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Abstract

A k2m×n (0,1) matrix is called a binary orthogonal array of strength m if in any m columns
of the matrix every one of the possible 2m ordered (0,1) m-tuples occurs in exactly k rows and
no two rows are identical. In this paper, the enumeration of binary orthogonal arrays is studied,
and a closed expression for the enumeration of binary orthogonal arrays of strength 1 is given
using the inclusion–exclusion principle and the edge-induced subgraph. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

A binary orthogonal array of strength m is a k2m×n (0,1) matrix, such that in any
m columns of the matrix every one of the possible 2m ordered (0,1) m-tuples occurs in
exactly k rows and no two rows are identical. Orthogonal arrays were introduced by
Rao in [11]. Binary orthogonal arrays are closely related to binary resilient functions
introduced independently by Chor et al. [5] in complexity theory and Bennett et al. [1]
in quantum cryptography, and correlation-immune Boolean functions by Siegenthaler
[13] in cryptography. Therefore, the structure, construction and enumeration of binary
orthogonal arrays have been intensively investigated in [2,4,7,9,12]. In this paper, the
enumeration of binary orthogonal arrays of strength 1 is considered.
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The enumeration of binary orthogonal arrays is closely related to the enumeration
of correlation-immune functions whose truth-tables are binary orthogonal arrays (see
[4] for details). Unfortunately, only by constructing and counting some special classes
of correlation-immune functions in [9,12,14,16] were a few of lower bounds on the
number of correlation-immune functions of strength 1 presented. However, we have
not known how to construct all correlation-immune functions, and it is infeasible to
show that all of them have been constructed. Therefore, it is too diHcult to give the
exact number by improving lower bounds. With a few exceptions, [16] gives the exact
numbers of 4×n and 6×n binary orthogonal arrays of strength 1, but their derivation are
tedious, it is then impossible to derive a closed expression for the enumeration of binary
orthogonal arrays from their derivation. Moreover, in [10], the enumeration of balanced
2-colorings of the n-cube, which is equivalent to the enumeration of correlation-immune
functions of strength 1, was studied. The counting formulae of balanced 2-colorings of
the n-cube based respectively on n-variable form of PJolya theorem and superposition
approach were given, but the cycle index polynomials need computing.

In this paper, using the inclusion–exclusion principle and the edge-induced subgraph,
a closed expression for the enumeration of binary orthogonal arrays of strength 1 is
given. Its derivation is easily understood, and the closed expression simpliKes comput-
ing. The paper is organized as follows. The derivation of a closed expression for the
enumeration of binary orthogonal arrays of strength 1 is given in Section 2. Section 3
discusses the formula obtained in Section 2. In Section 4, an illustrative example is
presented. We conclude the paper with several problems inspiring further research on
the enumeration of binary orthogonal arrays of strength m in Section 5.

2. A closed expression for the enumeration of binary orthogonal arrays of
strength 1

In order to use the inclusion–exclusion principle (see [8] for details), we Krst give
some notations. {0; 1}2k×n denotes a set of all 2k × n (0; 1)-valued matrices. Let

A(2k; n) = {X ∈ {0; 1}2k×n;X is a binary orthogonal array of strength 1};
B(2k; n) = {X ∈ {0; 1}2k×n; Every column of X has exactly k zeroes};
C(2k; n; i; j) = {X ∈ B(2k; n); The ith row equals the jth row in X };

where 1 6 i¡ j 6 2k. Obviously, |A(2k; n)| = 0 if 2k ¿ 2n, and |B(2k; n)|=(
2k
k

)n
, here | · | denotes the cardinality of a set. Then

A(2k; n) = B(2k; n) −
⋃

{i; j}∈P2

C(2k; n; i; j);

where the union is over a set P2 consisting of all 2-element subsets of {1; 2; : : : ; 2k},
P2 may be viewed as an edge set of the (undirected) complete graph of order 2k.
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Using the inclusion–exclusion principle,

|A(2k; n)| = |B(2k; n)| +
∑

F⊆P2 ; F �=∅
(−1)|F|

∣∣∣∣∣∣
⋂

{i; j}∈F

C(2k; n; i; j)

∣∣∣∣∣∣ ; (1)

where the sum ranges over all nonempty subsets F of P2, F may be viewed as a
nonempty edge subset of the complete graph of order 2k.

To illustrate how to compute |⋂{i; j}∈F C(2k; n; i; j)| in the right-hand side of
Eq. (1), the graph–theoretic terminology and notations are needed in this paper. Stan-
dard deKnitions and terminology for graph–theoretic concepts may be found in the book
[3]. The notation of the edge-induced subgraph is followed herein. 〈F〉 denotes the
subgraph induced by the edge subset F of the complete graph of order 2k. The vertex
set of 〈F〉 is

⋃
{i; j}∈F {i; j}. The edge set of 〈F〉 is {(i; j); {i; j} ∈ F}. The number

of connected components of 〈F〉 is denoted by r. The cardinality of the vertex sets
of r connected components in 〈F〉 are denoted by q1; q2; : : : ; qr , respectively. Clearly,
min16i6r qi ¿ 2 and the cardinality of the vertex set of 〈F〉 is∣∣∣∣∣∣

⋃
{i; j}∈F

{i; j}
∣∣∣∣∣∣= q1 + q2 + · · · + qr = (I; q(F));

where I is an r-dimension vector (1; 1; : : : ; 1), q(F) = (q1; q2; : : : ; qr), (I; q(F))
denotes inner product of two vectors I and q(F). The cardinality of {1; 2; : : : ; 2k} −⋃

{i; j}∈F {i; j} is 2k − (I; q(F)).
According to the deKnition of C(2k; n; i; j) and

⋂
{i; j}∈F C(2k; n; i; j), it is easy to

know the following fact: two rows of a matrix in
⋂

{i; j}∈F C(2k; n; i; j) are identical if
their row labels are all in the same component of 〈F〉. The fact is also right for the
rows in a column.

On the basis of the above fact, for each F, we can count the number of column
selections of matrices in

⋂
{i; j}∈F C(2k; n; i; j). For some column, Krst selecting some

components of 〈F〉 and assigning one entries located in this column and the rows
whose row labels are in the selected components, the cardinality of the set consisting
of the vertices in these selected components can be designated by (�; q(F)), where
� ∈ {0; 1}r , {0; 1}r denotes the set of all r-dimension (0; 1)-valued vectors, (�; q(F))
is also inner product of two vectors � and q(F). If (�; q(F)) 6 k (because there
are at most and exactly k ones in each column), other k − (�; q(F)) ones in this
column are put in some rows whose row labels are in {1; 2; : : : ; 2k} − ⋃{i; j}∈F{i; j}
if 2k − (I; q(F)) ¿ k − (�; q(F)). Therefore, for some �, if (�; q(F)) 6 k and
2k − (I; q(F)) ¿ k − (�; q(F)), then there are(

2k − (I; q(F))

k − (�; q(F))

)

column selections.
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If we deKne

(
2k − (I; q(F))

k − (�; q(F))

)
=




0 if k − (�; q(F))¡ 0;

0 if 2k − (I; q(F))¡k − (�; q(F));

1 if 2k − (I; q(F) ¿ k − (�; q(F)) = 0;

then, for each F, there are

∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)

column selections in each column of matrices in
⋂

{i; j}∈F C(2k; n; i; j). Hence∣∣∣∣∣∣
⋂

{i; j}∈F

C(2k; n; i; j)

∣∣∣∣∣∣=
n∏
l=1

∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)

=


 ∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)

n

:

With this result, from Eq. (1), it follows that

|A(2k; n)| =
(

2k

k

)n
+

∑
F⊆P2 ;F �=∅

(−1)|F|


 ∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)

n

: (2)

Finally, the second part in the right-hand side of Eq. (2) can be further simpli-
Ked because many terms of them are zeros. In terms of the deKnition of B(2k; n),
there does not exist a matrix in B(2k; n) which has the same k + 1 rows. Thus, if
max16i6r qi ¿ k + 1, then

⋂
{i; j}∈F C(2k; n; i; j) = ∅, i.e., |⋂{i; j}∈F C(2k; n; i; j)| = 0.

In fact, if max16i6r qi ¿ k + 1, without loss of generality, suppose q1 ¿ k + 1, when
the Krst coordinate of � is 1, then k − (�; q(F))¡ 0, hence(

2k − (I; q(F))

k − (�; q(F))

)
= 0:

Otherwise, when the Krst coordinate of � is 0, due to

2k − (I; q(F)) = 2k −
r∑
i=1

qi = 2k − q1 −
r∑
i=2

qi 6 k − 1 −
r∑
i=2

qi

¡ k −
r∑
i=2

qi 6 k − (�; q(F));

(
2k − (I; q(F))

k − (�; q(F))

)
= 0:
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Therefore, if max16i6r qi ¿ k + 1,

∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)
= 0;

i.e., |⋂{i; j}∈F C(2k; n; i; j)| = 0.
Hence, we may suppose that max16i6r qi 6 k, i.e., qi 6 k (i = 1; 2; : : : ; r),

moreover
∑r

i=1 qi 6 2k; thus

|F|6
r∑
i=1

(
qi

2

)
=
∑r

i=1 q
2
i −

∑r
i=1 qi

2
6
k
∑r

i=1 qi −
∑r

i=1 qi
2

=
(k − 1)

∑r
i=1 qi

2
6 k(k − 1):

This shows that |⋂{i; j}∈F C(2k; n; i; j)|=0 if |F|¿k(k − 1) (because max16i6r qi ¿
k + 1).

According to the above illustration, Eq. (2) can be further rewritten as

|A(2k; n)|=
(

2k

k

)n
+

∑
F⊆P2 ;16|F|6k(k−1)

(−1)|F|


 ∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)

n

: (3)

3. Some remarks on Eq. (3)

In this section, we give some remarks on Eq. (3).
First, because(

2k

k

)
=

(
2k − 1

k

)
+

(
2k − 1

k − 1

)
=

(
2k − 1

k

)
+

(
2k − 1

k

)
= 2

(
2k − 1

k

)

and (
2k − (I; q(F))

k − (�; q(F))

)
=

(
2k − (I; q(F))

k − (I; q(F)) + (�; q(F))

)
=

(
2k − (I; q(F))

k − (I − �; q(F))

)
;

moreover I − � ∈ {0; 1}r , Eq. (3) shows that |A(2k; n)| divides by 2n.
Second, because

|A(2k; n+ 1)|=
(

2k

k

)n+1

+
∑

F⊆P2 ;16|F|6k(k−1)

(−1)|F|


 ∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)

n+1
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=

(
2k

k

)n(
2k

k

)
+

∑
F⊆P2 ;16|F|6k(k−1)

(−1)|F| ·

 ∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)

n


 ∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)


 ;

this shows that |A(2k; n+1)| can be computed by combining terms in |A(2k; n)|. There-
fore, Eq. (3) provides a fast algorithm from |A(2k; n)| to |A(2k; n+ 1)|.

Third, we know that |A(2k; n)| = 0 if 2k ¿ 2n, namely when 2k ¿ 2n,

∑
F⊆P2 ;16|F|6k(k−1)

(−1)|F|


 ∑
�∈{0;1}r

(
2k − (I; q(F))

k − (�; q(F))

)

n

= −
(

2k

k

)n
:

This shows that the second part in the right-hand side of Eq. (3) is possibly written
as a simpler form. This is under investigation.

Finally, according to the relation between binary orthogonal arrays and correlation-
immune Boolean functions, the number of correlation-immune Boolean functions of n
variables of strength 1 is

2n−1∑
k=0

|A(2k; n)|
(2k)!

:

4. Example

In this section, let us calculate |A(4; n)| by using Eq. (3). Here k = 2, hence F

satisKes 1 6 |F|6 2 and max16i6r qi 6 2.
When |F| = 1; 〈F〉 is a complete graph K2, r = 1 and q(F) = (2). F has six

selections in K4, and∣∣∣∣∣∣
⋂

{i; j}∈F

C(4; n; i; j)

∣∣∣∣∣∣=

 ∑
�∈{0;1}1

(
4 − (I; q(F))

2 − (�; q(F))

)

n

=


 ∑
�∈{0;1}1

(
4 − 2

2 − (�; q(F))

)

n

=

[(
2

2

)
+

(
2

0

)]n
= 2n:
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When |F| = 2, r = 2 (notice q1 = 3 if r = 1) and connected components of 〈F〉 are
all K2, hence q(F) = (2; 2). F has three selections in K4, and∣∣∣∣∣∣

⋂
{i; j}∈F

C(4; n; i; j)

∣∣∣∣∣∣=

 ∑
�∈{0;1}2

(
4 − (I; q(F))

2 − (�; q(F))

)

n

=


 ∑
�∈{0;1}2

(
4 − 4

2 − (�; q(F))

)

n

=

[(
0

2

)
+

(
0

0

)
+

(
0

0

)
+

(
0

−2

)]n
= 2n:

Therefore,

|A(4; n)| =
(

4

2

)n
− 6 × 2n + 3 × 2n = 6n − 3 × 2n = 2n(3n − 3):

This result is the same as that in [16], but the calculation is straightforward by
Eq. (3).
|A(6; n)| can be also computed by using Eq. (3), the answer is

|A(6; n)| = 2n(10n − 15 × 4n + 45 × 2n − 40):

5. Related problems

We have given a closed expression for enumeration of binary orthogonal arrays
of strength 1 by using the inclusion–exclusion principle and edge-induced subgraph.
However, the enumeration of binary orthogonal arrays of strength m¿ 2 remains open.

Several lower bounds on the number of binary orthogonal arrays of strength m were
given by constructing and counting some special classes of binary orthogonal arrays
of strength m in [15]. Moreover, in [6], an asymptotic formula for the number of
correlation-immune Boolean functions was presented. Therefore, many problems need
solving to count binary orthogonal arrays of strength m.
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