A common fixed point theorem with applications to vector equilibrium problems

Mircea Balaj
Department of Mathematics, University of Oradea, 410087 Oradea, Romania

ARTICLE INFO

Article history:
Received 9 March 2009
Received in revised form 17 September 2009
Accepted 18 September 2009

Keywords:
Generalized equi-KKM family of set-valued mappings
Fixed point
Vector equilibrium problem
Minimax inequality

ABSTRACT

In this paper, using the Brouwer fixed point theorem, we establish a common fixed point theorem for a family of set-valued mappings. As applications of this result we obtain existence theorems for the solutions of two types of vector equilibrium problems, a Ky Fan-type minimax inequality and a generalization of a known result due to Iohvidov.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let X be a nonempty set and Z be a convex subset of a vector space. Recall that a set-valued mapping $T : X \rightrightarrows Z$ is said to be generalized KKM (see [1]) if for any nonempty finite subset $\{x_1, \ldots, x_n\}$ of X there is $\{z_1, \ldots, z_n\} \subseteq Z$ such that $\text{co}\{z_i : i \in I\} \subseteq \bigcup_{i \in I} T(x_i)$, for each nonempty subset I of $\{1, \ldots, n\}$. Inspired by this definition we introduce a new concept as follows:

Definition 1. Let X be a nonempty set, Z be a convex subset of a vector space and \mathcal{T} be a family of set-valued mappings with nonempty values from X into Z. We say that \mathcal{T} is generalized equi-KKM if for any nonempty finite subset $\{x_1, \ldots, x_n\}$ of X there is $\{z_1, \ldots, z_n\} \subseteq Z$ such that $\text{co}\{z_i : i \in I\} \subseteq \bigcup_{i \in I} T(x_i)$, for each nonempty subset I of $\{1, \ldots, n\}$ and for all $T \in \mathcal{T}$.

Remark 1. If Z is a convex subset of a topological vector space and \mathcal{T} is generalized equi-KKM then, according to Lemma 3.3 in [2], for each $T \in \mathcal{T}$, $\bigcap_{T \in \mathcal{T}} T(x)$ has the finite intersection property.

Example 1. Let $X = Z = [0, 1]$ and $\mathcal{T} = \{T_y : [0, 1] \rightrightarrows [0, 1]\}_{y \in [0, 1]}$, where

$$T_y(x) = \begin{cases} \left[\frac{xy}{2}, 1\right] & \text{if } x \in \left[0, \frac{1}{2}\right] \\ \left[0, \frac{x+y}{2}\right] & \text{if } x \in \left[\frac{1}{2}, 1\right]. \end{cases}$$
We show that the family \mathcal{T} is generalized equi-KKM. One can easily check that for all $y \in [0, 1]$ we have $[\frac{1}{2}, 1] \subseteq T_y(x)$ for any $x \leq \frac{1}{2}$ and respectively, $[0, \frac{1}{2}] \subseteq T_y(x)$ if $x > \frac{1}{2}$. For any $\{x_1, \ldots, x_n\} \subseteq [0, 1]$, put $z_i = \frac{1-x_i}{2}, 1 \leq i \leq n$. We claim that

$$\text{co}\{z_i : i \in I\} \subseteq \bigcup_{i \in I} T_y(x_i),$$

for each nonempty subset I of $\{1, \ldots, n\}$ and for all $y \in [0, 1]$. Suppose $x_{i_1} = \min_{i \in I} x_i$ and $x_{i_2} = \max_{i \in I} x_i$. If $x_{i_2} \leq \frac{1}{2}$, then $\text{co}\{z_i : i \in I\} \subseteq [\frac{1}{2}, 1] \subseteq \bigcup_{i \in I} T_y(x_i)$. If $x_{i_1} > \frac{1}{2}$, then $\text{co}\{z_i : i \in I\} \subseteq [0, \frac{1}{2}] \subseteq \bigcup_{i \in I} T_y(x_i)$. If $x_{i_1} \leq \frac{1}{2} < x_{i_2}$, then

$$\text{co}\{z_i : i \in I\} \subseteq [0, 1] = T_y(x_{i_1}) \cup T_y(x_{i_2}) = \bigcup_{i \in I} T_y(x_i).$$

If X and Y are topological spaces a set-valued mapping $T : X \to Y$ is said to be: (i) upper semicontinuous (in short, u.s.c.) (respectively, lower semicontinuous (in short, l.s.c.)) if for every closed subset B of Y the set $\{x \in X : T(x) \cap B \neq \emptyset\}$ (respectively, $\{x \in X : T(x) \subseteq B\}$) is closed; (ii) closed if its graph is a closed subset of $X \times Y$; (iii) compact if $T(X)$ is a compact subset of Y.

The following lemma collects known facts about u.s.c. or l.s.c. set-valued mappings (see for instance [3] for assertion (i) and [4] for assertion (ii)).

Lemma 1. Let X and Y be topological spaces and $T : X \to Y$ be a set-valued mapping.

(i) If Y is regular and T is u.s.c. with closed values, then T is closed.

(ii) T is l.s.c. if and only if for any $x \in X, y \in T(x)$ and any net $\{x_i\}$ converging to x, there exists a net $\{y_i\}$ converging to y, with $y_i \in T(x_i)$ for each i.

Definition 2 (of [5]). Let X and Y be two nonempty convex subsets of two vector spaces and V be a vector space. Let $F : X \times Y \to V$ and $C : X \to V$ be two set-valued mappings such that for each $x \in X$, $C(x)$ is a convex cone. We say that:

(i) F is $C(x)$-quasiconvex if for all $x \in X, y_1, y_2 \in Y$ and $y \in \text{co}\{y_1, y_2\}$, we have either $F(x, y_1) \subseteq F(x, y) + C(x)$, or $F(x, y_2) \subseteq F(x, y) - C(x)$.

(ii) F is $C(x)$-quasiconvex-like if for any $x \in X, y_1, y_2 \in Y$ and $y \in \text{co}\{y_1, y_2\}$, we have either $F(x, y) \subseteq F(x, y_1) - C(x)$, or $F(x, y) \subseteq F(x, y_2) - C(x)$.

It is worth mentioning that the concepts introduced above are special cases of many recent general and relaxed notions (see e.g. [6, Def. 2.5], [7, p. 1271], [8, p. 58] and [9, Def. 4.1]). By induction one can prove the following lemma (see [5] for assertion (i), respectively [10] for assertion (ii)).

Lemma 2. Let X and Y be two nonempty convex subsets of two vector spaces and V be a vector space. Let $F : X \times Y \to V$ and $C : X \to V$ be two set-valued mappings such that for each $x \in X$, $C(x)$ is a convex cone.

(i) F is $C(x)$-quasiconvex if and only if for any $x \in X, y_i \in Y, 1 \leq i \leq n$, $y \in \text{co}\{y_1 : 1 \leq i \leq n\}$ there exists $1 \leq j \leq n$ such that $F(x, y_j) \subseteq F(x, y) + C(x)$.

(ii) F is $C(x)$-quasiconvex-like if and only if for any $x \in X, y_i \in Y, 1 \leq i \leq n$, $y \in \text{co}\{y_1 : 1 \leq i \leq n\}$ there exists $1 \leq j \leq n$ such that $F(x, y) \subseteq F(x, y_j) - C(x)$.

2. A common fixed point theorem

Theorem 1. Let X be a nonempty convex subset of a topological vector space, Y be a nonempty set and $T : X \times Y \to X$ a compact set-valued mapping satisfying the following conditions:

(i) for each $y \in Y$, the set $\{x \in X : x \in T(x, y)\}$ is closed;

(ii) the family of set-valued mappings $\{T(\cdot, y)\}_{y \in Y}$ is generalized equi-KKM on Y.

Then the family of set-valued mappings $\{T(\cdot, y)\}_{y \in Y}$ has a common fixed point, that is, there exists $x_0 \in X$ such that $x_0 \in \bigcap_{y \in Y} T(x_0, y)$.

Proof. For each $y \in Y$, put $G(y) = \{x \in X : x \notin T(x, y)\}$. Suppose that the conclusion is not true. Then $X = \bigcup_{y \in Y} G(y)$. Since the sets $G(y)$ are all open and $\overline{T(X \times Y)}$ is compact there exists a finite set $\{y_1, \ldots, y_n\} \subseteq Y$ such that $\overline{T(X \times Y)} \subseteq \bigcup_{i=1}^n G(y_i)$. Moreover, for each $x \in X \setminus \overline{T(X \times Y)}$ and $i \in \{1, \ldots, n\}$, $x \in G(y_i)$, hence $X = \bigcup_{i=1}^n G(y_i)$. By (ii), there exists $\{z_1, \ldots, z_n\} \subseteq X$ such that $\text{co}\{z_i : i \in I\} \subseteq \bigcup_{i \in I} T(x, y_i)$, for each nonempty subset I of $\{1, \ldots, n\}$ and for all $x \in X$. Set $K = \text{co}\{z_1, \ldots, z_n\}$. Then $G(y) \cap K_{1 \leq i \leq n}$ is an open cover of K. Consider a partition of unity on K, $\{\alpha_1, \ldots, \alpha_n\}$, subordinated to this open cover. Recall that this means that

$$\alpha_i : K \to [0, 1] \text{ is continuous, for each } i \in \{1, \ldots, n\};$$

$$\alpha_i(x) > 0 \Rightarrow x \in G(y_i) \cap K;$$

$$\sum_{i=1}^n \alpha_i(x) = 1 \text{ for each } x \in K.$$
Define the function \(p : K \rightarrow K \) by \(p(x) = \sum_{i=1}^{m} \alpha_i(x)z_i \). Since \(p \) is continuous function, by the Brouwer fixed point theorem there exists \(x_0 \in K \) such that \(x_0 = p(x_0) \). Let \(I = \{ i \in \{ 1, \ldots, n \} : \alpha_i(x_0) > 0 \} \). Then \(x_0 = p(x_0) \in \text{co}(\{z_i : i \in I\}) \subseteq \bigcup_{i \in I} T(x_0, y_i) \).

On the other hand, for each \(i \in I \), since \(x_0 \in G(y_i), x_0 \notin T(x_0, y_i) \), hence \(x_0 \notin \bigcup_{i \in I} T(x_0, y_i) \). The obtained contradiction completes the proof. \(\square \)

3. Applications

Let \(X \) be a nonempty subset of a topological vector space and \(f : X \times X \rightarrow \mathbb{R} \) be a function with \(f(x, x) \geq 0 \) for all \(x \in X \). Then the scalar equilibrium problem, in the sense of Blum and Oettli \([11]\), is to find \(x_0 \in X \) such that \(f(x_0, y) \geq 0 \) for all \(y \in X \). In the last years the scalar equilibrium problem was extensively generalized in several ways to vector equilibrium for set-valued mappings. In this paper we fix our attention on two types of vector equilibrium problems described below:

Let \(X \) be a nonempty compact convex subset of a topological vector space, \(Y \) be a nonempty set and \(V \) be a topological vector space. Let \(F : X \times Y \rightharpoonup V, G : X \times X \rightharpoonup V \) and \(C : X \rightharpoonup V \) be three set-valued mappings. Suppose that for each \(x \in X, C(x) \) is a nonempty convex set. Moreover, in case of problem (1), suppose that \(\text{int} C(x) \neq \emptyset \), for all \(x \in X \). We are interested in finding a \(x_0 \in X \) such that:

\[
F(x_0, y) \nsubseteq -\text{int} C(x_0) \quad \text{for all} \quad y \in Y,
\]

respectively

\[
F(x_0, y) \subseteq C(x_0) \quad \text{for all} \quad y \in Y.
\]

These problems, or more general equilibrium problems, are studied in many papers (see, for instance, \([5, 7, 8, 12-17]\)) when either \(X = Y \) or \(X \) and \(Y \) are distinct convex sets, each in a topological vector space. In this section existence theorems for the solutions of these problems will be obtained when \(Y \) is an arbitrary nonempty set without any algebraic or topological structure.

Theorem 2. Suppose that the set-valued mappings \(F, G \) and \(C \) satisfy the following conditions:

(i) for each \(x \in X, G(x, x) \nsubseteq -\text{int} C(x) \);
(ii) for any \(y \in Y \) there exists \(z \in X \) such that \(G(x, z) \subseteq F(x, y) \), for all \(x \in X \);
(iii) \(G \) is l.s.c. on \(\Delta X = \{(x, x) : x \in X \} \) and for each \(y \in Y \) the set-valued mapping \(x \rightarrow F(x, y) - C(x) \) is closed;
(iv) \(G \) is \((x) \)-quasiconvex-like.

Then there exists \(x_0 \in X \) such that \(F(x_0, y) \nsubseteq -\text{int} C(x_0) \) for all \(y \in Y \).

Proof. Define \(T : X \times Y \rightharpoonup X \) by

\[
T(x, y) = \{ z \in X : G(x, z) \subseteq F(x, y) - C(x) \}.
\]

For an arbitrary \(y \in Y \) denote

\[
M = \{ x \in X : T(x, y) \} = \{ x \in X : G(x, x) \subseteq F(x, y) - C(x) \}.
\]

Let \(x \in \overline{M} \) and \(\{x_1\} \) a net in \(M \) converging to \(x \). Since \(G \) is l.s.c. on \(\Delta X \), for each \(v \in G(x, x) \) there exists a net \(\{v_i\} \) such that \(v_1 \rightarrow v \) and \(v_i \in G(x, x_i) \) for all \(i \). Since \(x_i \in M \), we have \(v_i \in F(x_i, y) - C(x_i) \). Since the mapping \(x \rightarrow F(x, y) - C(x) \) is closed, it follows that \(v \in F(x, y) - C(x) \). Thus, \(x \in M \), hence \(M \) is closed.

Let \(\{y_1, \ldots, y_n\} \) be a finite subset of \(Y \). By (ii), there exists \(\{z_1, \ldots, z_n\} \subseteq X \) such that \(G(x, z_i) \subseteq F(x, y_i) \) for each \(i \in \{1, \ldots, n\} \) and all \(x \in X \). Let \(I \subseteq \{1, \ldots, n\} \) and \(z = \text{co}\{z_i : i \in I\} \). By (iv), for each \(x \in X \) there exists \(i \in I \) such that \(G(x, z) \subseteq G(x, z_i) - C(x) \subseteq F(x, y_i) - C(x) \). Thus, \(\text{co}\{z_i : i \in I\} \subseteq \bigcup_{i \in I} T(x, y_i) \), for all \(x \in X \).

By **Theorem 1**, there exists \(x_0 \in X \) such that \(x_0 \in \bigcap_{y \in Y} T(x_0, y) \). If for some \(y \in Y \) we would have \(F(x_0, y) \nsubseteq -\text{int} C(x_0) \) then, since \(x_0 \in T(x_0, y) \), we would obtain

\[
G(x_0, x_0) \subseteq F(x_0, y) - C(x_0) \nsubseteq -\text{int} C(x_0) - C(x_0) = -\text{int} C(x_0),
\]

which contradicts (i). Thus, \(F(x_0, y) \nsubseteq -\text{int} C(x_0) \), for all \(y \in Y \). \(\square \)

Remark 2. If we take into account Lemma 3.2 in \([18]\), the set-valued mapping \(x \rightarrow F(x, y) - C(x) \) is closed whenever \(F(\cdot, y) \) is u.s.c. with nonempty compact values and \(C \) is closed.

Theorem 3. Suppose that the set-valued mappings \(F, G \) and \(C \) satisfy the following conditions:

(i) for each \(x \in X, G(x, x) \subseteq C(x) \);
(ii) for any \(y \in Y \) there exists \(z \in X \) such that \(F(x, y) \subseteq G(x, z) \), for all \(x \in X \);
(iii) the set-valued mapping \(x \rightarrow G(x, x) + C(x) \) is closed and for each \(y \in Y, F(\cdot, y) \) is l.s.c.;
(iv) \(G \) is \((x) \)-quasiconvex-like.

Then there exists \(x_0 \in X \) such that \(F(x_0, y) \subseteq C(x_0) \) for all \(y \in Y \).
Proof. Define \(T : X \times Y \to X \) by

\[
T(x, y) = \{ z \in X : F(x, y) \subseteq G(x, z) + C(x) \}.
\]

We prove that \(T \) satisfies the requirements of Theorem 1. For an arbitrary \(y \in Y \) denote

\[
M = \{ x \in X : x \in T(x, y) \} = \{ x \in X : F(x, y) \subseteq G(x, x) + C(x) \}.
\]

Let \(x \in \overline{M} \) and \(\{x_i\} \) a net in \(M \) converging to \(x \). Since \(F(., y) \) is l.s.c., for any \(v \in F(x, y) \) there exists a net \(\{v_i\} \) such that \(v_i \to v \) and \(v_i \in F(x_i, y) \) for all \(i \). Since \(x_i \in M \), we have \(v_i \in G(x_i, x_i) + C(x_i) \). Since the mapping \(x \to G(x, x) + C(x) \) is closed, it follows that \(v \in G(x, x) + C(x) \). Thus, \(x \in M \), hence \(M \) is closed.

Let \(\{y_1, \ldots, y_n\} \) be a finite subset of \(Y \). By (ii), there exists \(\{z_1, \ldots, z_n\} \subseteq X \) such that \(F(x, y_i) \subseteq G(x, z_i) \) for each \(i \in \{1, \ldots, n\} \) and all \(x \in X \). Let \(I \subseteq \{1, \ldots, n\} \) and \(z = \text{co} \{z_i : i \in I\} \). By (iv), for each \(x \in X \) there exists \(i_x \in I \) such that \(G(x, z_{i_x}) \subseteq G(x, x) + C(x) \). Hence, \(F(x, y_i) \subseteq G(x, z_{i_x}) \subseteq G(x, z) + C(x) \). This implies \(z \in T(x, y_i) \subseteq \bigcup_{i \in I} T(x, y_i) \), hence \(\text{co} \{z_i : i \in I\} \subseteq \bigcup_{i \in I} T(x, y_i) \).

By Theorem 1, there exists \(x_0 \in X \) such that \(x_0 \in \bigcap_{y \in Y} T(x_0, y) \). Then, for each \(y \in Y \) we have

\[
F(x_0, y) \subseteq G(x_0, x_0) + C(x_0) \subseteq G(x_0) + C(x_0) = C(x_0).
\]

Theorems 2 and 3 are different from other close results from [5,7,12,14,15,17] by conditions (ii) and (iii), proof techniques and, especially, by the fact that \(Y \) is a set without any algebraic or topological structure. The applicability of Theorem 3 is put into evidence by the following example.

Example 2. Let \(Y \) be a nonempty subset of the interval \([1, \infty)\), \(X = [0, 1] \), \(V = \mathbb{R} \),

\[
G(x, z) = \begin{cases} (\infty, z - x) & \text{if } z \leq 1, \\ (\infty, -x - z) & \text{if } z > 1, \end{cases}
\]

\[
F(x, y) = (-\infty, 1 - xy) \quad \text{and} \quad C(x) = (-\infty, 0].
\]

Condition (ii) in Theorem 3 is fulfilled since, for each \(y \in Y \), \(F(x, y) \subseteq G(x, 1) \), for all \(x \in [0, 1] \). One can readily verify that all the other requirements of the same theorem are satisfied. By direct checking one can see that \(x_0 = 1 \) satisfy the conclusion of Theorem 3. Since the set \(Y \) is not necessarily convex any other known result is not applicable.

Theorem 4. Let \(X \) be a nonempty compact convex subset of a topological vector space and \(Y \) be a nonempty set. Let \(f : X \times Y \to \mathbb{R} \), \(g : X \times X \to \mathbb{R} \) be two functions and \(a \in \mathbb{R} \). Suppose that:

(i) \(g(x, x) \leq a \) for all \(x \in X \);
(ii) for each \(y \in Y \) there is \(z \in X \) such that \(f(x, y) \leq g(x, z) \) for all \(x \in X \);
(iii) \(f \) is l.s.c. in the first variable and \(g \) is u.s.c. on \(A_X \);
(iv) \(g \) is quasiconcave in the second variable.

Then there exists \(x_0 \in X \) such that \(f(x_0, y) \leq a \) for all \(y \in Y \).

Proof. Take in the previous theorem \(V = \mathbb{R} \),

\[
F(x, y) = (-\infty, f(x, y) - a], \quad G(x, z) = (-\infty, g(x, z) - a], \quad C(x) = (-\infty, 0].
\]

It can be readily shown that if \(h : X \to \mathbb{R} \) is a u.s.c. (respectively, l.s.c.) function, then the set-valued mapping \(H : X \to \mathbb{R} \), defined by \(H(x) = (\infty, h(x)) \), is u.s.c. (respectively, l.s.c.). Consequently, under condition (iii), \(G|_{A_X} \) is u.s.c. and for each \(y \in Y \), \(F(., y) \) is l.s.c.. Moreover, since a t.v.s. is regular, by Lemma 1(i), the set-valued mapping \(x \to G(x, x) = G(x, x) + C(x) \) is closed. Thus, condition (iii) in Theorem 3 holds. We check condition (iv) from the same theorem. Let \(x \in X \), \(z_1, z_2 \in X \) and \(z \in \text{co} \{z_1, z_2\} \). Since \(g \) is quasiconcave in the second variable, for each \(x \in X \), \(g(x, z) - a \geq \min \{g(x, z_1) - a, g(x, z_2) - a\} \). Thus, for each \(x \in X \) there is an index \(i \in \{1, 2\} \) such that \(G(x, z_1) \subseteq G(x, z) = G(x, z) + C(x) \).

It is easy to verify that all the other conditions of Theorem 3 are satisfied and the desired conclusion follows from this theorem. \(\square \)

By Theorem 4 we derive the following Ky Fan-type minimax inequality:

Theorem 5. If conditions (ii), (iii) and (iv) in Theorem 4 hold, then

\[
\inf_{x \in X} \sup_{y \in Y} f(x, y) \leq \max_{x \in X} g(x, x).
\]

Proof. Take in the previous theorem \(a = \max_{x \in X} g(x, x) \). \(\square \)

Definition 3. Let \(X \) be a convex set in a vector space and \(V \) be a vector space. A function \(f : X \to V \) is said to be almost affine if for each \(x_1, x_2 \in X \) and \(\mu \in [0, 1] \) there exists \(\lambda \in [0, 1] \) such that \(f(\mu x_1 + (1 - \mu)x_2) = \lambda f(x_1) + (1 - \lambda)f(x_2) \).
Remark 3. (a) If \(I \) is a real interval any monotone function \(f : I \to \mathbb{R} \) is almost affine.
(b) If \(f : X \to V \) is almost affine, then one can easily prove that for any \(x_1, \ldots, x_n \in X \) and \(x \in \text{co}\{x_1, \ldots, x_n\} \) there exist \(\lambda_1, \ldots, \lambda_n \geq 0 \) with \(\sum_{i=1}^{n} \lambda_i = 1 \) such that \(f(x) = \sum_{i=1}^{n} \lambda_i f(x_i) \).

As an application of Theorem 1, we give a slight generalization of a known result, due to Iohvidov [19].

Theorem 6. Let \(X \) be a nonempty compact convex subset of locally convex Hausdorff topological vector space \(E \) and \(g : X \times X \to E \) be a continuous function. Suppose that:

(i) for each \(x \in X \), \(g(x, \cdot) \) is almost affine;
(ii) for each \(x \in X \) there exists \(y \in X \) such that \(g(x, y) = 0 \).

Then there exists \(x_0 \in X \) such that \(g(x_0, x_0) = 0 \).

Proof. Let \(\mathcal{P} \) be a sufficient family of continuous seminorms on \(E \) generating the topology of \(E \). Denote
\[
F_p = \{ x \in X : p(g(x, x)) = 0 \}, \quad p \in \mathcal{P}.
\]
Since the family \(\mathcal{P} \) is sufficient, a point \(x_0 \in X \) satisfies the conclusion of the theorem if \(x_0 \in \bigcap_{p \in \mathcal{P}} F_p \). Since \(X \) is compact and \(F_p \) are closed sets, it suffices to prove that for any nonzero finite subset \(\{ p_1, \ldots, p_k \} \) of \(\mathcal{P} \), \(\bigcap_{j=1}^{k} F_{p_j} \neq \emptyset \). Define the set-valued mapping \(T : X \times X \to X \) by
\[
T(x, y) = \left\{ z \in X : \sum_{j=1}^{k} p_j(g(x, z)) \leq \sum_{j=1}^{k} p_j(g(x, y)) \right\}.
\]
It is clear that for each \(y \in X \), the set \(\{ x \in X : x \in T(x, y) \} \) is closed. We show that for each \(x \in X \), \(T(x, \cdot) \) is a KKM mapping. Let \(\{ y_1, \ldots, y_n \} \subseteq X, I \subseteq \{ 1, \ldots, n \} \) and \(y \in \text{co}\{ y_i : i \in I \} \). Then, by Remark 3(b), there exists \(\lambda_i \geq 0 \) (depending on \(x \)), with \(\sum_{i \in I} \lambda_i = 1 \), such that \(g(x, y) = \sum_{i \in I} \lambda_i g(x, y_i) \). We have
\[
\sum_{j=1}^{k} p_j(g(x, y)) = \sum_{j=1}^{k} p_j \left(\sum_{i \in I} \lambda_i g(x, y_i) \right) \leq \sum_{j=1}^{k} \lambda_i p_j(g(x, y_i)) = \sum_{i \in I} \lambda_i \left(\sum_{j=1}^{k} p_j(g(x, y_i)) \right) \leq \max_{i \in I} \sum_{j=1}^{k} p_j(g(x, y_i)).
\]
Hence \(\text{co}\{ y_i : i \in I \} \subseteq \bigcup_{i \in I} T(x, y_i) \). By Theorem 1 there exists \(x_0 \in X \) such that \(x_0 \in T(x_0, y) \), for all \(y \in X \). By (ii), there is \(y_0 \in X \) such that \(g(x_0, y_0) = 0 \). Since \(x_0 \in T(x_0, y_0) \), \(\sum_{j=1}^{k} p_j(g(x_0, x_0)) \leq 0 \), \(x_0 \in \bigcap_{j=1}^{k} F_{p_j} \). \(\square \)

Remark 4. If \(f : X \to X \) is a continuous function, taking \(g(x, y) = f(x) - y \), hence Theorem 6 reduces to the well-known Tychonoff fixed point theorem.

References