
doi: 10.1016/j.procs.2016.05.374 

Efficient Memetic Continuous Optimization

in Agent-based Computing

Wojciech Korczynski1, Aleksander Byrski1, and Marek Kisiel-Dorohinicki1

AGH University of Science and Technology, Department of Computer Science, Krakow, Poland
{wojciech.korczynski,olekb,doroh}@agh.edu.pl

Abstract
This paper deals with a concept of memetic search in agent-based evolutionary computation.
In the presented approach, local search is applied during mutation of an agent. Using memetic
algorithms causes increased demand on the computing power as the number of fitness function
calls increases, therefore careful planning of the fitness computing (through the proposed local
search mechanism based on caching parts of the fitness function) leads to significant lowering
of this demand. Moreover, applying local search with care, can lead to gradual improvement
of the whole population. In the paper the results obtained for selected high-dimensional (5000
dimensions) benchmark functions are presented. Results obtained by the evolutionary and
memetic multi-agent systems are compared with classic evolutionary algorithm.

Keywords: evolutionary algorithms, Evolutionary Multi-Agent System, memetic algorithms

1 Introduction

Some problems are very difficult for common optimization methods as their search space is
too big or too complex to be explored efficiently. Such ‘black-box’ problems [9] may be solved
using a general-purpose algorithms, e.g. meta-heuristics, which provide good enough solutions
in reasonable time, taking into consideration little information from the problem domain.

For a long time meta-heuristics were not fully understood, until Davis [6] and Moscato [18]
conducted successful experimental research and managed to discover the need for adjusting
the solver to the problem characteristics. These practical observations were backed up in the
so-called ‘no-free-lunch’ theorem [12, 23], according to which it is not possible to find a meta-
heuristic method that will be an ultimate solution for all problems, no matter how excellent it
works for a certain problem. Therefore, it is still necessary to look for novel meta-heuristics,
adjusted to given problems and often inspired by the various domains of life, such as biology,
evolution or genetics.

In 1996 Krzysztof Cetnarowicz [4] introduced a notion of agency to evolutionary algorithms
and proposed Evolutionary Multi-Agent System (EMAS), an effective implementation of dis-
tributed problem solving. In agent-based systems the main task is decomposed into sub-tasks

Procedia Computer Science

Volume 80, 2016, Pages 845–854

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

845

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.374&domain=pdf


entrusted to agents—intelligent objects which are able to interact one with another, as well
as with the environment, and make decisions autonomously. In numerous researches EMAS
proved to be an efficient method for solving different problems—classic benchmarks [1], inverse
problems [24] and other optimization tasks [7, 8]. Moreover, many modifications and extensions
of EMAS have been proposed. Compared to classic evolutionary algorithm, EMAS provides
satisfactory results in less computation time, requiring less evaluations.

This paper concerns the idea of hybridization of EMAS with local search algorithms, inspired
by the meme theory. Memetic algorithms (MAs) [19, 16, 20] join ideas from the popular meta-
heuristics and blend together local search with population-based search engine. MAs, initially
popularized e.g. by Radcliffe and Surry [21], were proven to provide remarkable success [13].
However, memetic algorithms are very computationally demanding, therefore following [11] of
caching partially the fitness results, a similar method is followed in continuous optimization, in
order to efficiently realize the local search in the solution space.

Section 2 describes EMAS, along with its main assumptions, in detail. In Section 3 EMAS
hybridization with local search memetic algorithms is introduced. Preliminary experiments and
their results are presented in Section 4. Section 5 concludes this paper and discusses possible
future work.

2 From evolutionary algorithms to Evolutionary Multi-
Agent Systems

Evolutionary algorithms [17] belong to population-based metaheuristics. In the most popular
variant called a genetic algorithm, solutions are encoded into genotypes owned by individuals.
These individuals form populations—groups of potential solutions, which are evaluated based on
the fitness function. Poor solutions are eliminated in the process of selection and the remaining
ones create a mating pool. Subsequent population is created based on that mating pool, using
variation operators, such as crossover or mutation. The whole process continues until some stop
condition is reached (e.g.: predefined number of iterations or reaching good enough solution).

The key issue in practical applications of evolutionary algorithms is the diversity of solutions
in the population. To preserve this diversity during the search several techniques may be
applied. Following the idea of allopatric speciation, individuals may be distributed among
evolutionary islands, which allows for parallelizing the algorithm [3]. Figure 1(a) schematically
illustrates parallel evolutionary algorithm (PEA) used as a reference in this paper.

Agency brings to the world of evolutionary metaheuristics decentralization of selection and
autonomy of the individuals. Thus the natural process of evolution is mimicked better, and in
this way the author of EMAS Krzysztof Cetnarowicz [4], and his followers [2, 7] tend to introduce
a new quality into metaheuristics, achieving effective results consisting e.g. in decreasing the
computation cost computed as the number of fitness function calls [1].

In EMAS phenomena of inheritance and selection—the main components of evolutionary
processes—are modelled via agent actions of death and reproduction (Figure 1(b)). As in the
case of classic evolutionary algorithms, inheritance is accomplished by an appropriate definition
of reproduction. Core properties of the agent are encoded in its genotype and inherited from its
parent(s) with the use of variation operators (mutation and recombination). Moreover, an agent
may possess some knowledge acquired during its life, which is not inherited. Both inherited and
acquired information (phenotype) determines the behaviour of an agent. It is noteworthy that
it is easy to add mechanisms of diversity enhancement, such as allopatric speciation (cf. [3])
to EMAS. It consists in introducing population decomposition and a new action of the agent

Efficient Memetic Continuous Optimization . . . W. Korczynski et al.

846



based on moving from one evolutionary island to another (migration).

(a) PEA

(b) EMAS

Figure 1: Schematic presentation of Parallel Evolutionary Algorithm (PEA) and Evolutionary
Multi-Agent System (EMAS)

3 Efficient memetic search in EMAS

Evolutionary algorithms may be enhanced by hybridization with local search memetic algo-
rithms. Local improvements are applied within evolutionary cycle and they may happen in
the course of evaluation (according to the Baldwin effect [14]) or mutation (according to the

Efficient Memetic Continuous Optimization . . . W. Korczynski et al.

847



Lamarckian model [10]). To deal with the problem of efficiency, memetic operators can be used
in steady-state evolutionary algorithm [22] and similar ones. But agent-based setting seems
to be the most natural as in other metaheuristics, no parallel ontogenesis is observed. Recent
our works tried to apply memetic algorithms to EMAS and presented promising results at the
expense of efficiency (see, e.g. [2]), since many evaluation events were required. Below a more
profound study of the hybridization of EMAS with memetic algorithms is presented.

In this paper Evolutionary Multi-Agent System with memetic algorithms (MemEMAS) is
analysed and compared with the memetic version of Parallel Evolutionary Algorithm (Mem-
PEA) and the classic variants of both algorithms. Schematic presentation of MemEMAS and
MemPEA are given in Figures 2(a) and 2(b). Local search results in creating different solutions,
each of which is evaluated and the best one is selected to replace individual’s genotype. Each
memetization event (local search realized during mutation) consisted of 10 cycles. At each cy-
cle one random gene was changed. If this change resulted in individual’s fitness improvement,
it was performed repeatedly as long as fitness value was improved. Moreover, gene change
was adapted to the increase of quality of the results obtained on an individual’s evolutionary
island—if the best fitness on an island does not improve sufficiently, gene change is greater.

As it was stated in Section 3, during each memetization event one gene was changed and
fitness value had to be recalculated. Therefore, such local search algorithm is so computationally
exhaustive, that without any efficient modification, the number of evolutionary steps performed
in a time unit would be disproportionately lower, compared to classic algorithms.

In the presented research the evaluation operator was implemented in a similar way that
was presented in [11], so the fitness computation, especially when running a local search, is the
most efficient. This amendment bases on the division of fitness function into separable parts,
each of them corresponding to the particular gene:

f(x) = f1(x1) �1 f2(x2) �2 . . . �n−1 fn(xn) (1)

where f(x) : Rn → R, fi(xi) : R
n → R, i ∈ [1, n], i ∈ N, �j , j ∈ [1, n − 1] is any mathematical

operator like sum, subtraction, division or product. Assuming such fitness function, one can
easily compute the n−1 values of the partial functions fj(xj), j ∈ [1, n]∧j �= k, j, k ∈ N, leaving
the value of fk(xk) to be computed once per each mutation, when the single-point mutation is
considered. The gain from “caching” the values of the other partial fitness function seems to
be inevitable, and it will be confirmed later in the experimental section. This approach may be
of course easily extended for other mutation operators (e.g. two-point mutation and others).

This mechanism can be the most effortlessly applied if a fitness function is separable. How-
ever, there are means to implement a similar mechanism in the case of non-separable functions
(cf. e.g., discrete optimization with efficient memetization operator presented in [11]), and
extending the number of potential benchmarks is one of our future goals.

4 Experimental results

In this Section experiments comparing EMAS, PEA and their memetic variants (MemEMAS
and MemPEA) are discussed. These experiments were performed with the use of PyAgE com-
puting and simulation platform [15] and two multidimensional hard continuous benchmark
problems were solved: Rastrigin and Ackley functions. These functions are described by Equa-
tions 2 and 3, respectively. Global optimum for both of them equals f(x) = 0.0. Figures 3(a)

Efficient Memetic Continuous Optimization . . . W. Korczynski et al.

848



Evolutionary island
genotype
individual

fitness

Evolutionary island

I
I

I
I

I

I

Evolutionary island
I

I
I

I
I

Imigrations

genotype
individual

fitness
genotype
individual

fitness

genotype
individual

fitness

genotype
individual

fitness

evaluation

selection

crossover

mutation

genotype
individual

fitness
memetization

(a) MemPEA

Evolutionary island

genotype
agent

energy

genotype
agent

energy

genotype
agent

energy
high energy:
reproduction

genotype
agent

energy

low energy:
death

genotype
agent

energy

genotype
agent

energy

genotype
agent

energy

imigration
emigration

evaluation and
energy transfer

Evolutionary island
A

A
A

A

A

A

Evolutionary island
A

A
A

A

A

Amigrations

genotype

genotype

genotype

genotype

(b) MemEMAS

Figure 2: Schematic presentation of PEA and EMAS algorithms enhanced with memetization

and 3(b) illustrate these functions in two dimensions.

f(x) = An+
n∑

i=1

[x2
i −A cos(2πxi)] (2)

f(x) = −a exp
(
− b

√√√√ 1

n

n∑
i=1

x2
i

)
− exp

(
1

n

n∑
i=1

cos(cxi)

)
+ a+ exp(1) (3)

The tested functions were evaluated in 5000 dimensions on the hypercubes xi ∈ [−5.12, 5.12]

Efficient Memetic Continuous Optimization . . . W. Korczynski et al.

849



(a) Two-dimensional Rastrigin function (b) Two-dimensional Ackley function

Figure 3: Rastrigin and Ackley illustration

for Rastrigin and xi ∈ [−32.768, 32.768] for Ackley. The constants were assigned the following
values: Rastrigin: A = 10; Ackley: a = 20, b = 0.2, c = 2π. Other configuration parameters
are included in Table 1.

Parameter EMAS PEA
Mutation Uniform, of one randomly chosen gene
Crossover Single point
Speciation Allopatric

Environment Torus-shaped, size 10 x 10
Number of evolutionary islands 3, fully connected

Numbers of individuals on each island 50
Agent/individual migration probability 0.05

Initial energy 100 -
Energy transferred from loser to winner 5 -

Agent’s death energy level 0 -
Minimal energy required to reproduce 120 -
Minimal energy required to migrate 130 -

Selection - tournament (tournament size: 30)

Table 1: Experiments configuration parameters

All experiments lasted exactly 72000 seconds, were repeated 11 times (nature of the problem
and the implementation issues made the whole system very computational power demanding,
therefore the number of repetitions was decreased) and standard deviation was computed.

Obtained results have been illustrated by plots in Figures 4(a) and 4(b). Moreover, Table 2
contains precise results at the end of experiments. As one can see, EMAS outperformed PEA
for both of the functions (visibly reaching better solutions in the same time), that acknowledges
the conclusions of preceding research (e.g. [2]). Focusing on influence of memetization on results
obtained by EMAS, two different cases are noticeable:

• Rastrigin function: Memetization allowed to reach a better solution in shorter time (what
can be clearly observed in Figure 4(c)), but then it was outperformed by classic EMAS,
because of the computational overhead caused by vast amount of fitness evaluation events

Efficient Memetic Continuous Optimization . . . W. Korczynski et al.

850





Result St. Dev. Generations/Agent steps Evaluation events
Rastrigin

PEA 4533.48 27.72 157910.85 23686776.92
MemPEA 3252.40 43.66 93055.62 70682033.00
EMAS 40.28 6.74 3551702.31 13133439.08
MemEMAS 108.45 15.31 2141999.69 169803084.46

Ackley
PEA 19.07 0.08 250485.00 37572900.00
MemPEA 0.65 0.01 79066.50 60105471.50
EMAS 15.98 0.89 4105150.20 16112953.93
MemEMAS 0.05 0.01 1693190.79 135641127.21

Table 2: Experiments results in the 72000th second

fitness evaluations as in the classic cases. See e.g. the number of evaluation events for EMAS
and MemEMAS in the case of Rastrigin function: local search version executes over 156 · 106
more evaluations as it is in the case of the classic one. One must however remember that these
are local fitness evaluations—they may improve the exploitation, but can be fairly useless from
the exploration point of view. Again proper tuning of the system’s parameters is necessary.
Anyway, here the advantages of the efficient memetic operator can be clearly seen.

These different outcomes of the experiments demonstrate how memetization may influence
on the obtained results. They can be also explained by the aforementioned no free lunch
theorem—we cannot provide an ultimate solution for all kinds of problems.

Besides, it is noteworthy that all of the experiments are repeatable as the value of standard
deviation is low.

5 Conclusions

The results presented in this paper show that local search realized in EMAS may provide
significant improvements in shorter time and should be further developed. Moreover, the ef-
ficient implementation of the local search operator allowed in particular cases to increase the
number of fitness function evaluations over ten times more than it was realized in the classic
version of the tested algorithms. Thus the possibilities of exploration and exploitation of the
high-dimensional search spaces become real—and one cannot do there anything without such
dedicated mechanisms, because of so called curse of dimensionality [5] present there.

The optimized benchmark functions examined in this work were separable, and in fact, such
problems are the easiest to tackle with the presented efficient local search mechanism—however
implementation of such operator for non-separable problems is also possible (although it will
rather not be as efficient as in the case of separable ones). Indeed, one of our future goals is to
examine also non-separable problems (starting from e.g. Rosenbrock benchmark).

Of course the detailed examination of parametrization of the system (when and to what
extent such local searches should be applied by the agents) is also envisaged, as without such
experiments the rationale for using the proposed efficient local search method might not be
fully justified.

Efficient Memetic Continuous Optimization . . . W. Korczynski et al.

852



Acknowledgment

The research presented in this paper was partially supported by the AGH University of Science
and Technology, Faculty of Computer Science, Electronics and Telecommunications Dean’s
Grant.

References

[1] Aleksander Byrski. Tuning of agent-based computing. Computer Science, 14(3):491, 2013.

[2] Aleksander Byrski, Wojciech Korczynski, and Marek Kisiel-Dorohinicki. Memetic multi-agent
computing in difficult continuous optimisation. In KES-AMSTA, pages 181–190, 2013.

[3] E. Cantú-Paz. A summary of research on parallel genetic algorithms. IlliGAL Report No. 95007.
University of Illinois, 1995.

[4] K. Cetnarowicz, M. Kisiel-Dorohinicki, and E. Nawarecki. The application of evolution process in
multi-agent world (MAW) to the prediction system. In M. Tokoro, editor, Proc. of the 2nd Int.
Conf. on Multi-Agent Systems (ICMAS’96). AAAI Press, 1996.

[5] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroqúın. Searching in
metric spaces. ACM Comput. Surv., 33(3):273–321, September 2001.

[6] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold Computer Library, New York,
1991.

[7] R. Drezewski and L. Siwik. Multi-objective optimization technique based on co-evolutionary inter-
actions in multi-agent system. In M. Giacobini, et al., editor, Applications of Evolutinary Comput-
ing, EvoWorkshops 2007: EvoCoMnet, EvoFIN, EvoIASP,EvoINTERACTION, EvoMUSART,
EvoSTOC and EvoTransLog, Valencia, Spain, April11-13, 2007, Proceedings, volume 4448 of
LNCS, pages 179–188, Berlin, Heidelberg, 2007. Springer-Verlag.

[8] R. Drezewski and L. Siwik. Co-evolutionary multi-agent system for portfolio optimization. In
A. Brabazon and M. O’Neill, editors, Natural Computing in Computational Finance, volume 1,
pages 271–299. Springer-Verlag, Berlin, Heidelberg, 2008.

[9] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory of Computing Systems, 39:525–544, 2006.

[10] N. Eldridge and S.J. Gould. Punctuated equilibria: An alternative to phyletic gradualism. In
T.J.M Schopf, editor, Models in Paleobiology. Freeman, Cooper and Co., 1972.

[11] José E Gallardo, Carlos Cotta, and Antonio J Fernández. Finding low autocorrelation binary
sequences with memetic algorithms. Applied Soft Computing, 9(4):1252–1262, 2009.

[12] W.E. Hart and R.K. Belew. Optimizing an arbitrary function is hard for the genetic algorithm.
In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 190–195, San Mateo CA, 1991. Morgan Kaufmann.

[13] W.E. Hart, N. Krasnogor, and J.E. Smith. Memetic evolutionary algorithms. In Recent advances in
memetic algorithms, volume 166 of Studies in Fuzziness and Soft Computing, pages 3–27. Springer-
Verlag, 2005.

[14] G. Hinton and S. Nolan. How learning can guide evolution. Complex Systems, 1:495–502, 1987.

[15] Maciej Kaziród, Wojciech Korczynski, and Aleksander Byrski. Agent-oriented computing plat-
form in python. In Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014
IEEE/WIC/ACM International Joint Conferences on, volume 3, pages 365–372. IEEE, 2014.

[16] N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms: Model, taxonomy, and
design issues. IEEE Transactions on Evolutionary Computation, 9(5):474–488, 2005.

[17] Z. Michalewicz. Genetic Algorithms Plus Data Structures Equals Evolution Programs. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1994.

Efficient Memetic Continuous Optimization . . . W. Korczynski et al.

853



[18] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards
Memetic Algorithms. Technical Report Caltech Concurrent Computation Program, Report. 826,
California Institute of Technology, Pasadena, California, USA, 1989.

[19] P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 219–234. McGraw-Hill, 1999.

[20] P. Moscato and C. Cotta. A modern introduction to memetic algorithms. In M. Gendrau and J.-
Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series in Operations
Research and Management Science, pages 141–183. Springer, 2 edition, 2010.

[21] N.J. Radcliffe and P.D. Surry. Formal Memetic Algorithms. In T. Fogarty, editor, Evolutionary
Computing: AISB Workshop, volume 865 of Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, Berlin, 1994.

[22] Gilbert Syswerda. A study of reproduction in generational and steady state genetic algorithms.
Foundations of genetic algorithms, 2:94–101, 1991.

[23] D. Wolpert and W. Macready. No free lunch theorems for search. Technical Report SFI-TR-02-010,
Santa Fe Institute, 1995.

[24] K. Wróbel, P. Torba, M. Paszyński, and A. Byrski. Evolutionary multi-agent computing in inverse
problems. Computer Science (accepted for printing), 2013.

Efficient Memetic Continuous Optimization . . . W. Korczynski et al.

854


