Note

Saturation of convergence for q-Bernstein polynomials in the case $q \geq 1$

Heping Wanga,*, XueZhi Wub

a Department of Mathematics, Capital Normal University, Beijing 100037, People’s Republic of China
b College of Science, North China University of Technology, Beijing 100041, People’s Republic of China

Received 24 January 2007
Available online 18 April 2007
Submitted by M. Milman

Abstract

In the note, we discuss Voronovskaya type theorem and saturation of convergence for q-Bernstein polynomials for a function analytic in the disc $U_R := \{z : |z| < R\}$ ($R > q$) for arbitrary fixed $q \geq 1$. We give explicit formulas of Voronovskaya type for the q-Bernstein polynomials for $q > 1$. We show that the rate of convergence for the q-Bernstein polynomials is $o(q^{-n})$ ($q > 1$) for infinite number of points having an accumulation point on U_R/q if and only if f is linear.

Keywords: q-Bernstein polynomials; Voronovskaya type formulas; Saturation

1. Introduction

Let $q > 0$. For each nonnegative integer k, the q-integer $[k]$ and the q-factorial $[k]!$ are defined by

$$[k] := \begin{cases}
(1 - q^k)/(1 - q), & q \neq 1, \\
1, & q = 1,
\end{cases}$$

and

$$[k]! := \begin{cases}
[k][k-1] \cdots [1], & k \geq 1, \\
1, & k = 0,
\end{cases}$$

respectively. For the integers $n, k, n \geq k \geq 0$, the q-binomial coefficients are defined by (see [3, p. 12])

$$\binom{n}{k} := \frac{[n]!}{[k]![n-k]!}.$$

In 1997, Phillips proposed the q-Bernstein polynomials $B_{n,q}(f, x)$: for each positive integer n and $f \in C[0, 1]$, the q-Bernstein polynomial of f is (see [9])

\[\text{Supported by the Beijing Natural Science Foundation (Project No. 1062004) and by the National Natural Science Foundation of China.}\]
\[\star\text{Corresponding author.}\]
\[E-mail addresses: wanghp@mail.cnu.edu.cn (W. Heping), aei1104@yahoo.com.cn (X. Wu).}\]
\begin{equation}
B_{n,q}(f, x) := \sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) \binom{n}{k} x^k \prod_{s=0}^{n-k-1} (1 - q^s x).
\tag{1.1}
\end{equation}

Note that for \(q = 1 \), \(B_{n,q}(f, x) \) is the classical Bernstein polynomial \(B_n(f, x) \),

\[B_n(f, x) := \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1 - x)^{n-k}. \]

In recent years, the \(q \)-Bernstein polynomials have been investigated intensively by a number of authors (see [2, 4–10] and reference therein, [11–14]). From these researches we know that for \(q \neq 1 \), the convergence properties of the \(q \)-Bernstein polynomials differ essentially from those of the classical ones. In the case \(q > 1 \), the \(q \)-Bernstein polynomials are no longer positive operators, however, for a function analytic in a disc \(R/q \), and reference therein, \([11–14]\). From these researches we know that for \(q > 1 \), the convergence properties of the \(q \)-Bernstein polynomials differ essentially from those of the classical ones. In the case \(q > 1 \), the \(q \)-Bernstein polynomials are no longer positive operators, however, for a function analytic in a disc \(R/q \), the rate of convergence of \(\{B_{n,q}(f, z)\} \) to \(f(z) \) has the order \(q^{-n} \) (versus \(1/n \) for the classical Bernstein polynomials). Note that the condition of analyticity of \(f \) is essential for convergence. In this note, we consider Voronovskaya type formulas and saturation of convergence of the \(q \)-Bernstein polynomials for such a function for arbitrary fixed \(q \geq 1 \). Let \(\Omega \) be a region in the complex plane \(\mathbb{C} \). Denote by \(H(\Omega) \) the space of all analytic functions on \(\Omega \). We say \(f_n \to f \) in \(H(\Omega) \) as \(n \to \infty \) if \(f_n \in H(\Omega) \) and the sequence \(\{f_n(z)\} \) converges to the limit function \(f(z) \) in \(\Omega \) as \(n \to \infty \), uniformly on every compact subset of \(\Omega \). The expression \(A(n) \propto B(n) \) means that there exists a positive constant \(c \) independent of \(n \) such that \(\frac{1}{c} B(n) \leq A(n) \leq c B(n) \); \(A(n) = o(B(n)) \) represents \(\lim_{n \to \infty} A(n)/B(n) = 0 \). For fixed \(q > 1 \), denote the \(q \)-derivative \(D_q f(z) \) of \(f \) by

\[D_q f(z) = \begin{cases} \frac{f(qz) - f(z)}{(q-1)z}, & z \neq 0, \\ f'(0), & z = 0. \end{cases} \]

In the cases \(q = 1 \) and \(q \in (0, 1) \), the Voronovskaya type formulas and saturation of convergence for the \(q \)-Bernstein polynomials was obtained by Voronovskaya and the author, respectively, see [1, pp. 307–308], [14]. In the case \(q \geq 1 \), Ostrovska showed the following Voronovskaya type theorem for monomials (see [4]): for any \(m \in \mathbb{N}, z \in \mathbb{C} \),

\[\lim_{n \to \infty} [n] B_{n,q}(m, z) - z^m = (1 + [2] + \cdots + [m - 1])(z^{m-1} - z^m). \tag{1.2} \]

In the note, we study Voronovskaya type formulas of the \(q \)-Bernstein polynomials of a function \(f \) analytic in the disc \(U_R \) \((R > q) \) for fixed \(q \geq 1 \). Let \(R > q \geq 1 \) and let \(f \in H(U_R) \). For \(|z| < R/q \), we set

\[L_q(f, z) := \frac{(1 - z)(D_q f(z) - f'(z))}{(q-1)} \quad \text{for } q > 1, \tag{1.3} \]

and for \(q = 1 \),

\[L_1(f, z) = f''(z)(1 - z)/2. \tag{1.4} \]

Then we have the following Voronovskaya type theorem.

Theorem 1. Let \(R > q \geq 1 \). If a function \(f \) is analytic in the disc \(U_R \), then for any \(r, 0 < r < R/q \),

\[\lim_{n \to \infty} [n](B_{n,q}(f, z) - f(z)) = L_q(f, z) \tag{1.5} \]

uniformly on the disc \(U_r \).

Remark 1. The above result is sharp in the following sense: the number \(R/q \) in Theorem 1 cannot be replaced by any other number strictly larger than \(R/q \), since for some points on \(\{z: |z| = R/q\} \), \(L_q(f, z) \) may be even undefined, let alone (1.5).

From Theorem 1 we conclude that for \(q \geq 1 \), \([n](B_{n,q}(f, z) - f(z)) \to L_q(f, z) \) in \(H(U_{R/q}) \) and therefore, \(L_q(f, z) \in H(U_{R/q}) \). Furthermore, we have the following saturation of convergence for the \(q \)-Bernstein polynomials for fixed \(q > 1 \).
Theorem 2. Let \(R > q > 1 \). If a function \(f \) is analytic in the disc \(U_R \), then \(|B_{n,q}(f,z) - f(z)| = o(q^{-n})\) for infinite number of points having an accumulation point on \(U_{R/q} \) if and only if \(f \) is linear.

It was proved in [4] that for \(R > q > 1 \) and \(f \in H(U_R) \), the rate of convergence of \(\{B_{n,q}(f,z)\} \) to \(f(z) \) on \(U_r \) (\(r < R/q \)) has the order \(q^{-n} \). The following corollary is the immediate consequence of Theorem 2.

Corollary 1. Let \(R > q > 1 \). If \(f \in H(U_R) \) is not a linear function, then for any \(r, 0 < r < R/q \),

\[
\sup_{|z| \leq r} |B_{n,q}(f,z) - f(z)| = q^{-n}; \\
\sup_{x \in [0,1]} |B_{n,q}(f,x) - f(x)| = q^{-n}.
\]

Remark 2. For \(q = 1 \), we have the following saturation: if \(f \in H(U_R) \), \(R > 1 \), then \(|B_{n,q}(f,z) - f(z)| = o(1/n)\) for infinite number of points having an accumulation point on the disc \(U_R \) if and only if \(f \) is linear. Even this result is possibly new.

The next theorem shows that \(L_q(f,x) \), \(q \geq 1 \), is continuous about the parameter \(q \) for \(f \in H(U_R) \), \(R > 1 \).

Theorem 3. Let \(R > 1 \) and let \(f \in H(U_R) \). Then for any \(r, 0 < r < R \),

\[
\lim_{q \to 1+} L_q(f,z) = L_1(f,z)
\]

uniformly on \(U_r \).

Corollary 2. Let \(q \geq 1 \). If \(f(z) \) is an entire function, then

\[
[n](B_{n,q}(f,z) - f(z)) \to L_q(f,z) \text{ in } H(\mathbb{C}) \text{ as } n \to \infty,
\]

and

\[
L_q(f,z) \to L_1(f,z) \text{ in } H(\mathbb{C}) \text{ as } q \to 1+.
\]

2. Proofs of Theorems 1–3

Lemma 1. (See [4].) Let \(q \geq 1 \) be fixed. Then for \(m \geq 2 \),

\[
B_{n,q}(t^m,z) = \alpha_1 z + \cdots + \alpha_j z^j, \quad j = \min(m,n),
\]

where \(\alpha_i \geq 0 \) (\(i = 1, \ldots, j \)) and \(\alpha_1 + \cdots + \alpha_j = 1 \). Besides, if \(n \geq m \), then

\[
\alpha_m = \prod_{i=1}^{m-1} \left(1 - \frac{i}{n} \right), \quad \alpha_{m-1} = \frac{1 + [2] + \cdots + [m-1]}{n} \prod_{i=1}^{m-2} \left(1 - \frac{i}{n} \right).
\]

Also, for any \(r \geq 1 \),

\[
[n]B_{n,q}(t^m,z) - z^m | \leq 2(m-1)[m-1]r^m \text{ for } |z| \leq r.
\]

Lemma 2. Let \(a_1, \ldots, a_k \in (0, 1) \). Then

\[
1 - \prod_{i=1}^{k} (1 - a_i) \leq \sum_{i=1}^{k} a_i
\]

and

\[
1 - \prod_{i=1}^{k} (1 - a_i) - \sum_{i=1}^{k} a_i \leq \sum_{1 \leq i < j \leq k} a_i a_j.
\]
Then by the assumption, we have

\[1 - \prod_{i=1}^{k+1} (1 - a_i) = 1 - \prod_{i=1}^{k} (1 - a_i) + a_{k+1} \prod_{i=1}^{k} (1 - a_i) \leq \sum_{i=1}^{k} a_i + a_{k+1} = \sum_{i=1}^{k+1} a_i, \]

which proves (2.4). Similarly, by the assumption and (2.4) we get

\[|a_{k+1}| \leq \sum_{i=1}^{k} a_i a_j + a_{k+1} \sum_{i=1}^{k} a_i = \sum_{1 \leq i < j \leq k+1} a_i a_j, \]

which completes the proof of (2.5). Lemma 2 is proved.

Lemma 3. Let \(q \geq 1 \) be fixed. If \(n \geq m \geq 2 \) and \(r \geq 1 \), then for any \(z, |z| \leq r \),

\[
|[n](B_{n,q}(r^m, z) - z^m) - (1 + [2] + \cdots + [m - 1])(z^{m-1} - z^m)| \leq \frac{4(m - 1)^2[m - 1]^2}{n}r^m. \tag{2.6}
\]

Proof. It follows from (2.1) and (2.2) that for \(|z| \leq r \),

\[
I := |[n](B_{n,q}(r^m, z) - z^m) - (1 + [2] + \cdots + [m - 1])(z^{m-1} - z^m)| \\
\leq r^m [n] \sum_{i=1}^{m-1} a_i + r^m |[n] \alpha_{m-1} - \sum_{i=1}^{m-1} [i]| + r^m |[n](1 - \alpha_m) - \sum_{i=1}^{m-1} [i]| \\
\leq r^m [n](1 - \alpha_m - \alpha_{m-1}) + r^m |[n] \alpha_{m-1} - \sum_{i=1}^{m-1} [i]| + r^m |[n](1 - \alpha_m) - \sum_{i=1}^{m-1} [i]| \\
\leq 2r^m |[n] \alpha_{m-1} - \sum_{i=1}^{m-1} [i]| + 2r^m |[n](1 - \alpha_m) - \sum_{i=1}^{m-1} [i]| \\
= 2r^m \left(\sum_{i=1}^{m-1} [i] \right) \left(1 - \prod_{i=1}^{m-2} \left(1 - \frac{[i]}{[n]} \right) \right) + 2r^m [n] \sum_{1 \leq i < j \leq m-1} \frac{[i][j]}{[n][n]} \leq \frac{4(m - 1)^2[m - 1]^2}{n}r^m.
\]

Using (2.4) and (2.5) we get

\[
I \leq 2r^m \left(\sum_{i=1}^{m-1} [i] \right) \left(\sum_{i=1}^{m-2} [i] \right) + 2r^m [n] \sum_{1 \leq i < j \leq m-1} \frac{[i][j]}{[n][n]} \leq \frac{4(m - 1)^2[m - 1]^2}{n}r^m.
\]

Lemma 3 is proved.

Proof of Theorem 1. Let \(f(z) = \sum_{m=0}^{\infty} a_m z^m \) be a function analytic in the disc \(U_R, R > q \geq 1 \). We set

\[
V_q(f, z) := \sum_{m=2}^{\infty} a_m \left(\sum_{i=1}^{m-1} [i] \right) z^{m-1}(1 - z), \quad \text{for } |z| < R/q. \tag{2.7}
\]

It is easy to show that \(V_q(f, z) \in H(U_{R/q}) \). Let \(r \in [1, R/q) \) be fixed. First we show the sequence \(\{[n](B_{n,q}(f, z) - f(z))\} \) converges to \(V_q(f, z) \) uniformly on the disc \(U_r \), as \(n \to \infty \). By (2.1) we have

\[
B_{n,q}(f, z) = \sum_{m=0}^{\infty} a_m B_{n,q}(r^m, z) \quad \text{for } |z| < R.
\]
Since \(B_{n,q}(f,x) \) reproduce linear functions (see [9]), we get for \(|z| < R/q \),
\[
[n](B_{n,q}(f,z) - f(z)) - V_q(f,z) = \sum_{m=2}^{\infty} a_m \left[n(B_{n,q}(t^m,z) - z^m) - \sum_{i=1}^{m-1} [i]z^{m-1}(1-z) \right].
\] (2.8)

Let \(\varepsilon > 0 \) be given. Choose \(t \in (0,1) \) such that \(q^{1+t} < R \). Since \(f \in H(U_R) \) and \(q^{1+t} < R \), we get \(\sum_{m=2}^{\infty} |a_m| m^4 q^{(1+t)m_r} < \infty \), so we can find \(N = N_{\varepsilon} \) such that \(\sum_{m=N}^{\infty} |a_m| m^2 q^m r_m < \varepsilon/8 \). Then for \(|z| \leq r \) and \(n > N \), by (2.8), (2.6) and (2.3) we have
\[
J := \left| n(B_{n,q}(f,z) - f(z)) - V_q(f,z) \right|
\leq \sum_{m=2}^{N-1} |a_m| \left[n(B_{n,q}(t^m,z) - z^m) - \sum_{i=1}^{m-1} [i]z^{m-1}(1-z) \right]
\leq \frac{4}{|n|^2} \sum_{m=2}^{N-1} |a_m| m^2 |m-1|^{1+t} r_m + 4 \sum_{m=N}^{\infty} |a_m| m rm + \varepsilon/2.
\]

Since \(|n|^2 \to \infty \) as \(n \to \infty \) and \(\sum_{m=2}^{\infty} |a_m| m^4 q^{(1+t)m_r} < \infty \), we get \(J < \varepsilon \) for \(n \) sufficiently large. We conclude that
\[
\lim_{n \to \infty} [n](B_{n,q}(f,z) - f(z)) = V_q(f,z)
\]
uniformly on \(U_r \).

Now we show that \(L_q(f,z) = V_q(f,z) \). If \(q = 1 \), then for \(|z| < R \),
\[
V_q(f,z) = \sum_{m=2}^{\infty} a_m (1 + \cdots + m-1)z^{m-1}(1-z) = \frac{z(1-z)}{2} \sum_{m=2}^{\infty} a_m m(m-1)z^{m-2} = \frac{f''(z)}{2} z(1-z).
\]

For \(q > 1 \), it is easy to see that \(D_q(f,z) = \sum_{m=1}^{\infty} a_m[m]z^{m-1} \) and \(D_q(f,z) - f'(z) = \sum_{m=2}^{\infty} a_m [m]z^{m-1} \). Hence
\[
L_q(f,z) = \sum_{m=2}^{\infty} a_m \frac{[m] - m}{q-1} z^{m-1}(1-z), \quad q > 1.
\]

On the other hand, since
\[
1 + 2 + \cdots + [m] = \frac{[m] - m}{q-1},
\]
we obtain
\[
V_q(f,z) = \sum_{m=2}^{\infty} a_m \frac{[m] - m}{q-1} z^{m-1}(1-z) = L_q(f,z).
\]

The proof of Theorem 1 is complete. \(\square \)
Proof of Theorem 2. If \(f \) is linear, then \(B_{n,q}(f,z) - f(z) = 0 \) for any \(z \in \mathbb{C} \). Conversely, let \(f(z) = \sum_{m=0}^{\infty} a_m z^m \) be a function analytic in the disc \(UR \) and let \(|B_{n,q}(f,z) - f(z)| = o(q^{-m}) \) for infinite number of points having an accumulation point on \(UR/q \). Then by Theorem 1, we get \(L_q(f,z) = \lim_{n \to \infty} |n(B_{n,q}(f,z) - f(z))| = 0 \) for infinite number of points having an accumulation point on \(UR/q \). Since \(L_q(f,z) \in H(UR/q) \), by the Unicity Theorem for analytic functions we get \(L_q(f,z) = V_q(f,z) = 0 \), and therefore, by (2.7), \(a_m = 0, m = 2, 3, \ldots \). Thus, \(f \) is linear. Theorem 2 is proved. \(\square \)

Proof of Theorem 3. Let \(f(z) = \sum_{m=0}^{\infty} a_m z^m \) be a function analytic in the disc \(UR, R > 1 \). For any \(r \in [1, R) \), let \(q_0 \in (1, R/r) \) be fixed. Then for any \(q \in [1, q_0) \) and \(|z| \leq r \),

\[
L_q(f,z) = \sum_{m=2}^{\infty} a_m \left(\sum_{i=1}^{m-1} [i] \right) z^{m-1} (1 - z)
\]

and

\[
L_1(f,z) = \sum_{m=2}^{\infty} a_m \frac{(m - 1)m}{2} z^{m-1} (1 - z).
\]

Let \(\varepsilon > 0 \) be given. Since \(f \in H(UR) \), we get \(\sum_{m=2}^{\infty} |a_m|m^2 q_0^m r^m < \infty \), so we can find \(N = N_\varepsilon \) such that \(\sum_{m=N}^{\infty} |a_m|m^2 q_0^m r^m < \varepsilon/8 \). Using the inequality

\[
\left| \sum_{i=1}^{m-1} [i] - \frac{(m - 1)m}{2} \right| = \sum_{i=2}^{m-1} ((i) - i) = (q - 1) \sum_{i=2}^{m-1} [j] \leq (q - 1)m^2 \leq (q - 1)m^3 q_m,
\]

we get for \(|z| \leq r \) and \(q \in [1, q_0) \),

\[
K := \left| L_q(f,z) - L_1(f,z) \right| \\
\leq \sum_{m=2}^{N-1} |a_m| \left| \sum_{i=1}^{m-1} [i] - \frac{(m - 1)m}{2} \right| |z^{m-1} - z^m| + \sum_{m=N}^{\infty} |a_m| \left(\sum_{i=1}^{m-1} [i] + \frac{(m - 1)m}{2} \right) |z^{m-1} - z^m| \\
\leq 2(q - 1) \sum_{m=2}^{N-1} |a_m|m^3 q_0^m r^m + 4 \sum_{m=N}^{\infty} |a_m|(m - 1)[m - 1]r^m \\
\leq 2(q - 1) \sum_{m=2}^{N-1} |a_m|m^3 q_0^m r^m + 4 \sum_{m=N}^{\infty} |a_m|m^2 q_0^m r^m \\
\leq 2(q - 1) \sum_{m=2}^{N-1} |a_m|m^3 q_0^m r^m + \varepsilon/2.
\]

Since \(\sum_{m=2}^{\infty} |a_m|m^3 q_0^m r^m < \infty \), we get \(J < \varepsilon \) for \(q \) sufficiently close to 1 from the right. We conclude that

\[
\lim_{q \to 1^+} L_q(f,z) = L_1(f,z)
\]

uniformly on \(UR \). The proof of Theorem 3 is finished. \(\square \)

Acknowledgments

The authors are very grateful to the anonymous referees for many valuable comments and suggestions which helped to improve the draft.

References