ELSEVIER

# Eigenvalues and edge-connectivity of regular graphs 

Sebastian M. Cioabă ${ }^{1}$<br>University of Delaware, Department of Mathematical Sciences, Newark DE 19716, USA

## ARTICLE INFO

## Article history:

Received 2 March 2009
Accepted 27 August 2009
Available online 24 September 2009
Submitted by V. Nikiforov
Keywords:
Connectivity
Eigenvalues
Regular graph


#### Abstract

In this paper, we show that if the second largest eigenvalue of a $d$-regular graph is less than $d-\frac{2(k-1)}{d+1}$, then the graph is $k$-edgeconnected. When $k$ is 2 or 3 , we prove stronger results. Let $\rho(d)$ denote the largest root of $x^{3}-(d-3) x^{2}-(3 d-2) x-2=0$. We show that if the second largest eigenvalue of a $d$-regular graph $G$ is less than $\rho(d)$, then $G$ is 2-edge-connected and we prove that if the second largest eigenvalue of $G$ is less than $\frac{d-3+\sqrt{(d+3)^{2}-16}}{2}$, then $G$ is 3-edge-connected.


© 2009 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $\kappa(G)$ and $\kappa^{\prime}(G)$ denote the vertex- and edge-connectivity of a connected graph $G$. If $\delta$ is the minimum degree of $G$, then $1 \leqslant \kappa(G) \leqslant \kappa^{\prime}(G) \leqslant \delta$. Let $L=D-A$ be the Laplacian matrix of $G$, where $D$ is the diagonal degree matrix and $A$ is the adjacency matrix of $G$. We denote by $0=\mu_{1}<\mu_{2} \leqslant \cdots \leqslant \mu_{n}$ the eigenvalues of the Laplacian of $G$. The complement of $G$ is denoted by $\bar{G}$. A graph is called disconnected if it is not connected. The join $G_{1} \vee G_{2}$ of two vertex-disjoint graphs $G_{1}$ and $G_{2}$ is the graph formed from the union of $G_{1}$ and $G_{2}$ by joining each vertex of $G_{1}$ to each vertex of $G_{2}$.

A classical result in spectral graph theory due to Fiedler [7] states that

$$
\begin{equation*}
\kappa(G) \geqslant \mu_{2}(G) \tag{1}
\end{equation*}
$$

for any non-complete graph $G$. Fiedler called $\mu_{2}(G)$ the algebraic connectivity of $G$ and his work stimulated a large amount of research in spectral graph theory over the last forty years (see [1,11, 13,15]). In [12], Kirkland, Molitierno, Neumann and Shader characterize the equality case in Fiedler's inequality (1).

[^0]Theorem 1.1 (Kirkland-Molitierno-Neumann-Shader [12]). Let G be a non-complete connected graph on $n$ vertices. Then $\kappa(G)=\mu_{2}(G)$ if and only if $G=G_{1} \vee G_{2}$ where $G_{1}$ is a disconnected graph on $n-\kappa(G)$ vertices and $G_{2}$ is a graph on $\kappa(G)$ vertices with $\mu_{2}\left(G_{2}\right) \geqslant 2 \kappa(G)-n$.

Eigenvalue techniques have been also used recently by Brouwer and Koolen [5] to show that the vertex-connectivity of a distance-regular graph equals its degree (see also [2,4] for related results).

In this paper, we study the relations between the edge-connectivity and the second largest eigenvalue of a $d$-regular graph. Let $\lambda_{1}(G) \geqslant \lambda_{2}(G) \geqslant \ldots \geqslant \lambda_{n}(G)$ denote the eigenvalues of the adjacency matrix of $G$. If $G$ is $d$-regular graph, then $\lambda_{i}(G)=d-\mu_{i}(G)$ for any $1 \leqslant i \leqslant n$. Thus, $\lambda_{1}(G)=d$ and $G$ is connected if and only if $\lambda_{2}(G)<d$.

Chandran [6] proved that if $G$ is a $d$-regular graph of order $n$ and $\lambda_{2}(G)<d-1-\frac{d}{n-d}$, then $\kappa^{\prime}(G)=d$ and the only disconnecting edge-cuts are trivial, i.e., $d$ edges adjacent to the same vertex. Krivelevich and Sudakov [13] showed that $\lambda_{2}(G) \leqslant d-2$ implies $\kappa^{\prime}(G)=d$. If $G$ is a $d$-regular graph on $n$ vertices and $n \leqslant 2 d+1$, then $\kappa^{\prime}(G)=d$ regardless of the eigenvalues of $G$ (see also the proof of Lemma 1.3). Both results are based on the following well-known lemma (see [15] for a short proof).

Lemma 1.2. If $G=(V, E)$ is a connected graph of order $n$ and $S$ is a subset of vertices of $G$, then

$$
e(S, V \backslash S) \geqslant \frac{\mu_{2}|S|(n-|S|)}{n}
$$

where $e(S, V \backslash S)$ denotes the number of edges between $S$ and $V \backslash S$.
We extend and improve the previous results as follows. We prove the following sufficient condition for the $k$-edge-connectivity of a $d$-regular graph for any $2 \leqslant k \leqslant d$.

Theorem 1.3. If $d \geqslant k \geqslant 2$ are two integers and $G$ is a d-regular graph such that $\lambda_{2}(G) \leqslant d-\frac{(k-1) n}{(d+1)(n-d-1)}$, then $\kappa^{\prime}(G) \geqslant k$.

When $k=d$, this result states that if $\lambda_{2}(G) \leqslant d-\frac{(d-1) n}{(d+1)(n-d-1)}$, then $\kappa^{\prime}(G)=d$. We get a small improvement for $d$ even because $\kappa^{\prime}(G)$ must be even in this case (see Lemma 3.1). When $d$ is even, Theorem 1.3 shows that $\lambda_{2}(G) \leqslant d-\frac{(d-2) n}{(d+1)(n-d-1)}$ implies $\kappa^{\prime}(G)=d$. A simple calculation reveals that these bounds improve the previous result of Chandran.

When $n \geqslant 2 d+2$, Theorem 1.3 implies that if $G$ is a $d$-regular graph with $\lambda_{2}(G) \leqslant d-2+\frac{4}{d+1}$, then $\kappa^{\prime}(G)=d$. When $d$ is even, the right hand-side of the previous inequality can be replaced by $d-2+\frac{6}{d+1}$. These results improve the previous bound of Krivelevich and Sudakov. Note that there are many $d$-regular graphs $G$ with $d-2<\lambda_{2}(G) \leqslant d-2+\frac{4}{d+1}$. An example is presented in Fig. 1 .

For $k \in\{2,3\}$ we further improve these results as shown below. Note that the edge-connectivity of a connected, regular graph of even degree is even (see Lemma 3.1).

Theorem 1.4. Let $d \geqslant 3$ be an odd integer and $\rho(d)$ denote the largest root of $x^{3}-(d-3) x^{2}-(3 d-$ $2) x-2=0$. If $G$ is a d-regular graph such that $\lambda_{2}(G)<\rho(d)$, then $\kappa^{\prime}(G) \geqslant 2$.

The value of $\rho(d)$ is about $d-\frac{2}{d+5}$.
Theorem 1.5. Let $d \geqslant 3$ be any integer. If $G$ is a d-regular graph such that

$$
\lambda_{2}(G)<\frac{d-3+\sqrt{(d+3)^{2}-16}}{2}
$$

then $\kappa^{\prime}(G) \geqslant 3$.


Fig. 1. A 3-regular graph with $3-2<\lambda_{2}=\frac{1+\sqrt{5}}{2}<3-2+\frac{4}{3+1}$.
The value of $\frac{d-3+\sqrt{(d+3)^{2}-16}}{2}$ is about $d-\frac{4}{d+3}$.
We show that Theorems 1.4 and 1.5 are best possible in the sense that for each odd $d \geqslant 3$, there exists a $d$-regular graph $X_{d}$ such that $\lambda_{2}\left(X_{d}\right)=\rho(d)$ and $\kappa^{\prime}\left(X_{d}\right)=1$. Also, for each $d \geqslant 3$, there exists a d-regular graph $Y_{d}$ such that $\lambda_{2}\left(Y_{d}\right)=\frac{d-3+\sqrt{(d+3)^{2}-16}}{2}$ and $\kappa^{\prime}\left(Y_{d}\right)=2$.

The following result is an immediate consequence of Theorems 1.4 and 1.5.
Corollary 1.6. If $G$ is a 3-regular graph and $\lambda_{2}(G)<\sqrt{5} \approx 2.23$, then $\kappa^{\prime}(G)=3$.
If $G$ is 4-regular graph and $\lambda_{2}<\frac{1+\sqrt{33}}{2} \approx 3.37$, then $\kappa^{\prime}(G)=4$.
Our results imply that if $G$ is a 3-regular graph with $\lambda_{2}(G)<\sqrt{5}$, then $\kappa(G)=3$. This is because for 3 -regular graphs the vertex- and the edge-connectivity are the same. It is very likely that the eigenvalues results for $\kappa(G)$ and $\kappa^{\prime}(G)$ can be quite different. We comment on this in the last section of the paper.

## 2. Proof of Theorem 1.3

In this section, we give a short proof of Theorem 1.3. Recall that a partition $V_{1} \cup \cdots \cup V_{l}=V(G)$ of the vertex set of a graph $G$ is called equitable if for all $1 \leqslant i, j \leqslant l$, the number of neighbours in $V_{j}$ of a vertex $v$ in $V_{i}$ is a constant $b_{i j}$ independent of $v$ (see Section 9.3 of [8] or [9] for more details on equitable partitions).

Proof of Theorem 1.3. We prove the contrapositive, namely we show that if $G$ is a $d$-regular graph such that $\kappa^{\prime}(G) \leqslant k-1$, then $\lambda_{2}(G)>d-\frac{(k-1) n}{(d+1)(n-d-1)}$. Let $V_{1} \cup V_{2}=V(G)$ be a partition of $G$ such that $r=e\left(V_{1}, V_{2}\right) \leqslant k-1 \leqslant d-1$. Note that if $\left|V_{1}\right| \leqslant d$, then $d-1 \geqslant e\left(V_{1}, V_{2}\right) \geqslant\left|V_{1}\right|\left(d-\left|V_{1}\right|+1\right) \geqslant d$ which is a contradiction. Thus, $n_{i}:=\left|V_{i}\right| \geqslant d+1$ for each $i=1$, 2 . Since $n_{1}+n_{2}=n$, this implies that $n_{1} n_{2} \geqslant(d+1)(n-d-1)$. The quotient matrix of the partition $V_{1} \cup V_{2}=V(G)($ see $[8,9,10])$ is

$$
A_{2}=\left[\begin{array}{cc}
d-\frac{r}{n_{1}} & \frac{r}{n_{1}}  \tag{2}\\
\frac{r}{n_{2}} & d-\frac{r}{n_{2}}
\end{array}\right] .
$$

The eigenvalues of $A_{2}$ are $d$ and $d-\frac{r}{n_{1}}-\frac{r}{n_{2}}$. Eigenvalue interlacing (see $[8,9,10]$ ), $r \leqslant k-1$ and $n_{1} n_{2} \geqslant(d+1)(n-d-1)$ imply that

$$
\begin{equation*}
\lambda_{2}(G) \geqslant d-\frac{r}{n_{1}}-\frac{r}{n_{2}} \geqslant d-\frac{(k-1) n}{n_{1} n_{2}} \geqslant d-\frac{(k-1) n}{(d+1)(n-d-1)} . \tag{3}
\end{equation*}
$$

We actually have strict inequality here. Otherwise, the partition $V_{1} \cup V_{2}$ would be equitable. This would mean that each vertex of $V_{1}$ has the same number of neighbours in $V_{2}$ which is impossible since there are vertices in $V_{1}$ without a neighbour in $V_{2}$. The proof is finished.

## 3. Proof of Theorem 1.4

In this section, we present the proof of Theorem 1.4. First, we show that any connected, regular graph of even degree has edge-connectivity larger than two. This follows from the next lemma.

Lemma 3.1. Let $G$ be a connected d-regular graph. If $d$ is even, then $\kappa^{\prime}(G)$ is even.
Proof. Let $V=A \cup B$ be a partition of the vertex set of $G$ such that $e(A, B)=\kappa^{\prime}(G)$, where $e(A, B)$ denotes the number of edges with one endpoint in $A$ and one endpoint in $B$. Summing up the degrees of the vertices in $A$, we obtain that $d|A|=2 e(A)+e(A, B)=2 e(A)+\kappa^{\prime}(G)$, where $e(A)$ denotes the number of edges with both endpoints in $A$. Since $d$ is even, this implies $\kappa^{\prime}(G)$ is even which finishes the proof.

For the rest of this section, we assume that $d$ is an odd integer with $d \geqslant 3$. We describe first the $d$-regular graph $X_{d}$ having $\kappa^{\prime}\left(X_{d}\right)=1$ and $\lambda_{2}\left(X_{d}\right)=\rho(d)$.

If $H_{1}, \ldots, H_{k}$ are pairwise vertex-disjoint graphs, then we define the product $H_{1} \vee H_{2} \vee \cdots \vee H_{k}$ recursively as follows. If $k=1$, the product is $H_{1}$. If $k=2$, then $H_{1} \vee H_{2}$ is the usual join of $H_{1}$ and $H_{2}$, i.e. the graph formed from the union of $H_{1}$ and $H_{2}$ by joining each vertex of $H_{1}$ to each vertex of $H_{2}$. If $k \geqslant 3$, then $H_{1} \vee H_{2} \vee \cdots \vee H_{k}$ is the graph obtained by taking the union of $H_{1} \vee H_{2} \vee \cdots \vee H_{k-1}$ and $H_{k}$ and joining each vertex of $H_{k-1}$ to each vertex of $H_{k}$.

The extremal graph $X_{d}$ is defined as:

$$
\begin{equation*}
X_{d}=K_{2} \vee \overline{M_{d-1}} \vee K_{1} \vee K_{1} \vee \overline{M_{d-1}} \vee K_{2}, \tag{4}
\end{equation*}
$$

where $\overline{M_{d-1}}$ is the unique ( $d-3$ )-regular graph on $d-1$ vertices (the complement of a perfect matching $M_{d-1}$ on $d-1$ vertices). Fig. 2 shows $X_{3}$ and Fig. 3 describes $X_{5}$.

The graph $X_{d}$ is $d$-regular, has $2 d+4$ vertices and its edge-connectivity is 1 . It has an equitable partition of its vertices into six parts which is described by the following quotient matrix $\widetilde{X_{d}}$. The sizes of the parts in this equitable partition are $2, d-1,1,1, d-1,2$.

$$
\widetilde{X_{d}}=\left[\begin{array}{cccccc}
1 & d-1 & 0 & 0 & 0 & 0  \tag{5}\\
2 & d-3 & 1 & 0 & 0 & 0 \\
0 & d-1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & d-1 & 0 \\
0 & 0 & 0 & 1 & d-3 & 2 \\
0 & 0 & 0 & 0 & d-1 & 1
\end{array}\right]
$$



Fig. 2. $X_{3}$ is 3-regular with $\lambda_{2}\left(X_{3}\right)=\rho(3) \approx 2.7784$.


Fig. 3. $X_{5}$ is 5-regular with $\lambda_{2}\left(X_{5}\right)=\rho(5) \approx 4.7969$.

Next, we show that the second largest eigenvalue of $X_{d}$ equals the second largest eigenvalue of $\widetilde{X_{d}}$. This will enable us to get sharp estimates for $\lambda_{2}\left(X_{d}\right)$ which will be used later in this section.

Lemma 3.2. For each odd integer $d \geqslant 3$, we have that $\lambda_{2}\left(X_{d}\right)=\lambda_{2}\left(\widetilde{X_{d}}\right)=\rho(d)$.
Proof. Since the partition with quotient matrix $\widetilde{X_{d}}$ is equitable, it follows that the spectrum of $X_{d}$ contains the spectrum of $\widetilde{X_{d}}$. Using Maple, we determine the characteristic polynomial of $\widetilde{X_{d}}$ :

$$
\begin{equation*}
P_{\widetilde{X}_{d}}(x)=(x-d)(x-1)(x+2)\left(x^{3}-(d-3) x^{2}-(3 d-2) x-2\right) . \tag{6}
\end{equation*}
$$

The roots of $P_{\widetilde{X}_{d}}$ are $d, 1,-2$ and the three roots of $Q(x)=x^{3}-(d-3) x^{2}-(3 d-2) x-2$. Denote by $\tilde{\lambda}_{2} \geqslant \tilde{\lambda}_{3} \geqslant \tilde{\lambda}_{4}$ the roots of $Q(x)$. Since these roots sum up to $d-3 \geqslant 0$ and their product is 2 , it follows that $\tilde{\lambda}_{2}$ is positive and both $\tilde{\lambda}_{3}$ and $\tilde{\lambda}_{4}$ are negative. Because $Q(1)=-4 d+4<0$, we deduce that $\tilde{\lambda_{2}}>1$. Thus, $\lambda_{2}\left(\widetilde{X_{d}}\right)=\tilde{\lambda_{2}}=\rho(d)$.

Let $W \subset \mathbb{R}^{2 d+4}$ be the subspace of vectors which are constant on each part of the six part equitable partition. The lifted eigenvectors corresponding to the six roots of $P_{P_{d}}$ form a basis for $W$. The remaining eigenvectors in a basis of eigenvectors for $X_{d}$ can be chosen to be perpendicular to the vectors in $W$. Thus, they may be chosen to be perpendicular to the characteristic vectors of the parts in the sixpart equitable partition since these characteristic vectors form a basis for $W$. This implies that these eigenvectors will correspond to the non-trivial eigenvalues of the graph obtained as a disjoint union of $2 K_{2}$ and $2 \overline{M_{d-1}}$. The corresponding eigenvalues will be $(-2)^{(d-3)},(-1)^{(2)}, 0^{(d-1)}$, where the exponent denotes the multiplicity of each eigenvalue. These $2 d-2$ eigenvalues together with the six roots of $P_{\widetilde{X}_{d}}$ form the spectrum of the graph $X_{d}$. Thus, $\lambda_{2}\left(X_{d}\right)=\lambda_{2}\left(\widetilde{X_{d}}\right)=\rho(d)$.

Using Maple, we find that $\rho(3) \approx 2.7784$ and $\rho(5) \approx 4.7969$. A simple algebraic manipulation shows that $\rho(d)$ satisfies the equation

$$
\begin{equation*}
d-\rho(d)=\frac{2 d-2}{\rho^{2}(d)+3 \rho(d)+2}>\frac{2 d-2}{d^{2}+3 d+2} \tag{7}
\end{equation*}
$$

where the last inequality follows since $\rho(d)<d$. Using (7), we deduce that

$$
\begin{equation*}
d-\frac{2}{d+4}<\rho(d)<d-\frac{2}{d+5} \tag{8}
\end{equation*}
$$

for $d \geqslant 5$. We are now ready to prove Theorem 1.4.
Proof of Theorem 1.4. We will prove the contrapositive, namely we will show that if $G$ is a $d$-regular graph with edge-connectivity 1 (containing a bridge), then $\lambda_{2}(G) \geqslant \lambda_{2}\left(X_{d}\right)=\rho(d)$. We also show that equality happens if and only if $G=X_{d}$.

Consider a connected $d$-regular graph $G$ that contains a bridge $x_{1} x_{2}$. Deleting the edge $x_{1} x_{2}$ partitions $V(G)$ into two connected components $G_{1}$ and $G_{2}$ such that $x_{i} \in V\left(G_{i}\right)$ for $i=1$, 2. Let $n_{i}=\left|V\left(G_{i}\right)\right|$ for $i=1,2$. Without loss of generality, we assume from now on that $n_{1} \leqslant n_{2}$. The graph $G_{1}$ contains $n_{1}-1$ vertices of degree $d$ and one vertex of degree $d-1$. Because $d$ is odd, this implies that $n_{1}$ is odd. By symmetry, $n_{2}$ is also odd. Thus, $n_{2} \geqslant n_{1} \geqslant d+2$. Note that $G=X_{d}$ if and only if $n_{1}=n_{2}=d+2$.

Let $A_{2}$ be the quotient matrix of the partition of $V(G)$ into $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. Then

$$
A_{2}=\left[\begin{array}{cc}
d-\frac{1}{n_{1}} & \frac{1}{n_{1}}  \tag{9}\\
\frac{1}{n_{2}} & d-\frac{1}{n_{2}}
\end{array}\right] .
$$

The eigenvalues of $A_{2}$ are: $d$ and $\lambda_{2}\left(A_{2}\right)=d-\frac{1}{n_{1}}-\frac{1}{n_{2}}$.
Let $A_{3}$ be the quotient matrix of the partition of $V(G)$ into $V\left(G_{1}\right),\left\{x_{2}\right\}, V\left(G_{2}\right) \backslash\left\{x_{2}\right\}$. Then

$$
A_{3}=\left[\begin{array}{ccc}
d-a & a & 0  \tag{10}\\
1 & 0 & d-1 \\
0 & b & d-b
\end{array}\right]
$$

where $a=\frac{1}{n_{1}}$ and $b=\frac{d-1}{n_{2}-1}$. The eigenvalues of $A_{3}$ are $d, \lambda_{2}\left(A_{3}\right)=\frac{d-a-b+\sqrt{(d-a+b)^{2}+4(a-b)}}{2}$, $\lambda_{3}\left(A_{3}\right)=\frac{d-a-b-\sqrt{(d-a+b)^{2}+4(a-b)}}{2}$. Taking partial derivatives with respect to $a$ and to $b$ respectively, we find that when $d>1$, the eigenvalue $\lambda_{2}\left(A_{3}\right)$ is strictly monotone decreasing with respect to both $a$ and $b$ and so is strictly monotone increasing with respect to both $n_{1}$ and $n_{2}$.

We consider now a partition of $V(G)$ into the following six parts: $V\left(G_{1}\right) \backslash\left(x_{1} \cup N\left(x_{1}\right)\right), N\left(x_{1}\right) \backslash$ $\left\{x_{2}\right\},\left\{x_{1}\right\},\left\{x_{2}\right\}, N\left(x_{2}\right) \backslash\left\{x_{1}\right\}$ and $V\left(G_{2}\right) \backslash\left(x_{2} \cup N\left(x_{2}\right)\right)$.Here $N(u)$ denotes the neighbourhood of vertex $u$ in $G$. Let $e_{1}$ denote the number of edges between $N\left(x_{1}\right) \backslash\left\{x_{2}\right\}$ and $V\left(G_{1}\right) \backslash\left(x_{1} \cup N\left(x_{1}\right)\right)$. Let $e_{2}$ denote the number of edges between $N\left(x_{2}\right) \backslash\left\{x_{1}\right\}$ and $V\left(G_{2}\right) \backslash\left(x_{2} \cup N\left(x_{2}\right)\right)$. Note that $e_{i} \leqslant(d-1)\left(n_{i}-d\right)$ for $i=1,2$.

Let $A_{6}$ be the quotient matrix of the previous partition of $V(G)$ into six parts. Then

$$
A_{6}=\left[\begin{array}{cccccc}
d-\frac{e_{1}}{e_{1}-d} & \frac{e_{1}}{n_{1}-d} & 0 & 0 & 0 & 0  \tag{11}\\
\frac{e_{1}}{d-1} & d-1-\frac{e_{1}}{d-1} & 1 & 0 & 0 & 0 \\
0 & d-1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & d-1 & 0 \\
0 & 0 & 0 & 1 & d-1-\frac{e_{2}}{d-1} & \frac{e_{2}}{d-1} \\
0 & 0 & 0 & 0 & \frac{e_{2}}{n_{2}-d} & d-\frac{e_{2}}{n_{2}-d}
\end{array}\right] .
$$

Eigenvalue interlacing (see [8,9,10]) implies that

$$
\begin{equation*}
\lambda_{2}(G) \geqslant \max \left(\lambda_{2}\left(A_{2}\right), \lambda_{2}\left(A_{3}\right), \lambda_{2}\left(A_{6}\right)\right) . \tag{12}
\end{equation*}
$$

We will use this as well as the inequalities (7) and (8) to show that $\lambda_{2}(G) \geqslant \lambda_{2}\left(X_{d}\right)=\rho(d)$ and that equality happens if and only if $G=X_{d}$.

Recall that $n_{2} \geqslant n_{1} \geqslant d+2$ and that $d, n_{1}$ and $n_{2}$ are all odd.
If $n_{1} \geqslant d+6$ and $d \geqslant 5$, then we use the partition of $V(G)$ into two parts whose quotient matrix $A_{2}$ is given in (9). Using inequality (8), we have that

$$
\lambda_{2}(G) \geqslant \lambda_{2}\left(A_{2}\right)=d-\frac{1}{n_{1}}-\frac{1}{n_{2}} \geqslant d-\frac{2}{d+6}>\rho(d) .
$$

If $n_{1} \geqslant d+6$ and $d=3$, then we use the partition of $V(G)$ into three parts whose quotient matrix $A_{3}$ is given in (10). We have that

$$
\begin{aligned}
\lambda_{2}(G) & \geqslant \lambda_{2}\left(A_{3}\right) \geqslant \frac{3-\frac{1}{9}-\frac{2}{8}+\sqrt{\left(3-\frac{1}{9}-\frac{2}{8}\right)^{2}+4\left(\frac{1}{9}-\frac{1}{4}\right)}}{2} \\
& =\frac{95+\sqrt{12049}}{72}>2.84>\rho(3) .
\end{aligned}
$$

If $n_{2} \geqslant n_{1}=d+4$, then we use the partition of $V(G)$ into three parts whose quotient matrix $A_{3}$ is shown in (10). We have that

$$
\begin{aligned}
\lambda_{2}(G) & \geqslant \lambda_{2}\left(A_{3}\right) \geqslant \frac{d-\frac{1}{d+4}-\frac{d-1}{d+3}+\sqrt{\left(d-\frac{1}{d+4}+\frac{d-1}{d+3}\right)^{2}+4\left(\frac{1}{d+4}-\frac{d-1}{d+3}\right)}}{2} \\
& =\frac{d^{3}+6 d^{2}+8 d+1+\sqrt{d^{6}+16 d^{5}+88 d^{4}+174 d^{3}+8 d^{2}-96 d+385}}{2\left(d^{2}+7 d+12\right)} \\
& =\frac{d^{3}+6 d^{2}+8 d+1+\sqrt{\left(d^{3}+8 d^{2}+12 d-9\right)^{2}+8 d^{2}+120 d+304}}{2\left(d^{2}+7 d+12\right)} .
\end{aligned}
$$

If $d=3$, the right hand side of the previous inequality equals $\frac{106+\sqrt{16612}}{84}>2.7962>\rho(3)$. When $d \geqslant 5$, from the previous inequality and (8) we obtain that

$$
\begin{aligned}
\lambda_{2}(G) & \geqslant \frac{d^{3}+6 d^{2}+8 d+1+\sqrt{\left(d^{3}+8 d^{2}+12 d-9\right)^{2}+8 d^{2}+120 d+304}}{2\left(d^{2}+7 d+12\right)} \\
& >\frac{d^{3}+6 d^{2}+8 d+1+\left(d^{3}+8 d^{2}+12 d-9\right)}{2\left(d^{2}+7 d+12\right)}=\frac{d^{3}+7 d^{2}+10 d-4}{d^{2}+7 d+12} \\
& =d-\frac{2 d+4}{d^{2}+7 d+12}>d-\frac{2}{d+5}>\rho(d) .
\end{aligned}
$$

If $n_{1}=d+2$ and $n_{2} \geqslant d+6$, then we use the partition of $V(G)$ into three parts whose quotient matrix is is given in (10). We obtain that

$$
\begin{aligned}
\lambda_{2}(G) & \geqslant \lambda_{2}\left(A_{3}\right) \geqslant \frac{d-\frac{1}{d+2}-\frac{d-1}{d+5}+\sqrt{\left(d-\frac{1}{d+2}+\frac{d-1}{d+5}\right)^{2}+4\left(\frac{1}{d+2}-\frac{d-1}{d+5}\right)}}{2} \\
& =\frac{d^{3}+6 d^{2}+8 d-3+\sqrt{d^{6}+16 d^{5}+80 d^{4}+118 d^{3}-24 d^{2}+56 d+329}}{2\left(d^{2}+7 d+10\right) .}
\end{aligned}
$$

When $d=3$, the right hand side equals $\frac{102+\sqrt{14564}}{80}>2.7835>\rho(3)$. If $5 \leqslant d \leqslant 17$, then from the previous identity, we deduce that

$$
\begin{aligned}
\lambda_{2}(G) & \geqslant \frac{d^{3}+6 d^{2}+8 d-3+\sqrt{\left(d^{3}+8 d^{2}+8 d-5\right)^{2}-8 d^{2}+136 d+304}}{2\left(d^{2}+7 d+10\right)} \\
& >\frac{d^{3}+6 d^{2}+8 d-3+\left(d^{3}+8 d^{2}+8 d-5\right)}{2\left(d^{2}+7 d+10\right)} \\
& =\frac{d^{3}+7 d^{2}+8 d-4}{d^{2}+7 d+10}=d-\frac{2}{d+5}>\rho(d) .
\end{aligned}
$$

When $d \geqslant 19$, from the previous inequality we obtain that

$$
\begin{aligned}
\lambda_{2}(G) & \geqslant \frac{d^{3}+6 d^{2}+8 d-3+\sqrt{\left(d^{3}+8 d^{2}+8 d-6\right)^{2}+2 d^{3}+8 d^{2}+152 d+293}}{2\left(d^{2}+7 d+10\right)} \\
& >\frac{d^{3}+6 d^{2}+8 d-3+\left(d^{3}+8 d^{2}+8 d-6\right)}{2\left(d^{2}+7 d+10\right)}=\frac{d^{3}+7 d^{2}+8 d-4.5}{d^{2}+7 d+10} \\
& =d-\frac{2 d+4.5}{d^{2}+7 d+10}>d-\frac{2 d-2}{d^{2}+3 d+2}>\rho(d) .
\end{aligned}
$$

The only case which remains to consider is $n_{1}=d+2$ and $n_{2}=d+4$. In this case, $e_{1}=2 d-$ $4, n_{2}-d=4$ and $e_{2}$ is an even integer with $4 d-12 \leqslant e_{2} \leqslant 4 d-4$. Thus,

$$
A_{6}=\left[\begin{array}{cccccc}
1 & d-1 & 0 & 0 & 0 & 0 \\
2 & d-3 & 1 & 0 & 0 & 0 \\
0 & d-1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & d-1 & 0 \\
0 & 0 & 0 & 1 & d-1-\frac{e_{2}}{d-1} & \frac{e_{2}}{d-1} \\
0 & 0 & 0 & 0 & \frac{e_{2}}{4} & d-\frac{e_{2}}{4}
\end{array}\right] .
$$

Let $P_{A_{6}}(x)$ denote the characteristic polynomial of $A_{6}$. Since each row sum of $A_{6}$ is $d$, it follows that $d$ is a root of $P_{A_{6}}(x)$. Thus, $P_{A_{6}}(x)=(x-d) P_{5}(x)$. The second largest root of $P_{A_{6}}(x)$ is the largest root of $P_{5}(x)$. Using the results of [3, p. 130], we observe that $P_{5}(x)$ equals the characteristic polynomial of the following matrix:

$$
\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 \\
0 & d-1 & d-2 & d-1 & 0 \\
0 & 0 & 1 & 0 & \frac{e_{2}}{d-1} \\
0 & 0 & 0 & 1 & d-\frac{e_{2}}{d-1}-\frac{e_{2}}{n_{2}-d}
\end{array}\right]
$$

Using Maple to divide $P_{5}(x)$ by the polynomial $x^{3}+(3-d) x^{2}+(2-3 d) x-2$, we obtain the quotient $Q(x)=x^{2}-\frac{4 d^{2}-4 d-d e_{2}-3 e_{2}}{4(d-1)} x-\frac{e_{2}}{d-1}$ and the remainder $R(x)=\left(2 d-e_{2}-2\right) x+\frac{d e_{2}+e_{2}+4 d-4 d^{2}}{2}$. Thus,

$$
\begin{aligned}
P_{5}(x)= & \left(x^{3}+(3-d) x^{2}+(2-3 d) x-2\right) Q(x)+\left(2 d-e_{2}-2\right) x \\
& +\frac{d e_{2}+4 d+e_{2}-4 d^{2}}{2} .
\end{aligned}
$$

Because $\rho(d)$ satisfies the equation $x^{3}+(3-d) x^{2}+(2-3 d) x-2=0$, it follows that

$$
\begin{aligned}
P_{5}(\rho(d)) & =\left(2 d-e_{2}-2\right) \rho(d)+\frac{d e_{2}+4 d+e_{2}-4 d^{2}}{2} \\
& =e_{2}\left(-\rho(d)+\frac{d+1}{2}\right)+(2 d-2)(\rho(d)-d) .
\end{aligned}
$$

Because $d>\rho(d)>d-1 \geqslant \frac{d+1}{2}$, we deduce that

$$
\begin{equation*}
P_{5}(\rho(d))<0 . \tag{13}
\end{equation*}
$$

Assume that $\rho(d) \geqslant \lambda_{2}\left(A_{6}\right)$. Then $\rho(d)$ is larger than any root of $P_{5}(x)$. This implies that $P_{5}(\rho(d))=$ $\Pi_{\theta \text { root of } P_{5}}(\rho(d)-\theta) \geqslant 0$ which is a contradiction with (13). Thus, $\lambda_{2}(G) \geqslant \lambda_{2}\left(A_{6}\right)>\rho(d)$.

Hence, $\lambda_{2}(G)>\rho(d)$ whenever $n_{2} \geqslant d+4$. The last case to be considered is $n_{1}=n_{2}=d+2$. This means that $G=X_{d}$ and $\lambda_{2}(G)=\rho(d)$ which finishes the proof.

## 4. Proof of Theorem 1.5

In this section we present the proof of Theorem 1.5. We describe first the $d$-regular graph $Y_{d}$ having $\kappa^{\prime}\left(Y_{d}\right)=2$ and $\lambda_{2}\left(Y_{d}\right)=\frac{d-3+\sqrt{(d+3)^{2}-16}}{2}$.

Consider the graph $H_{d}=K_{d-1} \vee \overline{K_{2}}$. It has $d-1$ vertices of degree $d$ and two vertices of degree $d-1$. We construct $Y_{d}$ by taking two disjoint copies of $K_{d-1} \vee \overline{K_{2}}$ and adding two disjoint edges between the vertices of degree $d-1$ in different copies of $K_{d-1} \vee \overline{K_{2}}$. Fig. 4 describes $Y_{3}$ and Fig. 5 shows $Y_{4}$.

The graph $Y_{d}$ is $d$-regular, has $2 d+2$ vertices and its edge-connectivity is 2 . It has an equitable partition into four parts of sizes $d-1,2,2, d-1$ with the following quotient matrix:

$$
\tilde{Y}_{d}=\left[\begin{array}{cccc}
d-2 & 2 & 0 & 0  \tag{14}\\
d-1 & 0 & 1 & 0 \\
0 & 1 & 0 & d-1 \\
0 & 0 & 2 & d-2
\end{array}\right]
$$

The characteristic polynomial of this matrix equals

$$
P_{\widehat{Y}_{d}}(x)=(x-d)(x+1)\left(x^{2}+(3-d) x+(4-3 d)\right) .
$$

Thus, the eigenvalues of $\tilde{Y}_{d}$ are $d, 1$ and $\frac{d-3 \pm \sqrt{(d+3)^{2}-16}}{2}$. To simplify our notation, let $\theta(d)=$ $\frac{d-3+\sqrt{(d+3)^{2}-16}}{2}$. Note that $\theta(d)$ is the largest root of


Fig. 4. $Y_{3}$ is 3-regular with $\lambda_{2}\left(Y_{3}\right)=\theta(3)=\sqrt{5}$.


Fig. 5. $Y_{4}$ is 4-regular with $\lambda_{2}\left(Y_{4}\right)=\theta(4)=\frac{1+\sqrt{33}}{2}$.

$$
\begin{equation*}
T(x)=x^{2}+(3-d) x+(4-3 d) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
d-\frac{4}{d+2}<\theta(d)<d-\frac{4}{d+3} . \tag{16}
\end{equation*}
$$

Lemma 4.1. The second largest eigenvalue of $Y_{d}$ equals $\theta$ (d).
Proof. Since the previous partition of $V\left(Y_{d}\right)$ into four parts is equitable, it follows that the four eigenvalues of $\widetilde{Y}_{d}$ are also eigenvalues of $Y_{d}$. Obviously, the second largest of the eigenvalues of $\widetilde{Y}_{d}$ is $\theta(d)$. By an argument similar to the one of Lemma 3.2, one can show that the other eigenvalues of $Y_{d}$ are $(-1)^{(2 d-2)}$ which implies the desired result.

We are ready now to prove Theorem 1.5.
Proof of Theorem 1.5. We will prove the contrapositive, namely we will show that among all $d$-regular graphs with edge-connectivity less than or equal to 2 , the graph $Y_{d}$ has the smallest $\lambda_{2}$.

Let $G$ be a $d$-regular graph with $\kappa^{\prime}(G) \leqslant 2$. We will prove that $\lambda_{2}(G) \geqslant \theta(d)$ with equality if and only if $G=Y_{d}$.

If $\kappa^{\prime}(G)=1$, then Theorem 1.4, (8) and (16)imply that $\lambda_{2}(G) \geqslant \rho(d) \geqslant d-\frac{2(d-1)}{(d+1)(d+2)} \geqslant d-\frac{4}{d+3}>$ $\theta(d)$.

If $\kappa^{\prime}(G)=2$, then there exists a partition of $V(G)$ into two parts $V_{1}$ and $V_{2}$ such that $e\left(V_{1}, V_{2}\right)=2$. Let $S_{1} \subset V_{1}$ and $S_{2} \subset V_{2}$ denote the endpoints of the two edges between $V_{1}$ and $V_{2}$. We have that $\left(\left|S_{1}\right|,\left|S_{2}\right|\right) \in\{(1,2),(2,2),(2,1)\}$. Let $n_{i}=\left|V_{i}\right|$ for $i \in\{1,2\}$. It is easy to see that $n_{i} \geqslant d+1$ for each $i \in\{1,2\}$. Note that $n_{1}=n_{2}=d+1$ is equivalent to $G=Y_{d}$.

Without loss of generality assume that $n_{2} \geqslant n_{1} \geqslant d+1$. If $n_{1} \geqslant d+3$, consider the partition of $V(G)$ into $V_{1}$ and $V_{2}$. The quotient matrix of this partition is

$$
\left[\begin{array}{cc}
d-\frac{2}{n_{1}} & \frac{2}{n_{1}} \\
\frac{2}{n_{2}} & d-\frac{2}{n_{2}}
\end{array}\right],
$$

and its eigenvalues are $d$ and $d-\frac{2}{n_{1}}-\frac{2}{n_{2}}$. Eigenvalue interlacing and $n_{2} \geqslant n_{1} \geqslant d+3$ imply that $\lambda_{2}(G) \geqslant d-\frac{2}{n_{1}}-\frac{2}{n_{2}} \geqslant d-\frac{4}{d+3}$. Using inequality (16), we obtain that $\lambda_{2}(G) \geqslant d-\frac{4}{d+3}>\theta(d)$ which finishes the proof of this case.

If $n_{1}=d+2$, then we have a few cases to consider.
If $\left|S_{1}\right|=2$, then $e\left(S_{1}\right)=0$ or $e\left(S_{1}\right)=1$. If $e\left(S_{1}\right)=0$, consider the partition of $V(G)$ into three parts: $V_{1} \backslash S_{1}, S_{1}, V_{2}$. The quotient matrix of this partition is

$$
\left[\begin{array}{ccc}
d-\frac{2 d-2}{d} & \frac{2 d-2}{d} & 0 \\
d-1 & 0 & 1 \\
0 & \frac{2}{n_{2}} & d-\frac{2}{n_{2}}
\end{array}\right] .
$$

Its characteristic polynomial equals

$$
P_{3}(x)=(x-d)\left(x^{2}-\frac{d^{2} n_{2}+2 n_{2}-2 d n_{2}-2 d}{d n_{2}} x-\frac{2\left(d^{2} n_{2}+n_{2}+2-2 d n_{2}-d\right)}{d n_{2}}\right) .
$$

If $P_{2}(x)=x^{2}-\frac{d^{2} n_{2}+2 n_{2}-2 d n_{2}-2 d}{d n_{2}} x-\frac{2\left(d^{2} n_{2}+n_{2}+2-2 d n_{2}-d\right)}{d n_{2}}$, then

$$
P_{2}(x)=T(x)+R(x),
$$

where $R(x)=\frac{d n_{2}+2 n_{2}-2 d}{d n_{2}}\left(\frac{d^{2} n_{2}+2 d-2 n_{2}-4}{d n_{2}+2 n_{2}-2 d}-x\right)$. The expression $\frac{d^{2} n_{2}+2 d-2 n_{2}-4}{d n_{2}+2 n_{2}-2 d}$ is decreasing with $n_{2}$ and thus it attains its maximum when $n_{2}=d+2$. This maximum equals $\frac{d^{3}+2 d^{2}-8}{d^{2}+2 d+4}=d-\frac{4(d+2)}{d^{2}+2 d+4}<$ $d-\frac{4}{d+2}$. Thus, $P_{2}(\theta(d))=R(\theta(d))<\frac{d n_{2}+2 n_{2}-2 d}{d n_{2}}\left(d-\frac{4}{d+2}-\theta(d)\right)<0$ where the last inequality follows from (16). This fact and eigenvalue interlacing imply that $\lambda_{2}(G)>\theta(d)$.

If $e\left(S_{1}\right)=1$, then we consider the same partition into three parts: $V_{1} \backslash S_{1}, S_{1}, V_{2}$. The quotient matrix is the following

$$
\left[\begin{array}{ccc}
d-\frac{2 d-4}{d} & \frac{2 d-4}{d} & 0 \\
d-2 & 1 & 1 \\
0 & \frac{2}{n_{2}} & d-\frac{2}{n_{2}}
\end{array}\right] .
$$

Its characteristic polynomial equals

$$
P_{3}(x)=(x-d)\left(x^{2}-\frac{d^{2} n_{2}+4 n_{2}-d n_{2}-2 d}{d n_{2}} x-\frac{d^{2} n_{2}+4 n_{2}+8-6 d n_{2}}{d n_{2}}\right) .
$$

If $P_{2}(x)=x^{2}-\frac{d^{2} n_{2}+4 n_{2}-d n_{2}-2 d}{d n_{2}} x-\frac{d^{2} n_{2}+4 n_{2}+8-6 d n_{2}}{d n_{2}}$ then

$$
P_{2}(x)=T(x)+R(x),
$$

where $R(x)=\frac{2\left(d n_{2}+2 n_{2}-d\right)}{d n_{2}}\left(\frac{d^{2} n_{2}+d n_{2}-2 n_{2}-4}{d n_{2}+2 n_{2}-d}-x\right)$. The expression $\frac{d^{2} n_{2}+d n_{2}-2 n_{2}-4}{d n_{2}+2 n_{2}-d}$ decreases with $n_{2}$ and thus, its maximum is attained at $n_{2}=d+2$. This maximum equals $\frac{d^{3}+3 d^{2}-8}{d^{2}+3 d+4}=d-\frac{4(d+2)}{d^{2}+3 d+4}<$ $d-\frac{4}{d+2}$. As before, the previous inequality and eigenvalue interlacing imply that $\lambda_{2}(G)>\theta(d)$.

If $\left|S_{1}\right|=1$, then $d$ must be even. Indeed, the subgraph induced by $V_{1}$ contains $d+1$ vertices of degree $d$ and one vertex of degree $d-2$. This cannot happen when $d$ is odd. Thus, $d$ is even and $d \geqslant 4$. Consider the partition of $G$ into three parts: $V_{1} \backslash S_{1}, S_{1}, V_{2}$. The quotient matrix of this partition is

$$
\left[\begin{array}{ccc}
d-\frac{d-2}{d+1} & \frac{d-2}{d+1} & 0 \\
d-2 & 0 & 2 \\
0 & \frac{2}{n_{2}} & d-\frac{2}{n_{2}}
\end{array}\right]
$$

Its characteristic polynomial is

$$
P_{3}(x)=(x-d)\left(x^{2}-\frac{d^{2} n_{2}+2 n_{2}-2 d-2}{(d+1) n_{2}} x-\frac{d^{2} n_{2}+2 d+4 n_{2}+8-4 d n_{2}}{(d+1) n_{2}}\right) .
$$

If $P_{2}(x)=x^{2}-\frac{d^{2} n_{2}+2 n_{2}-2 d-2}{(d+1) n_{2}} x-\frac{d^{2} n_{2}+2 d+4 n_{2}+8-4 d n_{2}}{(d+1) n_{2}}$, then

$$
P_{2}(x)=T(x)+R(x),
$$

where $R(x)=\frac{2 d n_{2}+5 n_{2}-2 d-2}{(d+1) n_{2}}\left(\frac{2 d^{2} n_{2}+3 d n_{2}-8 n_{2}-2 d-8}{2 d n_{2}+5 n_{2}-2 d-2}-x\right)$. Because $d \geqslant 4$, the expression $\frac{2 d^{2} n_{2}+3 d n_{2}-8 n_{2}-2 d-8}{2 d n_{2}+5 n_{2}-2 d-2}$ is decreasing with $n_{2}$ and thus, its maximum is attained when $n_{2}=d+2$. This maximum equals $\frac{2 d^{3}+7 d^{2}-4 d-24}{2 d^{2}+7 d+8}=d-\frac{12 d+24}{2 d^{2}+7 d+8}<d-\frac{4}{d+2}$. This fact and eigenvalue interlacing imply $\lambda_{2}(G)>\theta(d)$.

Assume now that $n_{1}=d+1$. This implies that $V_{1}$ induces a subgraph isomorphic to $K_{d-1} \vee \overline{K_{2}}$ and consequently, $\left|S_{1}\right|=2$ and $e\left(S_{1}\right)=0$.

If $n_{2} \geqslant d+3$, then consider the partition of $G$ into three parts: $V_{1} \backslash S_{1}, S_{1}, V_{2}$. The quotient matrix of this partition is

$$
\left[\begin{array}{ccc}
d-2 & 2 & 0 \\
d-1 & 0 & 1 \\
0 & \frac{2}{n_{2}} & d-\frac{2}{n_{2}}
\end{array}\right]
$$

Its characteristic polynomial is

$$
P_{3}(x)=(x-d)\left(x^{2}-\left(d-2-\frac{2}{n_{2}}\right) x+2+\frac{2}{n_{2}}-2 d\right) .
$$

If $P_{2}(x)=x^{2}-\left(d-2-\frac{2}{n_{2}}\right) x+2+\frac{2}{n_{2}}-2 d$, then

$$
P_{2}(x)=T(x)+\frac{d n_{2}+2-2 n_{2}-\left(n_{2}-2\right) x}{n_{2}}
$$

which implies that

$$
P_{2}(\theta(d))=\frac{d n_{2}+2-2 n_{2}-\left(n_{2}-2\right) \theta(d)}{n_{2}} .
$$

The expression $\frac{d n_{2}+2-2 n_{2}-\left(n_{2}-2\right) \theta(d)}{n_{2}}$ is decreasing with $n_{2}$ and therefore, its maximum is attained when $n_{2}=d+3$. Thus,

$$
\begin{aligned}
P_{2}(\theta(d)) & \leqslant \frac{d^{2}+d-4-(d+1) \theta(d)}{d+3} \\
& =\frac{(d+1)\left(d-\frac{4}{d+1}-\theta(d)\right)}{d+3}<0 .
\end{aligned}
$$

This inequality and eigenvalue interlacing imply that $\lambda_{2}(G)>\theta(d)$.
Thus, the remaining case is $n_{1}=d+1$ and $n_{2} \leqslant d+2$. If $d$ is odd, then $n_{2} \neq d+2$. Otherwise, the sum of the degrees of the graph induced by $V_{2}$ would equal $d\left|V_{2}\right|-2=d(d+2)-2$ which is an odd number. This is impossible and thus, $n_{2}=d+1$. This implies $G=Y_{d}$.

If $n_{2}=d+2$ and $d$ is even, then we have a few cases to consider. If $\left|S_{2}\right|=1$, then both vertices in $S_{1}$ are adjacent to the vertex $a$ of $S_{2}$. Thus, $a$ has exactly $d-2$ neighbours in $V_{2}$ which means there are 3 vertices of $V_{2}$ which are not adjacent to $a$. Each of these three vertices has degree $d$ and the only way this can happen is they form a clique and each of them is adjacent to the $d-2$ neighbours of $a$ in $V_{2}$. Using a degree argument, it also follows that the $d-2$ neighbours of $a$ in $V_{2}$ induce a subgraph isomorphic to the complement of a perfect matching on $d-2$ vertices $\overline{M_{d-2}}$. Using the notation from the previous section, it follows that $G=K_{d-1} \vee \overline{K_{2}} \vee K_{1} \vee \overline{M_{d-2}} \vee K_{3}$. The graph $G$ has an obvious equitable partition into five parts whose quotient matrix is

$$
\left[\begin{array}{ccccc}
d-2 & 2 & 0 & 0 & 0 \\
d-1 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & d-2 & 0 \\
0 & 0 & 1 & d-4 & 3 \\
0 & 0 & 0 & d-2 & 2
\end{array}\right] .
$$

Its characteristic polynomial equals $P_{5}(x)=(x-d) P_{4}(x)$ where $P_{4}(x)=x^{4}+(-d+4) x^{3}+(-4 d+$ 4) $x^{2}-8 x+6 d-12$. Dividing $P_{4}(x)$ by $T(x)$ we get that $P_{4}(x)=T(x) Q_{4}(x)+R_{4}(x)$ where $Q_{4}(x)=$ $x^{2}+x-3$ and $R_{4}(x)=-3 x-3 d$. It follows that $P_{4}(\theta(d))=R_{4}(\theta(d))=-3 \theta(d)-3 d<0$. This fact and eigenvalue interlacing imply that $\lambda_{2}(G)>\theta(d)$.

The case remaining is $\left|S_{2}\right|=2$. If $e\left(S_{2}\right)=0$, then each vertex of $S_{2}$ has exactly $d-1$ neighbours in $V_{2}$. Let $S_{2}=\left\{x_{2}, y_{2}\right\}$. If $x_{2}$ and $y_{2}$ are adjacent to the same $d-1$ vertices of $V_{2}$, then because $\left|V_{2}\right|=n_{2}=$ $d+2$, there is exactly one vertex of $V_{2}$ outside the vertices of $S_{2}$ and their $d-1$ common neighbours. This vertex cannot have degree $d$. Thus, this case cannot happen and therefore, both $x_{2}$ and $y_{2}$ have exactly $d-2$ common neighbours in $V_{2}$. We call this set $U$. Let $\left\{u_{2}, w_{2}\right\}=V_{2} \backslash\left(\left\{x_{2}, y_{2}\right\} \cup U\right)$. Because $x_{2}$ and $y_{2}$ have $d-1$ neighbours in $V_{2}$, we may assume that $x_{2}$ is adjacent to $u_{2}$ and $y_{2}$ is adjacent to $w_{2}$. A degree argument implies that $u_{2}$ and $w_{2}$ must be adjacent and both of them are adjacent to each vertex of $U$. Finally, the subgraph induced by $U$ must be $(d-4)$-regular.

The following is a five-part equitable partition of $G$ : $V_{1} \backslash S_{1}, S_{1}, S_{2}, U,\left\{u_{2}, w_{2}\right\}$. The quotient matrix of this partition is the following:

$$
\left[\begin{array}{ccccc}
d-2 & 2 & 0 & 0 & 0 \\
d-1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & d-2 & 1 \\
0 & 0 & 2 & d-4 & 2 \\
0 & 0 & 1 & d-2 & 1
\end{array}\right]
$$

Its characteristic polynomial equals $P_{5}(x)=(x-d) P_{4}(x)$ where $P_{4}(x)=x^{4}+(5-d) x^{3}+(10-$ $5 d) x^{2}+(-6 d+7) x-d$. Dividing $P_{4}(x)$ by $T(x)$ we get that $P_{4}(x)=T(x) Q_{4}(x)+R_{4}(x)$ where $Q_{4}(x)$ $=x^{2}+2 x$ and $R_{4}(x)=-x-d$. It follows that $P_{4}(\theta(d))=R_{4}(\theta(d))=-\theta(d)-d<0$. This and eigenvalue interlacing show that $\lambda_{2}(G)>\theta(d)$.

The final case of our proof is $e\left(S_{2}\right)=1$. Because $\left|V_{2} \backslash S_{2}\right|=d$ and both $x_{2}$ and $y_{2}$ have $d-2$ neighbours in $V_{2} \backslash S_{2}$, it follows that $x_{2}$ and $y_{2}$ have at least $d-4$ common neighbours in $V_{2} \backslash S_{2}$. If $x_{2}$ and $y_{2}$ have at least $d-3$ common neighbours in $V_{2} \backslash S_{2}$, we deduce that there exists at least one vertex $z$ of $V_{2} \backslash S_{2}$ that is not adjacent to $x_{2}$ nor $y_{2}$. The vertex $z$ cannot have degree $d$ since its only possible neighbours are in $V_{2} \backslash\left(S_{2} \cup\{z\}\right)$ which has size $d-1$. We conclude that $x_{2}$ and $y_{2}$ must have precisely $d-4$ common neighbours in $V_{2} \backslash S_{2}$. There are 4 remaining vertices $a_{2}, b_{2}, c_{2}, d_{2}$ in $V_{2} \backslash S_{2}$ and without loss of generality, assume that $x_{2}$ is adjacent to both $a_{2}$ and $b_{2}$ and $y_{2}$ is adjacent to both $c_{2}$ and $d_{2}$. Each of the vertices $a_{2}, b_{2}, c_{2}, d_{2}$ will be adjacent to every other vertex of $V_{2} \backslash S_{2}$. The degree constraint implies that the remaining $d-4$ vertices of $V_{2} \backslash S_{2}$ induce a ( $d-6$ )-regular subgraph of G. Obviously, this argument shows this case is only possible when $d \geqslant 6$.

The following is a five-part equitable partition of $G: V_{1} \backslash S_{1}, S_{1}, S_{2},\left\{a_{2}, b_{2}, c_{2}, d_{2}\right\}, V_{2} \backslash\left(S_{2} \cup\left\{a_{2}, b_{2}\right.\right.$, $c_{2}, d_{\}}$). Its quotient matrix is the following:

$$
\left[\begin{array}{ccccc}
d-2 & 2 & 0 & 0 & 0 \\
d-1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & d-4 \\
0 & 0 & 1 & 3 & d-4 \\
0 & 0 & 2 & 4 & d-6
\end{array}\right] .
$$

Its characteristic polynomial equals $P_{5}(x)=(x-d) P_{4}(x)$ where $P_{4}(x)=x^{4}+(-d+4) x^{3}+(-4 d+$ $6) x^{2}+(-2 d-1) x+3 d-6$. Dividing $P_{4}(x)$ by $T(x)$ we get that $P_{4}(x)=T(x) Q_{4}(x)+R_{4}(x)$ where $Q_{4}(x)=x^{2}+x-1$ and $R_{4}(x)=-2 x-2$. It follows that $P_{4}(\theta(d))=R_{4}(\theta(d))=-2 \theta(d)-2<0$. This and eigenvalue interlacing imply that $\lambda_{2}(G)>\theta(d)$ which finishes our proof.

## 5. Some remarks

Any strongly regular graph of degree $d \geqslant 3$ satisfies the condition $\lambda_{2} \leqslant d-2$ and thus, is $d$-edgeconnected. The fact that the edge-connectivity of a strongly regular graph equals its degree, was observed by Plesńik in 1975 (cf. [2]). As mentioned in the introduction, much more is true, namely the vertex-connectivity of any distance-regular graph equals its degree (see [5]). It is known that any vertex transitive $d$-regular graph whose second largest eigenvalue is simple has $\lambda_{2}(G) \leqslant d-2$ and consequently, is $d$-edge-connected. In fact, any vertex transitive $d$-regular graph is $d$-edge-connected as shown by Mader in 1971 (see [14] or Chapter 3 of [8]).

I expect that Theorems 1.4 and 1.5 can be extended to other values of edge-connectivity and vertexconnectivity. For example, it seems that $\lambda_{2}(G) \leqslant d-\frac{1}{2}$ implies $\kappa(G) \geqslant 2$. Note however that in many cases, Fiedler's bound $\kappa(G) \geqslant d-\lambda_{2}$ cannot be improved. When $2 k-2 \geqslant d$ and $d k$ is even, consider the graph $2 K_{d-k+1} \vee H$ where $H$ is a $(2 k-2-d)$-regular graph on $k$ vertices. This graph is $d$-regular, has vertex connectivity $k$ and its second largest eigenvalue equals $d-k$.

## 6. Acknowledgments

I am grateful to David Gregory, Edwin van Dam, Willem Haemers and an anonymous referee for many suggestions that have greatly improved the original manuscript. I thank Professor Nair Abreu, the organizers and the participants in the Spectral Graph Theory in Rio Workshop for their support and enthusiasm.

## References

[1] N.M.M. de Abreu, Old and new results on algebraic connectivity of graphs, Linear Algebra Appl. 423 (2007) 53-73.
[2] A.E. Brouwer, Spectrum and connectivity of a graph, CWI Quarterly 9 (1996) 37-40.
[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance Regular Graphs, Springer, 1989.
[4] A.E. Brouwer, W.H. Haemers, Eigenvalues and perfect matchings, Linear Algebra Appl. 395 (2005) 155-162.
[5] A.E. Brouwer, J. Koolen, The vertex-connectivity of a distance-regular graph, European J. Combin. 30 (2009) 668-673.
[6] S.L. Chandran, Minimum cuts, girth and spectral threshold, Inform. Process. Lett. 89 (3) (2004) 105-110.
[7] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J. 23 (1973) 298-305.
[8] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, 2001.
[9] W.H. Haemers, Eigenvalue techniques in design and graph theory, Ph.D. Thesis, Eindhoven University of Technology, 1979.
[10] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. (1995) 226-228, 593-616.
[11] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. 46 (2006) 439-561.
[12] S. Kirkland, J.J. Molitierno, M. Neumann, B.L. Shader, On graphs with equal algebraic and vertex connectivity, Linear Algebra Appl. 341 (2002) 45-56.
[13] M. Krivelevich, B. Sudakov, Pseudo-random graphs in more sets graphs and numbers, Bolyai Soc. Math. Stud. 15 (2006) 199-262.
[14] W. Mader, Minimale n-fach Kantenzusammenhängende graphen, Math. Ann. 191 (1971) 21-28.
[15] B. Mohar, Some applications of Laplace eigenvalues of graphs, in: G. Hahn, G. Sabidussi (Eds.), Graph Symmetry: Algebraic Methods and Applications, NATO ASI Ser. C 487, Kluwer, 1997, pp. 225-275.


[^0]:    E-mail address: cioaba@math.udel.edu
    ${ }^{1}$ Research supported by a startup grant from the Department of Mathematical Sciences of the University of Delaware.

