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Almract--We present a network-based heuristic procedure for s~lving a class of large non-unimodular 
assignment.type problems. The procedure is developed from certain results concerning multi-commodity 
network flows and concepts of node-aggregation in networks. Computational experience indicates that 
problems with over fifteen thousand integer variables can be solved in well under ten seconds using 
state-of-the-art network optimization software. 

INTRODUCTION 
In this paper we propose an efficient heuristic procedure for solving a class of large 0-1 integer 
programming problems. The problem considered here is a generalized version of the assignment 
problem which may also be viewed as a specialization of the multicommodity transportation 
problem. Hence, the problem is termed the multicommodity assignment problem. We also note 
that the multicommodity assignment problem is distinct from the multidimensional assignment 
problem that has been addressed in the literature (Plerskalla[1]). The later may be thought of as 
finding a matching on a three.dimensional lattice of points whereas the former seeeks a 
covering of an n xn array with n disjoint two-dimensional matchings (assignments). The heuristic 
procedure that we shall present draws upon certain theoretical results concerning integrality in 
multicommodity networks[2,4] and concepts of node aggregation in networks[7,11]. Using 
state-of-the-art primal simplex network codes [13, 15, 16] to implement the procedure, problems 
with thousands of variables can be solved in seconds in modern computers. 

PROBLEM FORMULATION 

The multicommodity assignment problem can be stated as determining an optimal assign- 
ment for n objects of n different types among two families of sets ,7'--{Si} and 3" = {Tt} with 
I~ --[~ = n so that each set contains exactly one object of each type. A typical application is 
the situation of market testing n products in n different locations over n time periods. Each 
product must be tested in every location over n time periods. Each product must be tested in every 
location, but only one product may be tested in any location during any given time period. Another 
example involves the assignment of management trainees to various positions over time within a 
company. The reader may note the obvious equivalence of solutions to the multicommodity 
assignment problem with the structure of Latin squares. Thus, the problem can be viewed as one of 
findings an optimal Latin square. In this context, an application might be to minimize the amount of 
time or cost of data collection in constructing a Latin square design for an experiment. 

Mathematically, the problem can be formulated as follows: Let X~ = I if an object of type k 
is assigned to sets Si and T~, and 0 otherwise. We then have: 
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X~i = 1; Vi, k (3) 
i - i  

. l  X~l -< 1; Vi, j (4) 

x~j  = o, 1; vi,  j, k, (5) 

We remark that (4) will always be satisfied as a strict equality, but the inequality will he useful 
in this presentation. As it stands, the problem is an integer program with n 3 binary variables and 
3nZ.-n independent constraints. 

C O M B I N A T O R I A L  P R O P E R T I E S  

Let • he the convex polytope defined by (2)-(4) and by 

X~j -> o; Vi, j, k (5') 

obtained by relaxing the i n ~ i t y  requirements (5). Implicit in this set of constraints is the fact 
that X~i s I for all/, ],/r. Let V(g') he the set of extreme points (vertices) of P. Then V(~) can he 
partitioned into two sets I(~)  and N(~) where I(~) is the set of vertices having all integer (0, 1) 
coordimms sad N(~)  the remaini~ seL It is easy to see that aay solution to (2)--(5) must helong to 
I(~'); that is, the linear form (1) is min_indzed at a vertex of ~'. Except for a special case, however, 
N(@) is noumpty,  thus precluding solutions by linear programming. 

The polytope ~ is a special case of the following: 

~ x ~ j  = a, k; v/, k (6) 

X~ I = b~; V j, k (7) 
j= l  

• X~j <-- uli; Vi, j (8) 

X~ ~ O; Vi, j, k (9) 

where it is assumed that Y. a, t = Z b~ for each k. These constraints describe a class of network 
i j 

flow problems known as multicommodity transportation (problems[2], which are simply 
generalizations of the ordinary transportation problem of linear ~ [ 3 ] .  Indeed, if 
r = 1 we have an ordinary capacitated problem. In this case, X~j represents the flow from 
source i to sink j of commodity k over an arc having capacity t~. The parameters a, t and b~ 
are, respectively, supplies and demands. The following theorem follows from the constructive 
results in[2] and [4] and is also proven algebraically in[5]: 

THEOUM 
The constraint matrix to (6)-(8) is unimodular? if and only if m s 2 or n < 2 for all r > 2. 

From Velnott and Dantzig[6], if a~, b~, and u~ I are integers, then all extreme points of the 
corresponding polytope are integral and only if m < 2 or n -< 2. An immediate consequence is 

COitOLLAltY 
If n s 2, N(~) = O. 

An example of a non-intnger extreme point of ~' for n = 3 is 

fUnimodularity implies that every basis has determinant + 1 or - I. 
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The multicommodity assignment problem for n > 2 is, then, a difficult integer programming 
problem. 

A NODE-AGGREGATION HUERISTIC 

Being a pure integer program, the multicommodity assignment problem is NP-complete, and 
therefore apparently no efficient solution procedures for obtaining optimal solutions exist. For 
practical problems of any reasonable size one must resort to heuristic methods for obtainine a, 
hopefully, good solution. The algorithm we shall present is based upon solving a sequence of 
n - 1 simple network flow problems. 

As noted previously, the multicommodity assignment problem is a special case for the 
multicommodity transportation problem with n origins, n destinations, and n commodities (Fig. 
1). Each commodity has a supply (demand) of one at each origin (destination). In addition, the 
capacity of each arc (represented by equation (4)) is unity. For this interpretation we choose the 
inequality form of constraint (4). 

By a node-a88regation, we mean a grouping of several nodes in a network into a single 
node, along with aggregation of arcs between appropriate nodes in the grouping and those 
external to it. An illustration of a node-aggregation for a 3 x 3 transportation network is shown 
in Fig. 2. Aggregations of nodes in networks have recently been investigated by Geoffrion[l 1], 
Zipkin [7, 8], and Evans[9,10]. In particular, they may be interpreted as row and column 
aggregation in linear programs [17]. 

Consider now the sequence of aggregations relative to Fig. 1 and the muiticommodity 

Fig. I. Network structure of the multicommodity assignment problem. 

Aggra~late 

f 

Fig. 2. Node-aggregation. 
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problem, P,, s = 1, 2 . . . . .  n - 1, where P, is defined as follows: 

P,: minimize ~ k , ~ k k c,jX,s + d,+l.sY,+~j (I0) 
i=t i=1 

~. x,kj= l;Vk (11) 
I 

Y,+I# n-s ;Vk  (12) 
) 

s-I  
X,i  + yk+,.~ = 1 - ~ X~; Yj, k (13) 

i=1 

X~j < 1;Vj  (14) 

t < - s ; V j  (15) Ys+l j - -  n 

k k X,j, y,+~j --- O; ¥j,k. (16) 

P, is simply a two-origin multicommodity transportation problem as shown in Fig. 3. This 
sequence of problems is derived from the original problem as follows. For s -- 1, we aggregate 

0 
nodes 2 through n (in Fig. 1) into the single node s + 1. (For s = 1, define 2 ~'[  -- 0, ¥j,k). The 

i-I  

supply at node s + 1 is simply the sum of the supplies of the aggregated nodes; the flow 
N 

y,k+lj = Y.. X~j; and the capacity of arc (s + 1,j) is defined as the sum of the capacities of the 
I = s + l  

arcs. A surrogate cost d,k+,, for the aggregate arcs must be specified. Some 
appropriate measures are 

(17) 

X k 

k d . , j -  rain {c~j} (18) 
s+l<lean 

or some other convex combination. In particular, specifying the surrogate cost by (17) results in 
the concept of weighted ag4[regation (Zipkin[17]). Solving P~, one obtains a partial solution to 
the original k problem, say X, ,  for all j,k. These flows are subtracted from the demands and 
source ! is no longer considered. P2, then, consists of source 2 and the aggregation of sources 3 
through n, etc. By successively solving this sequence of problems, a feasible solution to the 

dk,+ij = Ckij (n - s) 
i I 

Fig. 3. Aggregated problem P,. 
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multicommodity assignment problem is obtained. Feasibility may not always be maintained when 
solving the general multicommodity transportation problem (with arbitrary integer supplies, 
demands, and capacities) in this manner. However, when these parameters are unity, the fact that 
each non-aggregated arc may only carry the flow of one commodity along with the fact that all arcs 
must be saturated, will guarantee feasibility. 

The key to the efficiency of this approach lies in the solution of the aggregated problems P,, 
s -- 1,2 . . . . .  n - 1. In [4], it is shown that a 2 x n multicommodity transportation problem with 
an arbitrary number of commodities can be explicitly transformed into an ordinary, single 
commodity capacitated transportation problem with n origins and r + 1 destinationsA" When the 
transformation is applied to the multicommodity assignment problem, arcs incident to the 
(r + 1)st destination in the equivalent network will have capacity of zero; thus the aggregated 
problem reduces to an n × n capacitated transportation problem. In fact, it can be shown that 
the number of arcs in the equivalent network with non-zero capacity is exactly (n - s + i)n for 
P,. This will be illustrated in the example in the next section. Using the Edmonds-Karp 
modifications to the out-of-kilter algorithm[12], one can easily demonstrate that the hueristic 
procedure is polynomially bounded. For computational purposes, however, a primal simplex 
network code, GNET[13, 14], was used by the author. GNET and other primal codes[15, 16] 
represent the fastest network optimization codes available to date. 

A NUMERICAL EXAMPLE AND COMPUTATIONAL REMARKS 

In this section we present a small numerical example to illustrate the procedure and the 
transformed networks. Table 1 exhibits the c~j values for a problem with n = 4. A simple 
average was used (equation (17)) for the surrogate costs for aggregated arcs. Problem P~ is 
shown in Fig. 4 and its equivalent transformed network in Fig. 5. In Fig. 5, an arc from node ] 
to node k represents the variable y2t~. The slack on the arc corresponds to X~. Cost on the arc 
(],k) is (d[~ - cfj). The solution to Pj (non-zero X~fs) is: 

X]4 = 1 
X~3= 1 
X]I = 1 
X~2 = I. 

TaEel.  C ~ t c ~ m c i e m s f ~ e ~ p l e p m ~ e m  

i i 
'i 1 2 3 4  i 1 2 3 4  

I 10 8 5 10 I 4 6 9 12 
2 14 6 10 12 2 20 30 40 50 
3 3 8 14 15 3 16 20 45 15 
4 10 10 5 10 4 20 20 12 12 

k = l  k=2 

J j 
i 1 2 3 4  i 1 2 3 4  

1 10 10 10 10 1 16 20 15 18 
2 15 20 25 20 2 5 30 10 20 
3 30 25 20 15 3 40 50 12 20 
4 I0 5 8 14 4 16 30 25 25 

k=3 k=4  

tActnally, the result is stated for the m x 2 case, but the problem is symmetric by reversing the role of origins and 
destinations. 
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Supplies, k "  1 , 2 , 3 , 4  

1,1,1,1 

3 , 3 , 3 , 3  
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Copocity Oen~nds, 
J 1,1,1,1 

I ~ l t l , I  

1,1,1,1 

I m 1,1,1 

Fig. 4. Problem Pl. 

# : 1 , 2 , 3 , 4  

3 3 

3 

3 

Fig. 5. Tnmdormed network P~ (all capacities are 1). 

~q~li l ies, 

Demands, k : 1,2,  3 , 4  
I , I t O ,  I 

k s 1 ,2 t3 ,4  
I, I , I ,  I 

1 , 1 , 1 , 0  

I , O , l , I  

2 , 2 , 2 t 2  

0 , 1 , 1 , 1  

F~.6. Proem P2. 

P2 is given in Fill. 6 and its transformation in Fig. 7. The solution to P2 is 

X ~ =  1 
X ~ =  1 
X}4= 1 
X~l = 1. 

Finally,/'3 and its ~msform~on are given in Figs. 8 and 9 respectively. The remainder of the 
final solution is 

X12 = X~1 = I 

~ ,  = x h  = n 

X]3 = X~= = 1 
X~= X~= I. 

Note that the transformed network for P,+~ can easily be derived from P~ by deleting (or 
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Fig. 7. Transformed network P2. 

S.Dpltns, k • I ,  2 , 3 , 4  
I , l l l , I  

1,1,1,1 

Demen~, 
1,1,0,0 

1,1,1,0 

0,0,1,1 

O, I ,0,1 

Fig. 8. Problem/'2. 

# " 1 , 2 , 3 , 4  

I I 

I I 

I I 

I I 

Fig. 9. Transformed network P3- 

effectively setting the capacity to zero) exactly n arcs. Thus the procedure can be efficiently 
implemented in an interactive mode on a computer with proper updates of supplies, demands, 
and costs. Using this procedure, problems with very large numbers of variables can be easily 
solved. For instance, the author has solved problems of the form PI for n as large as 25 using 
GNET[13, 14]. The average time for n -- 25 was 0.315 sec CPU on an Amdahl 470. Thus a very 
conservative estimate (since the number of arcs decreases linearly) for solving the sequence of 
problems PI,/'2 . . . . .  Pu would be (0.315) × 24 -- 7.56 sec. Considering that fact that for n = 25, 
the problem consists of 15,625 integer variables, this represents a very efficient procedure. 
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