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�Method based on IR spectra and classification methods to detect additives in gasoline.
� Three classification methods (LDA, PLS-DA, SVM) were compared.
� Three algorithms for selection of variables for LDA were evaluated – SW, GA, SPA.
� The best results were obtained for the MIR region using the LDA/SPA and LDA/GA.
� 100% correct classification was achieved for the test set.
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a b s t r a c t

Gasoline may contain additives which can minimize the amount of pollutants emitted to the atmosphere.
Detergents and dispersants added to gasoline can reduce gas emissions towards atmosphere and the for-
mation of deposits in engines. The Brazilian Agency of Petroleum, Natural Gas and Biofuel (ANP) has
established that Brazilian commercial gasoline must contain detergent and dispersant additives, thus
requiring the development of methods for their identification in commercial gasoline. This work proposes
a methodology which uses infrared spectra in the medium and near region (MIR and NIR) of the residue
of distillation for classification of gasoline samples into two groups: with or without detergent/dispersant
additives. The performances of three types of classification methods were compared: linear discriminant
analysis (LDA), partial least squares discriminant analysis (PLS-DA) and Support Vector Machines (SVM).
Different algorithms for selection of spectral variables for LDA were evaluated: stepwise (SW), genetic
algorithm (GA) and successive projections algorithm (SPA). The best results were obtained using LDA/
GA or SPA/LDA for MIR region.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Gasoline is a petroleum-derived fuel which is a complex mix-
ture of several compounds, the majority of which are classified
within the group of hydrocarbons. In Brazil, the gasoline produced
at refineries or petrochemical plants is called ‘‘Type A gasoline’’.
However, to be marketed, Brazilian laws establish that anhydrous
ethanol fuel must be added to obtain ‘‘Type C gasoline’’ or ‘‘Com-
mon gasoline’’ [1]. The ethanol content in gasoline differs in vari-
ous countries, in general varying from 5% to 10% (v/v) [2]. In
Brazil, this content may vary from 18% (v/v) to 25% (v/v), depend-
ing on the availability and price of the ethanol [3].

Besides anhydrous ethanol, gasoline may contain additives,
which are compounds added to improve fuel performance, avoid
motor problems and minimize the amount of pollutants emitted
to the atmosphere. There are several types of additives for gasoline,
such as detergents, dispersants, antiknock agents and antioxidants.
Dispersant additives prevent fuel stratification during storage at
low temperatures [4]. Detergent additives reduce gas emissions
to the atmosphere as well the formation of deposits in engines
[4]. The chemical composition of detergent and dispersant addi-
tives is not exactly known due to the fact that it is kept secret by
the manufacturing industries. However, it is well-known that these
additives must exhibit good thermal stability up to 300 �C, which is
the observed highest temperature of an internal combustion en-
gine [5]. Although the literature presents several works reporting
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on the benefits of oxygenated additives and on they determination,
no work could be found concerning detergent and dispersant addi-
tives [6–10].

Quality control of fuels has become increasingly rigorous, not
only because of economic and social issues, but also due environ-
mental concerning. The Brazilian Agency of Petroleum, Natural
Gas and Biofuel (ANP) has established that after January 1st of
2014 all Brazilian commercial gasoline should contain detergent
and dispersant additives [11]. The concentration depends on the
formulation of the additives and its effectiveness. Currently, addi-
tives may be mixed with Type C gasoline at concentrations ranging
from 100 to 5000 mg kg�1 and the gasoline is labeled as ‘‘Additive
Type C gasoline’’. The compulsory use of detergent and dispersant
requires the development of analytical methods capable of identi-
fying the presence of these additives in gasoline samples, in order
to verify whether commercial gasoline accomplishes with the
norms established by ANP [11].

The literature presents many examples of application of near
infrared (NIR) and middle infrared (MIR) spectroscopy associated
with multivariate analysis for quality control of fuels [12–16].
Infrared (IR) spectroscopic methods show several advantages, such
as the use of relatively low cost equipment that allows field anal-
ysis; minimum or no sample treatment; expeditious analysis;
causing no sample destruction, and demanding no reagents.

Perhaps, the main drawback of IR based analytical methods is in
its relatively low detectability. As dispersant and detergent addi-
tives are typically added to Brazilian gasoline in concentrations
ranging from 200 to 500 mg kg�1 it is not possible to determine
these species directly in gasoline using IR spectroscopy [17]. To
concentrate the additives up to a concentration level capable to
be detected by IR spectroscopy, gasoline samples have been sub-
mitted to distillation, following the ASTM D86-11b standard proce-
dure [18], before analysis. As dispersant and detergent additives
presents low volatility, they are concentrated in the distillation fi-
nal residue by a factor of about 100 or more, allowing the use of IR
spectroscopy, associated to supervised pattern recognition meth-
ods, to identify their presence in gasoline samples

Pattern recognition methods such as principal components
analysis (PCA), linear discriminant analysis (LDA) and partial least
squares discriminant analysis (PLS-DA) are extensively used in
classification problems [19]. PCA is an unsupervised pattern recog-
nition method used to detect similarities among samples [19]. Dif-
ferent from this, LDA and PLS-DA are supervised pattern
recognition methods and require a training set of known groups
[18,19]. These last two methods are similar because the samples
may only be classified in one of the classes.

PLS-DA is based on the PLS algorithm for calibration, but instead
of using concentration information, it uses class labels as depen-
dent y vector [12,19]. In PLS-DA, for example, a value close to
one indicates that the sample belongs to the class under consider-
ation and a value close to zero indicates that it does not. The
threshold used in PLS-DA may vary, but for a two class problem
it is common to use a threshold of 0.5.

LDA employs the Mahalanobis distance and seeks a linear com-
bination function that maximizes the between-class variance rela-
tive to the within-class variance [13,20]. In LDA the number of
training samples must be larger than the number of variables to
be included in the LDA model [12]. When using spectral data, in
which there are a great number of variables, LDA requires the
use of variable selection algorithms, such as: stepwise algorithm
(SW), successive projections algorithm (SPA) and genetic algorithm
(GA).

The SW algorithm evaluates the individual value of each spec-
tral variable according to its discriminability with respect to the
classes under consideration [21]. The variable with the largest dis-
criminability is selected and a leave-one-out cross-validation
procedure is performed using LDA [21]. To avoid collinearity prob-
lems, the remaining variables that are highly correlated with those
already selected are discarded [21]. For the decision about which
variables need to be discarded, a threshold value for the coefficient
of multiple correlation must be defined by the operator. The algo-
rithm repeats this procedure until no more variables are available
for selection. The set of variables that resulted in the smallest num-
ber of cross-validation errors is then adopted.

The goal of SPA is to select variables with minimum multicollin-
earity and maximum information [13]. In SPA the validation set is
used to choose the best subset of variables by minimizing the cost
function (Eq. (1)) defined as the average risk of misclassification by
LDA [22].

G ¼ 1
kV

XkV

k¼1

gk ð1Þ

Where gk (risk of misclassification of the kth validation object xk) is
defined as

gk ¼
r2ðxk;l1kÞ

min1j–1k r2ðxk;l1jÞ
ð2Þ

The numerator in Eq. (2) is the squared Mahalanobis distance
between object xk (of class index Ik) and the sample mean lIk of
its true class (both row vectors). The denominator in Eq. (2) is
the squared Mahalanobis distance between object xk and the cen-
ter of the closest incorrect class. The object xk should be close to the
center of its true class and distant from the centers of all other clas-
ses [22].

The GA is a stochastic algorithm invented to imitate the evolu-
tionary process of living species [23]. Given two distinct classes,
the algorithm can be used as an optimization procedure to deter-
mine the key variables that maximize the separation between
the two classes [23]. As in SPA the GA uses a function to evaluate
the quality of the variable selection. In this case, this function is
called the fitness function, which is defined as the inverse of the
cost function (Eq. (1)) [12]. For more details on GA see Refs. [23,24].

Support Vector Machine (SVM) is a machine learning technique
derived from two foundations: Statistical Learning Theory and
Mathematical Optimization, applied for classification, regression,
and other learning tasks showing high performance in practical
applications [25–28]. The support vector machine determines the
limits of a decision, producing a great separation between classes
by minimizing the errors. For this, SVM implements two basic
mathematical operations: non-linear mapping of input vectors in
a high dimensional feature space (kernels), and constructing a
maximum margin hyperplane in the feature space. The construc-
tion of this hyperplane is performed in accordance with the princi-
ple of structural risk minimization (SRM). For more details on SVM
see Refs. [19,25,26].

The present paper proposes an analytical method to classify
gasoline as with or without dispersant and detergent additives
based on infrared spectroscopy and supervised pattern recognition
methods. The spectra of the distillation residues, which contain the
pre-concentrated additives, were employed to overcome the lack
of detectability of the IR spectroscopy.

2. Materials and methods

2.1. Samples

A total of 125 samples of gasoline type C were acquired in fuel
stations from the states of Pernambuco, Alagoas and Sergipe in the
Northeast of Brazil. So as to encompass the variability of the gaso-
line composition, the samples were collected from different pro-
ducers and distributors. From these 125 samples, 49 were
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commercialized containing additive and 64 without additives. In
addition, 12 samples of gasoline (acquired without additives) have
been spiked with different additives in the laboratory. In Brazil,
five types of dispersant and detergent additives are used. However,
only three were provided by ANP for this study. These three types
of additives (coded as G, T and W), in concentrations of 100, 200,
500 and 1000 mg kg�1, were employed to spike the samples. It is
important to mention that the 49 samples commercialized with
additives should contain the five types, since they were collected
from different producers and distributors, as commented above.

According to the gasoline specification established by the ANP
Resolution N.57 [1], all samples were submitted to distillation
analysis, following the ASTM D86-11b method [18]. The complete
distillation procedure takes about 40 min and leaves about 1 mL as
the final distillation residue, which is about 1% (v/v) of the starting
sample volume of 100 mL.
2.2. NIR and MIR spectra acquisition

The spectra of gasoline distillation residues were acquired using
a Spectrum 400 FT-IR/FT-NIR spectrometer (Perkin Elmer), at con-
trolled temperature (22 ± 2) �C. Each spectrum was obtained with a
resolution at 4 cm�1 (average of 16 scans). The NIR spectra
(12,000–4000 cm�1) were acquired using a quartz cell with an
optical path length of 1.0 mm. For MIR measurements (4000–
650 cm�1) a ZnSe horizontal attenuated total reflectance (HATR)
accessory was employed.
2.3. Data analysis and software

NIR and MIR spectral data sets were submitted to different pre-
processing techniques, such as Standard Normal Variate (SNV),
Savitzky–Golay first derivatives (7, 15 and 21 point windows and
second order polynomial) and range normalization.

Outlier detection was performed using PCA scores, X-residual
and leverage plots. Only four samples (two gasoline residue sam-
ples without additives and two gasoline residue samples with
additives) were identified as outliers and excluded from the NIR
data set. Only six samples (three gasoline residue samples without
additives and three gasoline residue samples with additives) were
excluded from the MIR data set before building the classification
models.

The selection of samples to compose the training (60% of sam-
ples), validation (20% of samples) and test (20% of samples) sets
was carried out using the Kennard-Stone (KS) algorithm [29]. The
number of samples in each class is presented in Table 1. The train-
ing and validation samples were used in the modeling procedures
(including variable selection for LDA and determination of the
number of factors in PLS-DA), whereas the test samples were only
used in the final evaluation and comparison of predictive ability of
the models.

In SW algorithm, seven threshold values (0.10, 0.30, 0.50, 0, 70,
0.80, 0.90 and 0.95) of multiple correlation coefficients were
Table 1
Number of training, validation and test samples in each class.

Class NIR data MIR data

Training Validation Test Training Validation Test

Without
additives

38 12 12 37 12 12

With additives 35 12 12 34 12 12

Total 73 24 24 71 24 24
tested. The best threshold value was selected on the basis of the
classification errors recorded for the validation set.

The GA algorithm was carried out over 100 generations with
200 chromosomes in each generation and the mutation and cross-
over probabilities were set to 10% and 60%, respectively. Moreover,
the algorithm was repeated five times, starting from different ran-
dom initial populations. The best solution resulting from the five
runs was employed.

In PLS-DA, five threshold values (0.25, 0.375, 0.5, 0.625 and
0.75) were evaluated [19]. When a value above the selected thresh-
old is predicted, a sample is considered as belonging to the class
‘‘gasolines with additives’’ while a value below the selected thresh-
old indicates that the sample belongs to the class ‘‘gasolines with-
out additives’’. The best threshold value was selected on the basis
of the classification errors recorded for the test set. For PLS-DA, the
leave-one-out method of cross-validation was employed to select
the number of factors. The data used to build the models included
the training and validation samples.

For SVM classification a linear kernel function was used. This
function was chosen based on linear trend confirmed by linear dis-
criminant analysis (classification rate on the test set of 94%). Opti-
mization of the C parameter (cost parameter) was done through
cross-validation procedures to evaluate model performance and
minimize the risk of overfitting [26]. The model is calculated with
a training set, and an independent test set is used to test the pre-
dictive performance of the trained model.

Spectral pre-processing, PCA, PLS-DA and SVM were carried out
using Unscrambler� X(CAMO S.A.) [30]. The KS, LDA-GA, LDA-SW
and LDA-SPA algorithms were coded in Matlab� R2010a
7.10.0.499 [31].
3. Results and discussion

3.1. NIR and MIR spectra

Fig. 1a presents the original mean NIR spectra of the two classes
of gasoline residue recorded in the range of 12,000–4000 cm�1.
These NIR spectra show bands assigned to the second overtones
(8500–8200 cm�1), first overtones (6000–5500 cm�1) and the
combination regions (4600–4000 cm�1) of CAH bonds [32].

Fig. 1b shows the original mean MIR spectra of the two classes
of gasoline residue recorded in the range of 4000–650 cm�1. It is
possible to observe peaks corresponding to CAH stretching of al-
kanes and alkenes (2800–3100 cm�1), CAH stretching of aromatic
rings (1475–1600 cm�1), CAH bend of alkanes (1300–1500 cm�1)
and CAH out-of-plane bend of alkenes and aromatic rings (650–
1000 cm�1) [33].

Fig. 1 shows that it is very difficult to distinguish between the
two types of gasoline based only on their NIR or MIR spectra of dis-
tillation residues, thus demonstrating the need for using chemo-
metric techniques for classification.
3.2. LDA and PLS-DA classification

Principal component analysis (PCA) was performed as an
exploratory tool and for outlier detection. Due to the fact that
the additives are minor constituents and the gasoline composition
varies widely according to origin and manufacturing process, it
was already expected that the first components would not show
a separation related to the presence of the additives, but associated
with the variation of the major components of the gasoline. Hence,
PCA results did not show any clear separation of classes, but only a
tendency of separation, with substantial dispersion and overlap-
ping of classes, observed for higher order PCs.



Fig. 1. Original mean spectra (gasoline residue) of the two gasoline classes recorded in the region of (a) NIR and (b) MIR.
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The LDA models obtained with the variables selected by SW,
SPA and GA algorithms and the PLS-DA models were applied to
the classification of the test set (external validation set). The best
results for the models in the NIR region were achieved by using dif-
ferent preprocessing techniques. For the LDA/SPA, LDA/GA and
PLS-DA, SNV was the best preprocessing. For LDA/SW, the best re-
sult was obtained using a combination of Savitzky–Golay first
derivative (21 point windows and second order polynomial) fol-
lowed by range normalization.

The SW algorithm selected wavenumbers in the region between
6000 cm�1 and 5500 cm�1, which may be associated with the first
overtone of CAH stretching [31]. Most of the wavenumbers se-
lected by SPA algorithm are located in the region between
4600 cm�1 and 4000 cm�1, which can be attributed to combination
bands of CAH bond [31]. The GA algorithm selected wavenumbers
in the region close to the second (8500–8200 cm�1) and first over-
tones (6000–5500 cm�1) of CAH stretching [31].

The best results for the NIR models are presented in Table 2. The
values express both correct classifications (predicted class index
equal to correct class index) and incorrect classifications (predicted
class index different from correct class index). For PLS-DA, it is
important to mention that, as leave-one-out cross, validation was
Table 2
Classification results obtained with LDA/SW, LDA/SPA, LDA/GA and PLS-DA models in the N
of wavenumbers or latent variables employed in each model is indicated in parentheses.

Training set LDA/SW (16)a LDA/SPA (25)
Predicted index Predicted index

True class index N 1 2 1 2

NIR data
1 38 34 4 36
2 35 8 27 1 3

Validation set LDA/SW (23)a LDA/SPA (25)

1 12 12 0 12
2 12 3 9 2 1

Test set
1 12 11 1 12
2 12 0 12 1 1

a Threshold 0.7.
b Threshold 0.5.
employed, the results shown for the training set were those ob-
tained in the calibration and the results shown for the validation
set correspond to those obtained in the cross-validation procedure.

Overall, the best results obtained using the NIR region were
achieved with GA and SPA, which showed similar performance
for the test samples.

The best classification results for the models based on the MIR
region were also achieved by using different preprocessing tech-
niques, depending on the algorithm employed. For the LDA/SW
models, the best preprocessing was SNV. For the LDA/SPA models,
the best results were achieved using the Savitzky–Golay first deriv-
ative (21 point windows and second order polynomial). For the
LDA/GA models, the combination of Savitzky–Golay first derivative
(15 point windows and second degree polynomial) followed by
range normalization presented the best results. Finally, for the
PLS-DA, the best pre-processing was a combination of Savitzky–
Golay first derivative (21 point windows and second degree poly-
nomial) with range normalization.

Most of the wavenumbers selected by the SW and SPA algo-
rithms are located in the region between 1000 cm�1 and
650 cm�1 (CAH out-of-plane bend of alkenes and aromatic rings)
[32]. The GA algorithm also selected wavenumbers in this region.
IR region. (1): Gasoline without additives and (2) Gasoline with additives. The number
N indicates the number of samples employed in the study.

LDA/GA (23) PLS-DA (8)b

Predicted index Predicted index

1 2 N 1 2

2 37 1 50 48 2
4 1 34 47 7 40

LDA/GA (23) PLS-DA (8)b

0 11 1 50 46 4
0 1 11 47 10 37

0 12 0 12 12 0
1 1 11 12 2 10
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The three algorithms also selected absorption peaks between
3100 cm�1 and 2800 cm�1 (CAH stretching of alkanes and alkenes)
and between 1600 cm�1 and 1300 cm�1 (CAHbend of alkanes and
CAH stretching of aromatic ring) [33]. The best results for the MIR
models are presented in Table 3.

The best results in the MIR region were achieved with LDA/SPA
and LDA/GA which correctly classified 100% of the test samples.
These result are better than those obtained for the NIR region,
which showed at most 92% of correct classification.

Superimposing the MIR spectra of the gasoline residue samples
containing and not containing the additives G, W and T
(1000 mg kg�1), it can be observed that both algorithms SPA and
GA have selected variables corresponding to bands characteristic
of the additives. To illustrate, Figs. 2 and 3 show some variables se-
lected by GA and SPA.

Fig. 2a shows that the variable selected by GA at 870 cm�1 can
be associated to spectral differences between the residue of a gas-
oline sample with additive ‘‘W’’ (1000 mg kg�1) from the other gas-
oline residues (with G and T additives and without additives).
Fig. 2b shows the variable selected by GA at 720 cm�1, which dis-
tinguishes spectral differences between the residue of gasoline
samples with additives G, T and W from the gasoline residue
without additives.
Table 3
Classification results obtained with LDA/SW, LDA/SPA, LDA/GA and PLS-DA models in the M
of wavenumbers employed in each model is indicated in parentheses. N indicates the num

Training set LDA/SW (20)a LDA/SPA (26)
Predicted index Predicted index

True class index N 1 2 1 2

MIR data
1 37 37 0 35
2 34 2 32 2 3

Validation set
1 12 11 1 9
2 12 0 12 0 1

Test set
1 12 10 2 12
2 12 1 11 0 1

a Threshold 0.95.
b Threshold 0.5.

Fig. 2. Derivative MIR spectra segment of the gasoline residues (with and without additi
The variables selected by SPA at 1733 cm�1, 1725 cm�1 and
1718 cm�1 are shown in Fig. 3a. As can be seen, these variables evi-
dence spectral differences between the residue of the gasoline
sample without additives from those samples with additives G,
W and T (1000 mg kg�1). Fig. 3b shows segments of MIR spectra
containing the selected variables at 1097 cm�1, 1060 cm�1 and
1050 cm�1, as selected by SPA, which suggest spectral differences
between the residue of a gasoline sample with additive ‘‘W’’
(1000 mg kg�1) from the others gasoline residues samples (with
G and T additives and without additives).

On the other hand, several variables selected by the different
algorithms could not be directly associated to spectral features of
the additives G, W and T. This fact can be explained considering
that the sample set employed for variables selection contains com-
mercial gasoline samples with additives, besides the surrogate
samples prepared to contain G, W and T additives. For these com-
mercial samples it was not possible to know the type of additive
and, of course, its spectral features. In addition, sometimes an algo-
rithm may select variables that do not add to the classification
power of the model, because it is not associated with any spectral
feature of the analyte. At the same time, those variables do not
jeopardize the classification power.
IR region. (1) Gasoline without additives and (2) Gasoline with additives. The number
ber of samples employed in the study.

LDA/GA (27) PLS-DA (6)b

Predicted index Predicted index

1 2 N 1 2

2 36 1 49 43 6
2 0 34 46 8 38

3 12 0 49 43 6
2 1 11 46 11 35

0 12 0 12 12 0
2 0 12 12 1 11

ves), emphasizing the variables selected by GA (a) at 870 cm�1 and (b) at 720 cm�1.



Fig. 3. Derivative MIR spectra segment of gasoline residues (with and without additives), emphasizing the variables selected by SPA (a) at 1733 cm�1, 1725 cm�1 and
1718 cm�1 and (b) at 1097 cm�1, 1060 cm�1 and 1050 cm�1.
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3.3. SVM classification

The linear kernel function was adopted and optimization of the
C parameter used threshold values of 0.1, 1.0, 10, 100, 1000 in the
raw and pre-processed spectra in both regions, NIR and MIR.

It was observed that for higher C values (100 and 1000) the
number of support vectors decreases and the rate of misclassified
samples increases. According Devos et al. [26], high values of C
minimize the margin, leading to more complex boundary limits;
and smaller values of C (1 and 10) lead to large margins, smooth
boundaries and the models are more parsimonious and easier to
interpret.

SVM models, constructed with NIR spectra, presented the best
result when the full spectrum, without pre-processing, was em-
ployed, optimized with a C value of 10, and a total of 52 support
vectors on the margin border were employed. The SVM model cor-
rectly classified 11 of the 12 test samples. Considering the MIR
spectral region, the best SVM model, produced a correct classifica-
tion for 11 of the 12 test samples using the raw spectra (C value of
10 and 33 support vectors of the margin borders).
4. Conclusions

In this study, different spectral regions (NIR and MIR), prepro-
cessing techniques (SNV, Savitzky–Golay first derivatives with 7,
15 and 21 point windows and second degree polynomial and range
normalization), supervised pattern recognition methods (PLS-DA,
SVM and LDA) associated with variable selection algorithms (GA,
SW and SPA) were used to distinguish pre-concentrated gasoline
(residue obtained after distillation) containing additives or not.
The classification techniques PLS-DA, LDA and SVM produced com-
parable results. However, 100% correct classification for the exter-
nal validation set was obtained using LDA with variables selected
by SPA and GA, for the MIR region. The results obtained indicate
that infrared spectroscopy is a promising technique for classifica-
tion of gasoline with and without additives when associated with
supervised pattern recognition methods and a pre-concentration
step (distillation). Moreover, because distillation is a customary as-
say in the quality control of gasoline, the classification procedure
described is potentially applicable in the daily routine of fuel anal-
ysis laboratories.
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