(0)

dt,

for all ϕ ∈ C∞(Q ) with ϕ|∂� = 0 and ϕ(x, T ) = 0 on �.

There for taking in this latter identity ϕ such that ∂ϕ

∂ν
= 0 on ∂�, we obtain

I1−α
+

y(x, 0+) = y0(x) in � (41)

and then,

y = 0 on ∂�. (42)
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In view of (37), (41) and (42), we deduce that y = y(u) is a solution of (1). From weak lower semi-continuity of the
function v → J(v) we deduce

lim inf
n→∞

J(vn) ≥ J(u).

Hence according to (30), we deduce that

J(u) ≤ inf
v∈L2(Q )

J(v)

which implies that

J(u) = inf
v∈L2(Q )

J(v).

The uniqueness of u is straightforward from the strict convexity of J . �

Theorem 4.2. If u is a solution of (29), then there exist p ∈ L2(Q ) such that (u, y, p) satisfies the following optimality system:Dα
+
y − 1y = u in Q ,

y = 0, on 6,

I1−α
+

y(x, 0+) = y0 in �

(43)


−Dαp − 1p = y − zd in Q ,
p = 0 on 6,
p(T ) = 0 in �

(44)

u = −
p
N

in Q . (45)

Proof. Relations (37), (41) and (42) give (43). To prove (44) and (45), we express the Euler–Lagrange optimality conditions
which characterize the optimal control u:

d
dµ

J(u + µϕ)|µ=0 = 0, for all ϕ ∈ L2(Q ). (46)

The state z(ϕ) associated to the control ϕ ∈ L2(Q ) is a solution of

Dα
+
z − 1z = ϕ in Q ,

z = 0, on 6,

I1−α
+

z(x, 0+) = 0 in �.

(47)

After calculations, (46) gives∫ T

0

∫
�

z(y(u) − zd)dxdt + N
∫ T

0

∫
�

uϕdxdt = 0 ∀ϕ ∈ L2(Q ). (48)

To interpret (48), we consider the adjoint state equation:

−Dαp − 1p = y(u) − zd in Q ,

p = 0 on 6,

p(T ) = 0 in �.

(49)

Since y(u) − zd ∈ L2(Q ), applying Proposition 3.6 with (A,D(A)) = (1,H2(�) ∩ H1
0 (�)), we deduce that problem (49) has

a unique solution in L2(Q ). Thus, multiplying (47) by the p solution of (49), we obtain by using Lemma 2.7,∫ T

0

∫
�


Dα

+
z − 1z


pdxdt =

∫ T

0

∫
�

(−Dαp − 1p) zdxdt

=

∫ T

0

∫
�

(y(u) − zd)zdxdt.

Hence, in view of (47) and (48), we deduce that∫ T

0

∫
�

ϕpdxdt = −N
∫ T

0

∫
�

ϕudxdt ∀ϕ ∈ L2(Q ).
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Consequently,

u = −
p
N

in Q . �

5. Concluding remarks

We have proved that if 1/2 < α < 1 or 0 < α < 1 with y0 ≡ 0 then (1) has a unique solution in L2(Q ). Moreover, we
show that one can approach the state y(v) of (1) by a desired state zd by controlling v and compute the control v using the
algorithm given by the optimality system. Note that two cases are considered here because we need the L2 estimate of the
solution for control purposes.

Let us alsomention that by proceeding as in Section 3, one can easily prove that problem (1) with a Caputo derivative has
a unique solution in L2(Q ) and obtain the continuity of the solution with respect to the data. However, it will not be easy to
give a sense to the initial condition while establishing the optimality system condition.
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