A small note on symmetric geodesic curvature on D^2 ✩

Pan Liu ✩, Lu Xu

Department of Mathematics, East China Normal University, Shanghai 200062, PR China

Received 10 May 2005
Available online 8 September 2005
Submitted by R. Gornet

Abstract
Some new results are obtained for the problem of prescribing geodesic curvature k on D when k possesses some kinds of symmetries.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Geodesic curvature; Symmetry; Moser–Trudinger type inequality

1. Introduction and main results

Let (D, g_0) be the unit disk with the Euclidean metric g_0. Given a continuous function $k(x)$ on $S^1 = \partial D$, we want to find a condition on $k(x)$ so that there is a flat metric g, which is pointwise conformal to the standard metric g_0, i.e., $g = e^{2u} g_0$, for some function u defined on D such that the geodesic curvature $k_g = k$.

This problem is equivalent to the existence of a solution to the following equation:

$$\begin{cases}
-\Delta u = 0 & \text{in } D, \\
\frac{\partial u}{\partial n} + 1 = ke^u & \text{on } \partial D,
\end{cases}$$

(1)

where $\frac{\partial u}{\partial n}$ is the outer normal derivative of u.

✩ The work was in part supported by the Foundation of EMC and NSFC No. 10371041. Partially supported by the Foundation of Shanghai for Priority Academic Discipline. The second author is supported by PhD Program Scholarship Fund of ECNU 2005.

* Corresponding author.
E-mail address: pliu@math.ecnu.edu.cn (P. Liu).

0022-247X/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.08.021
This is an analogue of the well-known Nirenberg’s problem, i.e., what kinds of functions K can be the Gaussian curvature of a metric g on S^2, which is pointwise conformal to the standard metric g_0? The latter has been studied extensively, see [2,4–7,9–11,13].

Our Eq. (1) is quite similar to that of Nirenberg’s problem. There are Kazdan–Warner type conditions on Eq. (1) as follows: if u is a solution of Eq. (1), then

$$\int_{S^1} k' e^u = 0,$$

where k' denotes the tangential derivative of k. And hence our Eq. (1) may be insolvable for general k.

In this present work we are interested in the case when k possesses some kinds of symmetries. Let G be a subgroup of the orthogonal transformation group in \bar{D}, and let $f_G := \{x \in S^1 \mid g \cdot x = x, \forall g \in G\}$, the set of fixed points on $\partial D = S^1$ under the action of G.

The following results are known [3,8]: one can solve Eq. (1) if

1. $f_G = \emptyset$, so in particular if $k(x) = k(-x)$ and $k(x) > 0$ somewhere (Moser type theorem);
2. if G is the unit group and if $k > 0 \in C^2$ and $\mu_0 \neq \mu_1 + 1$, where μ_0 and μ_1 are the numbers of local maxima and local minima of k in the region $\Omega = \{z \in \partial D \mid k(z) > 0, \hat{k}'(z) > 0\}$ and \hat{k} denotes the conjugate function of k.

Closely related to the above problem is the following Moser–Trudinger type inequality (Lebedev–Milin inequality [12]):

$$\int_{S^1} e^u ds \leq 2\pi \exp \left\{ \frac{1}{4\pi} \int_{S^1} u \frac{\partial u}{\partial n} ds + \int_{S^1} u ds \right\}, \forall u \in H^{1/2}(S^1),$$

where $\int_{S^1} u$ denotes the mean value of u.

Note that the case (1) $f_G = \emptyset$ occurs when the group G is generated by the rotation $\theta = 2\pi/m$, where $m \in \mathbb{N}$ is a natural number, and the Lebedev–Milin inequality can be improved for this kind of functions, which plays a key role to the proof of the above result.

The more interesting points lie in the case that $f_G \neq \emptyset$, in which the usual Moser–Trudinger type inequality cannot be improved: for instance, we consider a family of functions $u_\lambda(x) = \ln \frac{1}{1 + 2\lambda \cos \theta + \lambda^2}$, where $x = e^{i\theta} \in S^1$ and $\lambda \in (-1, 1)$ is some real parameter. Note that u_λ satisfies the condition $u(e^{-i\theta}) = u(e^{i\theta})$ and it is easy to check that only the usual Lebedev–Milin inequality holds for this family of functions u_λ.

Let $x = e^{i\theta} \in S^1$, where $\theta \in [-\pi, \pi]$. Note that any given function $u : \partial D \to \mathbb{R}$ has the harmonic extension (still denoted by u) which is uniquely determined by its boundary value.

In order to study Eq. (1), we use variational method. Let $H^l(S^1)$ be the Sobolev space, $l \geq 0$. We set

$$C_\theta^{\infty}(S^1) = \{u \in C^{\infty}(S^1) \mid u(e^{-i\theta}) = u(e^{i\theta})\},$$

$$H^{1/2}_\theta(S^1) = \text{the closure of } C_\theta^{\infty} \text{ in } H^{1/2}(S^1).$$

Consider the functional

$$I(u) = \frac{1}{2} \int_{S^1} \frac{\partial u}{\partial n} u ds + \int_{S^1} u ds, \forall u \in H^{1/2}(S^1),$$
and set $\mu = \inf I(u)$ for all $u \in C_\theta^\infty(S^1)$ satisfying $\int_{S^1} ke^u = 2\pi$.

Theorem 1.1. If $k \in C_\theta^\infty(S^1)$ and $\max(k(1), k(-1)) > 0$, where $x = 1$ ($x = -1$) corresponds $\theta = 0$ ($\theta = \pi$), respectively, then

$$\mu \leq 2\pi \ln \frac{1}{\max(k(1), k(-1))}.$$

Moreover, if

$$\mu < 2\pi \ln \frac{1}{\max(k(1), k(-1))},$$

then Eq. (1) has a solution $u \in C_\theta^\infty(S^1)$.

Remark 1. This result resembles that of Aubin [1] for the Yamabe problem and the one of C. Hong [7].

Theorem 1.2. Suppose that $k \in C_\theta^\infty(S^1)$, $\max(k(1), k(-1)) \leq 0$ and $k(x) > 0$ somewhere. Then Eq. (1) has a solution $u \in C_\theta^\infty(S^1)$.

Corollary 1.3. Suppose that $k \in C_\theta^\infty(S^1)$, $k(x) > 0$ somewhere and

$$\bar{k} := \frac{1}{2\pi} \int_{S^1} k \geq \max(k(1), k(-1)).$$

Then Eq. (1) has a solution $u \in C_\theta^\infty(S^1)$.

2. Proofs of existence results

Given $k \in C_\theta^\infty(S^1)$, let $\{u_n\}$ be a minimizing sequence in $C_\theta^\infty(S^1)$, i.e.,

$$I(u_n) \rightarrow \mu \quad \text{and} \quad \int_{S^1} ke^{u_n} = 2\pi, \quad \forall n \in \mathbb{N}. \quad (2)$$

Lemma 2.1. If there exists a constant $C > 0$ such that

$$\|\nabla u_n\|^2 := \int_{S^1} \frac{\partial u_n}{\partial n} u_n \leq C, \quad \forall n \in \mathbb{N}, \quad (3)$$

then Eq. (1) has a solution $u \in C_\theta^\infty(S^1)$.

Proof. A similar arguments proceed as in Aubin [1, Section 5]: indeed, the functional I satisfies (PS) condition in $I(u) \leq C$. From the conditions $I(u_j) \leq C$ and $\int_{S^1} ke^{u_j} = 2\pi$, it follows that $\|u_j\|_{1/2} \leq 3C$, i.e., a (PS) sequence u_j is bounded in $H^{1/2}(S^1)$. On the other hand, from

$$\frac{\partial u_j}{\partial n} + 1 = \lambda_j e^{u_j} + o(1)$$

we have $\lambda_j \rightarrow 1$. By using the Sobolev trace inequality, which says $\{e^{u_j}\}$ is compact in $L^2(S^1)$, we obtain a subsequence of u_j converging in $H^{1/2}$. This proves the lemma. \qed
Thus we are led to find a condition to ensure (3), so we can prove that Eq. (1) has a solution.

Lemma 2.2. If \(u \in C_0^\infty(S^1) \) and \(\exists 0 < \delta \leq \pi/2 \) and \(c_1, c_2 \in \mathbb{R}^+ \), \(\delta \leq |\theta_0| \leq \pi \) such that

\[
I(u) \leq c_1 \quad \text{and} \quad u(e^{i\theta_0}) \geq c_2,
\]

then

\[
\|\nabla u\|_2 \leq C(\delta, c_1, c_2), \tag{4}
\]

where \(C = C(\delta, c_1, c_2) \) depends only on \(\delta, c_1, c_2 \).

Proof. By a modified version of the Poincaré inequality, we have, for all \(v \in C_0^\infty(S^1) \) with \(v(e^{i\theta_0}) = 0 \) for some \(\theta_0: |\theta_0| \geq \delta \), that the following holds:

\[
\int_{S^1} |v|^2 \leq C(\delta) \int_{S^1} \frac{\partial v}{\partial n} v \, ds.
\]

Hence we have

\[
c_1 \geq \frac{1}{2} \int_{S^1} \frac{\partial u}{\partial n} u \, ds + \int_{S^1} u \, ds \\
\geq \frac{1}{2} \int_{S^1} \frac{\partial u}{\partial n} u \, ds + 2\pi c_2 + \int_{S^1} (u - u(e^{i\theta_0})) \, ds
\]

\[
\geq \frac{1}{2} \int_{S^1} \frac{\partial u}{\partial n} u \, ds + 2\pi c_2 - C(\delta) \left(\frac{1}{2} \int_{S^1} \frac{\partial u}{\partial n} u \, ds \right)^{1/2},
\]

which implies the desired inequality (4). \(\square \)

Proof of Theorem 1.1. (1) Without loss of generality, assume that \(k(1) \geq k(-1) \) and \(k(1) > 0 \). We set

\[
u_\lambda = \ln \frac{(1 - \lambda^2)}{k(1)(1 - 2\lambda \cos \theta + \lambda^2)}, \quad \lambda \to 1^-.
\]

We have

\[
\int_{S^1} ke^{u_\lambda} = \frac{1 - \lambda^2}{k(1)} \int_{-\pi}^{\pi} \frac{k(e^{i\theta}) \, d\theta}{(1 - 2\lambda \cos \theta + \lambda^2)}
\]

\[
= (1 - \lambda^2) \int_{-\pi}^{\pi} \frac{d\theta}{(1 - 2\lambda \cos \theta + \lambda^2)} + \frac{(1 - \lambda^2)}{k(1)} \int_{-\pi}^{\pi} \frac{k(e^{i\theta}) - k(1) \, d\theta}{(1 - 2\lambda \cos \theta + \lambda^2)}
\]

\[
= 2\pi + \frac{(1 - \lambda^2)}{k(1)} \left[\int_{[-\pi, \pi] \setminus \{\theta \leq \delta(\epsilon)\}} \frac{k(e^{i\theta}) - k(1) \, d\theta}{(1 - 2\lambda \cos \theta + \lambda^2)} \\
+ \int_{|\theta| \leq \delta(\epsilon)} \frac{k(e^{i\theta}) - k(1) \, d\theta}{(1 - 2\lambda \cos \theta + \lambda^2)} \right]
\]

\[
= 2\pi + \epsilon(\lambda), \quad \text{where} \ \epsilon(\lambda) \to 0 \ \text{as} \ \lambda \to 1^-,
\]
and

\[
\frac{1}{2} \int_{S^1} \frac{\partial u_\lambda}{\partial n} u_\lambda \, ds + \int_{S^1} u_\lambda \, ds = 2\pi \ln \frac{1}{k(1)},
\]

which imply the first conclusion of Theorem 1.1.

(2) If \(\mu < 2\pi \ln \frac{1}{\max(k(1), k(-1))} \), consider the minimizing sequence \(\{u_n\} \subset C^{\infty}_\theta(S^1) \) satisfying (2). Note that \(\forall \epsilon > 0, \exists \delta > 0 \) such that \(k(e^{i\theta}) \leq k(1) + \epsilon \) if \(|\theta| \leq \delta \). Suppose that \(\int_{S^1} \frac{\partial u_n}{\partial n} u_n \, ds \to +\infty \) as \(n \to +\infty \). Then by Lemma 2.2 we have \(u_n(e^{i\theta}) \to -\infty \) uniformly in \(|\theta| \geq \delta \) as \(n \to \infty \). Thus by the Lebedev–Milin inequality we have

\[
2\pi = \int_{S^1} ke^{u_n} \leq \eta_n + (k(1) + \epsilon) \int_{S^1} e^{u_n} \leq \eta_n + (k(1) + \epsilon) 2\pi \exp \left\{ \frac{1}{4\pi} \int_{S^1} \frac{\partial u_n}{\partial n} u_n \, ds + \frac{1}{2\pi} \int_{S^1} u_n \right\},
\]

where

\[
\eta_n = \int_{\delta \leq |\theta| \leq \pi} ke^{u_n} \to 0.
\]

Hence

\[
I(u_n) \geq 2\pi \ln \frac{2\pi - \eta_n}{2\pi (k(1) + \epsilon)}.
\]

Since \(\eta_n \) and \(\epsilon > 0 \) can be arbitrarily small, we get \(\mu \geq 2\pi \ln(1/k(1)) \), a contradiction. Therefore there exists a subsequence, still denoted by \(\{u_n\} \), such that \(\int_{S^1} \frac{\partial u_n}{\partial n} u_n \, ds \leq C \). Then by Lemma 2.1, (1) has a solution \(u \in C^{\infty}_\theta(S^1) \).

Proof of Theorem 1.2. Case 1. \(\max(k(1), k(-1)) < 0 \). By the continuity of \(k \), \(\exists \delta > 0 \) such that \(k(e^{i\theta}) \leq 0 \) if \(|\theta| \leq \delta \). Considering the minimizing sequence \(\{u_n\} \) as above, we have

\[
2\pi = \int_{S^1} ke^{u_n} \leq \int_{|\theta| \geq \delta} ke^{u_n} \leq 2\pi \max k(x) \cdot \exp \left\{ \max_{|\theta| \geq \delta} u_n \right\},
\]

that means

\[
\max_{|\theta| \geq \delta} u_n(e^{i\theta}) \geq \ln \frac{1}{\max k}.
\]

Thus, by Lemmas 2.2 and 2.1 we obtain a solution \(u \in C^{\infty}_\theta(S^1) \) of Eq. (1).

Case 2. \(\max(k(1), k(-1)) = 0 \). Again, consider the minimizing sequence \(\{u_n\} \subset C^{\infty}_\theta(S^1) \). Assuming that \(\int_{S^1} \frac{\partial u_n}{\partial n} u_n \, ds \to +\infty \) as \(n \to \infty \), we proceed as in the proof of Theorem 1.1, (2) and get \(I(u_n) \to \infty \), a contradiction. Then by Lemma 2.1, Eq. (1) has a solution \(u \in C^{\infty}_\theta(S^1) \).

Proof of Corollary 1.3. Case 1. \(\max(k(1), k(-1)) \leq 0 \). The conclusion follows directly from Theorem 1.2.
Case 2. \(\bar{k} > \max(k(1), k(-1)) > 0 \). We set \(w = \ln(1/\bar{k}) \). Then \(\int_{S^1} ke^w = 2\pi \) and
\[
\mu \leq \frac{1}{2} \int_{S^1} \frac{\partial w}{\partial n} w \, ds + 2 \int_{S^1} w = 2\pi \ln \frac{1}{\bar{k}} < 2\pi \ln \frac{1}{\max(k(1), k(-1))}.
\]
Thus Corollary 1.3 follows from Theorem 1.1.

Case 3. \(\bar{k} = \max(k(1), k(-1)) > 0 \). If Eq. (1) has no solution, then by Theorem 1.1,
\[
\mu = 2\pi \ln \frac{1}{\max(k(1), k(-1))} = 2\pi \ln \frac{1}{\bar{k}}.
\]
But \(w = \ln 1/\bar{k} \) achieves the infimum \(\mu \), so we obtain a contradiction.

Acknowledgments

We thank Professor Jiayu Li for his encouragement and the referee for valuable comments and suggestions.

References

[8] W. Huang, P. Liu, On prescribing geodesic curvature on \(D^2 \), preprint.