Imaging Intravascular - Spectroscopy
Washington Convention Center, Lower Level, Hall A
Saturday, September 13, 2014, 5:00 PM–7:00 PM
Abstract nos: 398-401

TCT-398
Identification of Vulnerable Patients by Intracoronary Near-infrared Spectroscopy
Ryan D. Madder1, Mustang Husain2, Alan T. Davis1, Stacie M. Vanoosterhorn1, Mohsin Khan1, Margaret Chi2, Zaatir Turje2, Andrew Schmale2, Sarah Dionne2, David H. Wohns1, J. Stewart Collins1, Mark Jacoby1, Jeffrey Decker1, Robbert J. de Winter1, Karel T. Koch1, Joanna J. Wykrzykowska1, Michael Hendricks1, Stephen Sun1, Sean Madden1, James E. Muller1
1Frederik Meijer Heart & Vascular Institute, Spectrum Health, Grand Rapids, MI, 2Michigan State University College of Human Medicine, Grand Rapids, MI, 3Grand Rapids Medical Education Partners, Grand Rapids, MI, 4Infraredx, Inc., Burlington, MA

Background: Recent intracoronary near-infrared spectroscopy (NIRS) studies have detected lipid-rich plaques (LRP) at most ACS culprit sites. While such cross-sectional data suggest a pathophysiologic role for LRP, prospective data on the risk posed by LRP are limited. This study evaluated the association between large LRP detected by NIRS at non-culprit sites and subsequent major adverse coronary and cerebrovascular events (MACCE).

Methods: NIRS was performed in the culprit artery of 121 consecutive patients at baseline. Segments of the culprit artery that were not stented were evaluated for LRP, defined as a maximum lipid core burden index in 4-mm (maxLCBI4mm) ≥500. Excluding events related to stented segments, patients with and without a maxLCBI4mm ≥500 at a non-stented site were followed for subsequent de novo MACCE, defined as all-cause mortality, ACS requiring revascularization, stroke or TIA.

Results: LRP with a maxLCBI4mm ≥500 compared to only 6.4% of those with a maxLCBI4mm < 500 at non-stented sites were detected in 9.9% of patients. Over 603 ± 145 days of follow-up, MACCE occurred in 58.3% of those with a maxLCBI4mm ≥500 compared to only 6.4% of those with a maxLCBI4mm < 500 (p < 0.001; relative risk = 9.1). In 1 patient, the de novo culprit occurred in an area imaged with NIRS 7 months earlier at baseline; in that case baseline NIRS showed a maxLCBI4mm of 694, thereby identifying a vulnerable plaque (Figure). Therefore, large LRP may indicate a vulnerable plaque (Figure).

Conclusions: Detection of large LRP by NIRS identifies vulnerable patients at increased risk of future MACCE. These findings support ongoing prospective NIRS studies to quantitate the risk of LRP at both a patient and plaque level.

TCT-399
The Impact Of STENTYS® (STENTYS SA, Paris, France) Self-Apposing Coronary Artery Stent Placement On The Lipid Core Plaque Burden, As Assessed With Near-Infrared Spectroscopy; How Does The Lipid Rich Plaque Modify After Stent Deployment And After Balloon Post-Dilatation?
Huangling Lu1, Mark J. Grundeken1, Maribel I. Madroño Cambero1, Jan G. Tijssen1, Robert J. de Winter1, Karel T. Koch1, Joanna J. Wykrzykowska1
1Academic Medical Center - University of Amsterdam, Amsterdam, Netherlands

Background: Distal embolization is commonly caused by high-pressure stent deployment using balloon-expandable stents in lesions involving lipid-rich plaques (LRP). LRP are quantified by the lipid core burden index (LCBI) as assessed with near-infrared spectroscopy (NIRS). We evaluated the modification of LRP during non-urgent percutaneous coronary intervention (PCI) using the self-apposing® STENTYS stent (STENTYS SA, Paris, France).

Methods: A total of 8 patients with a LCBI >200 on pre-stenting NIRS and successful PCI with the STENTYS stent were included. Intravascular ultrasound with NIRS was done pre-stenting, post-stenting and after post-dilatation to assess the LCBI and the minimal lumen area (MLA). To assess the minimal lumen diameter (MLD) we used quantitative coronary angiography analyses.

Results: Mean MLD was 0.9 ± 0.4mm pre-PCI, 2.2 ± 0.2mm post-stenting and 3.0 ± 0.4mm after post-dilatation (p for trend < 0.001). Mean MLA was 4.7 ± 0.9mm² pre-stenting, 4.7 ± 1.0mm² post-stenting and 8.4 ± 2.1mm² after post-dilatation (p for trend: < 0.001). Mean LCBI was 351 ± 106 pre-stenting, 128 ± 149 post-stenting and 65 ± 90 after post-dilatation (p for trend: 0.002). The mean LCBI decreased with 64% from pre- to post-stenting, and with 49% from post-stenting after post-dilatation.

Conclusions: The significant LCBI decreases after stenting and post-dilatation suggest that the self-apposing stent does not potentially prevent distal embolization. The significant MLD and MLA increase after post-dilatation shows the necessity for balloon post-dilatation when using this device to avoid under-expansion and the consequent risk of stent thrombosis.