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Introduction 

Let R be a reduced one-dimensional Noetherian ring with finite integral closure 

R, and conductor C and let @(A) denote the set of isomorphism classes of finitely 

generated torsionfree R-modules. In a paper of Wiegand [7], an operation of the 

group of units (R/C)* on the set @(A) was defined. This was applied to problems 

related to the cancellation of direct summands from torsionfree modules, especial- 

ly when R is a Bass ring, that is a ring with finite integral closure such that each 

ideal of R can be generated by two elements. The object of this note is to obtain a 

similar group action in the absence of the finite integral closure assumption and to 

derive some consequences of this action. We define such a group action in Section 

two, and look at some of the applications in Sections three and four. It turns out 

that trying to remove the finite integral closure assumption leads naturally to a 

division of the cancellation problem into two cases (that of cancelling projectives 

and of cancelling nonprojectives), which is enlightening even in the case that R 
has finite integral closure. This allows extensions of several of the results of [3] 

and [7] from Bass rings to more general reduced one-dimensional Noetherian 

rings. Many of our results reduce to those in [3] and [7] whenever R has the 

property that stably isomorphic finitely generated torsionfree R-modules are 

isomorphic. 

In Section three we generalize some of the results in [7] on when A 83 C g 
B G3 C + A s B for finitely generated R-modules A, B and C with A torsionfree. 

Some of the history of this problem and the related problems which are 

considered in Section four is discussed in [3] and [6]. In Section four we extend 

some of the results of [3] on power cancellation over Bass rings to more general 

one-dimensional Noetherian rings. To be more specific let Ac9) denote the direct 

sum of q copies of A, and consider the following statements: 

(a) Acy) E B(') for some q 2 1; 

(b) A G3 X z B '33 X for some finitely generated R-module X; 
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(c) A, E B, for each maximal ideal m of R. In [3], it was shown that if R is a 

Bass ring, then (b)+(a) f or all A, BE Q(R) if and only if D(R) = 

ker(Pic(R)-+ Pit(R)) 1s a torsion group, and (c)+(a) for all A, B E Q(R) if and 

only if Pit(R) is a torsion group. Information was also obtained on the size of the 

exponent 4 required in (a) in terms of the degree of torsion in D(R) and Pit(R) 

respectively. We obtain similar results for a wider class of Noetherian one- 

dimensional rings. In [3] Levy and Wiegand associated to a finitely generated 

R-module A an ideal cl(A), called the ideaE class of A, such that cl(A) equals the 

determinant of A if A is projective. We conclude this note by giving a result on 

the behavior of the group action defined in Section two on the ideal class of an 

element A E Q(R). 

1. Preliminary results 

First we recall the definitions. In this paper R always denotes a reduced 

one-dimensional commutative Noetherian ring with total quotient ring K. Recall 

that if M is a finitely generated torsionfree R-module, then M is said to be 

torsionfree if the canonical map M-+ M G3.R K is injective. If S is an overring of R 
and M is a finitely generated torsionfree R-module, we denote by SM the 

S-submodule of M gR K generated by the canonical image of M in M @JR K. Since 

R is reduced and Noetherian we can write K = Ke, C3 * . . @Ke, where the ei are 

idempotents and the Kei are fields. We call these ei the fundamental idempotents 
of R. 

Lemma 1.1. Let R be a reduced noetherian ring and let A and B be finitely 
generated torsionfree R-modules. If RA Z+ RB, then there exists a finite overring S 
of R such that SA z SB. 

Proof. Let f: RA+ RB be an isomorphism and let a,, . . . , a, and b,, . . . , b, 
generate A and B respectively over R. For i = 1, . . . , n let t,, , ti2, . . . , ti, E R be 

such that f(ai) = cj tijbj. Then if S, = R[t,) i, j = 1, . . . , n], then f(SA) C SB for 

every overring S such that S, c S c R. Let S, = S,[r,j ( i, j = 1, . . . , n] where the 

rij E R are such that b, = cj rij f(aj) for i = 1, . . . , II. Then f induces an isomor- 

phism from S,A to S,B. 0 

Corollary 1.2. Let R be a reduced one-dimensional Noetherian ring and let A be a 
finitely generated torsionfree R-module. Then there exists a finite overring S of R 
such that SA is S-projective. 

Proof. Let R, = R[e,, . . . , e,] where the ei are the fundamental idempotents of 

R. By the above lemma it suffices to find a projective R,-module B such that 

RA G RB. Since R, is a direct product of integral domains it suffices to consider 
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the case that R is a domain. We can then write RA = I, @ * * * @ Z, where each Z, is 

an invertible ideal of R. If S is a finite overring of R, with conductor C, then from 

the Mayer-Vietoris sequence of the following square we see that 

Pic(R,) + Pit(S) is onto. 

R,-S 

It follows that Pic(R,) -+ Pit(R) is also onto and thus there are projective ideals .Z, 

of R, such that Ziz.ZiR for each i. Let B=.Z,G3~=~6B.Z,. 0 

2. A group operation 

Let R be a one-dimensional reduced Noetherian ring with finite integral closure 

R and conductor C. In [7] Wiegand defined an action of the group of units 

(R/C)* or R/C on the set Q(R) of isomorphism classes of finitely generated 

torsionfree R-modules, and some interesting properties and applications of this 

action were obtained. In this section we extend this construction. First we remove 

the requirement that R have finite integral closure by replacing Z? by a finite 

overring S which depends on the module A under discussion. Then we consider 

the problem of putting the constructions obtained from the various finite over- 

rings of R together to get a group operation on Q(R). Much of the presentation in 

this section and the next parallels the presentation in [7], to which we refer the 

reader for many of the details. 

Definition 2.1. Let A be a finitely generated torsionfree R-module and S a finite 

overring of R with conductor C. The following pullback diagram is called the 

standard pullback diagram for A with respect to S: 

A-SA 

I I 
AICA- SAICA 

Lemma 2.2. Let R be a one-dimensional reduced Noetherian ring, S a finite 
overring of R and let C = (R:,S). Let P be a torsionfree S-module, M an 
RIG-module, and j : M + PICP an R-monomorphism whose image generates PICP 
as an S-module. Denote by [M, P, j] the R-module A defined by the following 
pullback: 
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A-P 

Then [M, P, j] is a torsionfree R-module and the above pullback diagram is 
isomorphic to the standard pullback diagram for A. Thus each torsionfree R- 

module is of the form [M, P, j] for some M, P, and j as above. 

Proof. The same argument as in [7] works with the exception of the proof that p 

is a monomorphism. That p is a monomorphism follows from the fact that 

h : A+ SA is essential. 0 

Corollary 2.3. Zf R is as above and f : A -+ B is a homomorphism of finitely 
generated R-modules, then f is an isomorphism if and only if for some (and thus 
for every) finite overring S of R such that SA, SB are S-projective the induced maps 
A ICA + BICB and SA -+ SB are isomorphisms, where C is the conductor of S 
into R. •I 

The following construction, with S = R, was used by Wiegand [7] in the case 

that R is a finite R-module with conductor C to define an operation of the group 

of units (R/C)* on the set of isomorphism classes of finitely generated torsionfree 

R-modules. 

Let A be a finitely generated torsionfree R-module and let S be a finite overring 

of R containing the fundamental idempotents of K such that SA is a projective 

S-module. Let C = R:,S and let e be the idempotent of S that generates (O:,SA). 
Then the decomposition Se EI3 S(1 - e) gives decompositions of the groups S*, and 

(S/C)* via x E S*+x = (ex + (1 - e))(e + (1 - e)x) etc. For x E (S/C)* define A” 
as follows. Choose an automorphism q of SAICA whose determinant is ,xA = 

e + (1 - e)x. This is possible since SAICA is a projective S/C-module. Define A” 
by the pullback 

A” I, SA 

I 
AICA- SAICA- ’ SAICA 

To simplify our presentation we will restrict our attention to faithful modules. 

By choosing our finite overrings S to contain the fundamental idempotents of R 
the results extend without difficulty to nonfaithful torsionfree modules. The 

proofs of the following three results are similar to the arguments given in [7] and 

[8]. In these results we let A be a finitely generated torsionfree R-module, S a 

finite overring of R such that SA is S-projective, C = (R:RS), and x E (S/C)*. 
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Lemma 2.4. The isomorphism class of the module A” does not depend on the 
choice of the automorphism cp with determinant x. 0 

Lemma 2.5. The following statements are equivalent: 
(i) A” z A; 

(ii) x = UU where U E (S/C)* lifts to u E S* and u is the determinant of an 

automorphism of SA ICA which carries A ICA into itself; 
(iii) There exists 6 E En-d,(A) such that the induced map 6 E End,(SAICA) is 

an isomorphism with det(6)G = x for some u E S*. 0 

Proposition 2.6. The following statements hold; 

(i) R~‘,A”=z?R~A; 
(ii) (A”)M E A,,, for every maximal ideal M of R; 

(iii) Zf SB is S- projective, then A” @ B g (A @ B)@; 

(iv) AX’ z (A”)‘. q 

Let Q(R) denote the set of isomorphism classes of finitely generated faithful 

torsionfree R-modules. The above procedure would be sufficient to allow exten- 

sions, to the case that the integral closure R of R is not a finite R-module, of most 

of the applications in [3,6-S] of Wiegand’s action of (R/C)* on Q(R). Our next 

objective however, is to turn the constructions for the various finite overrings of R 
into a group action. 

Lemma 2.7. Let S z S, be finite overrings of R such that SA is S-projective and let 
C, C, be the conductors of S and S, respectively to R. Let u E (SIC,)* have images 
U and u, in SIC and S,IC, respectively. Then A” = AU’. 

Proof. Let SA = I@ P where Z is an invertible ideal of S. Let A” be defined to 

make the left square below a pullback. The right square is also a pullback and 

thus the large square is a pullback. 

A” tZ@P &,Z$S,P 

1 1 I 
A/CIA-+ ZlC,Z83 PIC,P- ZlC,ZG3 PlC,P- S,ZICIZ~S,PIC,P 

But the bottom and right side of the large square are the same as in the pullback 

diagram which defines A”‘. Thus A” z A”‘. Similarly, the two smaller squares in 

the following diagram are pullbacks; so the large one is also. 
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A/CIA-+ ZIC,Z@ PIC,P-+ ZlC,Z@ PIC,P 

AICA w ZICZ@ PICP B ZICZ03 PICP 

Thus A” = A”. 0 

It follows that the ‘partial operations’ of (RIG)* on @i(R), where C ranges over 

the conductors of the finite overrings of R, induce an operation of lim(RIC)* on 

Q(R). The following result, which is a straightforward generalizatiorof the main 

result of [8], shows that the orbits of this operation are the stable isomorphism 

classes of elements of Q(R). 

Theorem 2.8. Let A and B be finitely generated torsionfree R-modules. The 
following statements are equivalent: 

(i) There exists a finite overring S of R with conductor C such that SA, SB are 
S-projective and an x E (RIG)* such that A” 2 B; 

(ii) A@Rs BG3R; 
(iii) A@R”zBBR* for some n?O. 0 

If S is an overring of R let D(S) = ker(Pic(R)+Pic(S)). Since the groups 

(SIC)*, S a finite overring of R with conductor C, are not conveniently connected 

together by homomorphisms, to try to obtain an operation on Q(R) we switch to 

the groups D(S) = ker(Pic(R)+ Pit(S)). F or certain rings this yields an action of 

D(R) = u D(S) on (P(R), where the union is over all finite overrings S of R. To 

get a well-defined action for all one-dimensional reduced Noetherian rings 

however we must allow D(R) to operate on a set of equivalence classes of Q(R), 
namely the set of orbits of the operation of li$RIC)*. To be more precise let 

(A) denote the isomorphism class of a finitely generated torsionfree R-module 

A. Wewrite (A)-(B) ifA$R”zBBRR”forsomen.Thisisanequivalence 

relation on Q(R). Let &j(R) denote the set of equivalence classes, and let [A] 
denote the equivalence class of A in s(R). The operation of D(R) on &(R) is 

now defined as follows. If S is an integral overring of R and Z is an invertible ideal 

of R such that IS E S, let [I] denote the image of Z in D(S) = 

ker(Pic(R)+ Pit(S)). 

If [A] E &(R) and [I] E D(R), then [Z] E D(S) for some finite overring S of R 
such that SA is S-projective. Let C = R:,S. From the exactness of the Mayer- 

Vietoris sequence 

R*+ S* X (RIG)*+ (S/C)*+Pic(R) 

*Pit(S) X Pic(RIC)+ Pic(SIC) 
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we get that I = [R/C, S, u] for some u E (S/C)*, and that Z represents zero in 

Pit(R) if and only if u = Xy for some x E S* and y E (R/C)*. It follows that 

[A]“] = [A/CA, SA, u] is a well-defined member of 6(R). 
It is of interest to find subclasses of @i(R) on which lim(RIC)* acts trivially. 

One such class is the set F(R) of isomorphism classed of finitely generated 

torsionfree R-modules of the form A = Z@X where Z is an ideal with (O:,Z) = 

(O:,A). For later reference we record this as 

Lemma 2.9. The group li$RIC)* operates trivially on F(R). 

Proof. In Lemma 2S(iii), take 6 : IfI3 X + ZG3 X to be multiplication by x on I 

and the identity on X. q 

3. Applications to cancellation of summands 

The following result is essentially the same as [7, Theorem 2.31. Removing the 

finite integral closure assumption required adjusting (i) and (iv) slightly, and (v) 

has been added. 

Theorem 3.1. Let A and B be finitely generated torsionfree R-modules. The 
following are equivalent: 

(i) There exists a module-finite overring S of R with conductor C such that SA, 
SB are S-projective and an x E (SIC)* such that A” z B; 

(ii) RA E RB and AM ? B, for each maximal ideal M of R; 
(iii) A G3 C E B @ C for some finitely generated R-module C; 
(iv) A @Sz B@S for some finite overring S of R; 
(v) [A]“’ = [B] for some [I] E D(R). 

Proof. (iv) 3 (iii). Trivial. 

(iii)+ (ii). Th’ f 11 is o ows since one can cancel modules over local rings [5] and 

Dedekind domains. 

(ii)+(i). Since A and B are torsionfree, RA and RB are R-projective. It 

follows that there exists a module-finite overring S of R such that SA E SB is 

S-projective and S contains the fundamental idempotents of K. Now use the 

argument of [7]. 

(i) + (v). Let Z = [R/C, S, x]. Then [B] = [A”] = [A]“‘. 
(v) j (iv). Let S b e a finite overring of R with conductor C such that SA, SB 

are projective and let Z E D(S), say Z = [R/C, S, u], u E (SIC)*. Then [A]“’ = 
[B] implies [A”]=[B]. Thus [B@S]=[A”G3S]=[(A@S)“]=[AG3SU]= 
[A@S]. Therefore B@SzA@S by Lemma 2.9. 0 

Definition 3.2. We will say that R has torsionfree cancellation if A (33 Cz 
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B @ C 3 A z B whenever A, B and C are finitely 

torsionfree. 

generated R-modules with A 

It follows from local cancellation [5, Corollary to Proposition 1.31 that if 

A Q3 G z B ‘3 G with A, B, G finitely generated and A torsionfree, then B is 

torsionfree. In [7, Corollary 2.41 torsionfree cancellation is compared to the 

property D(R) = 0, but no characterization of either of these properties was 

obtained without further hypotheses on R. The following two results give the 

relationship between these two properties for general reduced one-dimensional 

Noetherian ring. Recall that R-modules A and B are called stably isomorphic if 

A@R”G B@R” for some n. 

Corollary 3.3. The ring R has torsionfree cancellation if and only if D(R) = 0 and 
stably isomorphic finitely generated torsionfree R-modules A and B are iso- 
morphic. 

Proof. ‘ c$ ‘. If A @ M g B 43 M for some finitely generated R-module M, then by 

the above theorem there exists an I E D(R) such that [A]“’ = [B]. But D(R) = 0 
implies that [A] = [B]. Thus A and B are stably isomorphic by Theorem 2.8, and 

hence A g B by hypothesis. 

‘3’. Let A E D(R). Then A, z R, for every maximal ideal M of R and 

RA z RR = R. Thus by Theorem 3.1, A @ S G R 69 S for some finite overring S of 

R. Then by hypothesis A E R. Therefore D(R) = 0. 0 

Corollary 3.4. The following properties are equivalent: 
(i) D(R) = 0; 

(ii) If A E Q(R) and A @ M z B @ M with M finitely generated, then A and B 
are in the same orbit under l@(RIC)*; 

(iii) Zf A E Q(R) and A @ M G B %3 M with M finitely generated, then A and B 
are stably isomorphic. 0 

Recall that I@ (R/C)* acts trivially on the set F(R) of isomorphism classes of 

finitely generated torsionfree R-modules of the form A = Z @ X where I is an ideal 

with (O:,Z) = (O:,A). It follows that the operation of D(R) on 6(R) induces an 

operation of D(R) on F(R). Thus as in [7, Corollary 2.51 we have 

Corollary 3.5. The following properties are equivalent: 
(i) ZfAEF(R) andA@CzBBC with C finitely generated, then A z B; 

(ii) Zf A is projective of positive rank and A @ C E B @ C with C finitely 
generated, then A z B; 

(iii) Zf A @ S E R %3 S for some finite overring S of R, then A z R; 
(iv) D(R) = 0. cl 
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It follows that torsionfree cancellation for R is equivalent to D(R) = 0 if R has 

the property that lim(R/C)* operates trivially on a(R). This holds if R is a Bass 

ring, since in this &se F(R) = Q(R) [7, Proposition 2.61. Thus we get the result 

[7, Theorem 2.71 that if R is a Bass ring, then D(R) = 0 if and only if R has 

torsionfree cancellation. 

Remark 3.6. In [7] it was stated that it was probably known that if R is the ring of 

an affine curve over an algebraically closed field, then D(R) = 0~ R = I?, and a 

nice argument was given for this result. This result can also be found in [4, 

Theorem 3.21. 

The argument given in [7, Theorem 2.101 easily extends to give the following: 

Theorem 3.7. Let A and B be finitely generated torsionfree R-modules such that 
AM = B, for each maximal ideal M of R, and let F be a faithful torsionfree 
R-module. Then there exists an R-module G such that A CI3 F = B @ G. 0 

4. Power cancellation 

The objective in this section is to give some relationships among the following 

statements: 

(a) A(‘) g BC4) for some q P 1; 

(b) A @ X z B $ X for some finitely generated R-module X; 

(c) A, z Bm for each maximal ideal m or R. 
In order to include the case that R does not have the property that stably 

isomorphic elements of Q(R) are isomorphic, we are also interested in the 

property 

(a’) A(‘) and BCq) are stably isomorphic for some q 2 1. 

It turns out that (a) and (a’) are equivalent (with different exponents) if A has 

constant rank. Indeed by [8, Proposition 2.91, the following holds: 

Proposition 4.1. If A and B are stably isomorphic torsionfree R-modules of 
constant rank r, then A”’ c B”‘. El 

(Although this result was given only for the case that R has finite integral 

closure, the given argument is easily adapted to the general case.) 

It is clear that the direct sum induces a well-defined addition on the set 6(R) of 

stable isomorphism classes of Q(R), and it follows from Lemma 1.3(iii) that 

([A] + [B])“’ = [A] + [B]“’ for [I] E D(R). This observation will simplify the 

proof of the following result: 

Proposition 4.2 (Power cancellation). (i) Zf D(R) is a torsion group with finite 
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exponent e, then e is the least exponent q such that (b) implies (a’) for all 
A, BE@(R); 

(ii) Zf D(R) . 1s a t orsion group with infinite exponent, then (b) implies (a’) but 
no single value q works for all A, B E Q(R); 

(iii) Zf D(R) is not a torsion group, then there exist A, B E@(R) satisfying (b) 

but not (a’) for each q. 

Proof. (i) From Theorem 3.1 we get that (b) implies that [A]“’ = [B] for some 

[I] E D(R). Taking e-fold sums of both sides, the above observation together 

with the fact that I’= R, yields the result [A”‘] = [B’“‘]. 
For the other half of (i) let [I] E D(R) have exponent e. By Theorem 3.1, 

I@ X z R G3 X for some finitely generated R-module X. By [3, Lemma 4.11, 
[Z(q)] = [Zq @ R(q-l) 1, and this is [RCq)] if and only if Zq = R. 

Parts (ii) and (iii) are similar. Cl 

Before comparing (a’) and (c) we compare (c) and the following property: 

(d) ACq) G3 X G B(‘) C3 X for some finitely generated R-module X and some 

4’1. 

Proposition 4.3. (i) Zf Pit(R) is a torsion group with finite exponent e, then e is the 
least exponent q such that (c) implies (d) for all A, B, E@(R); 

(ii) Zf Pit(R) 1s a t orsion group with infinite exponent, then (c) implies (d) but 
no single value q works for all A, B, E@(R); 

(iii) Zf Pit(R) . ES not a torsion group, then there exists A, B, E@(R) satisfying 
(c) but not (d) for each q. 

Proof. (i) Let A, B E Q(R) with A, z B, for each maximal ideal m of R. The 

hypothesis implies that det,((RA)(‘)) = det,((RB)“‘). Thus RA”’ z RB”‘, and 

hence (d) holds for q = e by Theorem 3.1. 

For the other half of (i) let [I] E Pit(R) be such that [ZZ?] epic has 

exponent e. Then Z(‘) @ X g R(‘) 83 X implies Zq @!I RCq-‘) CD X E RCq) CD X and 

this implies ZqR = R. Thus e divides q. 
‘The other parts are similar. 0 

Combining the above two propositions we get 

Corollary 4.4. Pit(R) is a torsion group if and only if (c) implies (a’) for all 
A, B E@(R). 0 

5. Ideal classes 

We continue to let R be a reduced commutative Noetherian ring with total 

quotient ring K and M a finitely generated torsionfree R-module. Following [3] 
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we let I1iM = (AaM) lt(AiM), where t(A) denotes the torsion submodule of an 

R-module A. As observed in [3] the R-module j:M is canonically isomorphic to 

the image of _4iM in A”,(KM). 
Write K = K, ED. . . CD K,,, where the Ki are fields, and let e,(M) denote the sum 

of the units ei E Ki such that dimKI(KiM) = j. The ideal class cl(M) of a finitely 

generated torsionfree R-module M is then defined as the isomorphism class of 

The main properties of cl(M) are [3]: 

Proposition 5.1. (a) cl(M @ N) = cl(M)cl(N); 

(b) cl(M) is the isomorphism class of a faithful ideal of R; 
(c) M is projective if and only if cl(M) is projective. q 

In the case that R is a one-dimensional reduced Noetherian ring with finite 

integral closure R and conductor C, the following theorem can be considered as 

an analogue for finitely generated torsionfree modules of part of the natural 

transformation from the Mayer-Vietoris sequence involving K,(R) and K,(R) to 

the Mayer-Vietoris sequence involving Pit(R) and (R)*. We do most of the work 

in the following lemma: 

Lemma 5.2. Let A be a finitely generated torsionfree R-module and S a finite 
overring of R with conductor C such that SA is S-projective. If cp : SAICA-+ 
SAICA is an isomorphism, then the following pullback diagram: 

I 

B + SA 

f 
I I 

g 

A/CA’- SAICAA SAICA 

induces for each n a pullback diagram as follows: 

fT”,B 
i 

’ WW 

1 
i? 

A;(SA) /C[A;(SA)] A A;(SA) / C[A,“(SA)] 

Proof. The original pullback is a composition of pullback diagrams 

B 
I 

+SA 

f” 
1 I 

&l 

AIC”AI1-SAIC”A --~sAIC~A 
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and 

AIC”AA SAIC”A(P”- SAIC”A 

I I 
A/CAL SAICAA SAICA 

Recall that taking exterior powers commutes with change of rings. Let f, denote 

the composition of the canonical maps AzB+ Al(A/C”A)-t A”,,,,(A/C”A)+ 
(A”,A)/C”(A;A)+(ii;A)IC”($A), and let i, denote the composition A”,B+ 

AiSA+ A”,SA. We have a commutative diagram 

A”,B 
i0 

- A;(SA) 

fo i 

(il;A)/C”(iI:,A)‘“- (A;SA)/C”(A;SA)‘“-(A;SA)/C”(A;SA) 

and since the image of i, is torsionfree, i, factors through the canonical map 

T:A~B*~;~B. Further, since the maps in the bottom line are injective, it 

follows that A, also factors through rr : AiB -+ j”,B. Let i: n:B + A’$?A and 

f: jiB+ A",AIC"(j iA) be the induced maps. To see that the resulting diagram 

is a pullback let J c Ai be the submodule of Az(SA) making the diagram a 

pullback. Then g(i(i”,B)) = g(i,(A”,B)) and J C i,(A”,B) + C”[A’$$A] = 
i,(A”,B) + AZCA C i,(AiB). It follows that the induced diagram is a pullback. 

Composing with the following pullback we get the desired result. 

($A)/Cfl(ii;A)A (A;SA)/C”(A;SA)&A;SA)/C”(A;SA) 

I I 
($A)/C(il;A$+ (A;SA)/C(A”,SA& (A;SA)/C(A;SA) •i 

Theorem 5.3. Let R be a one-dimensional reduced Noetherian ring, let A and B be 
finitely generated torsionfree R-modules, and let S be a finite overring of R such 
that SA and SB are S-projective. Zf B = A” for x E (S/C)*, then cl(B) = cl(A)“. 

Proof. This is immediate from the above lemma and the observation that 

Sii;A = A;SA. q 

Remark 5.4. As an illustration of how the above result may be applied, let R be a 

one-dimensional reduced Noetherian ring and let M and N be finitely generated 

torsionfree R-modules such that M, E N,,, for each maximal ideal m of R and 

cl(M) = cl(N). Let S be a finite overring of R such that SM and SN are 
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S-projective. Since cl,(SM) = Scl,(M) it follows that SM E SN, and since M, g 

N, for each maximal ideal m of R, we get M” g N for some x E (SIC)* by 

Theorem 3.1 (or [7, Theorem 2.31 if R has finite integral closure). Thus by 

Theorem 5.3 we have cl(M)” = cl(N). But by hypothesis we have cl(M) = cl(N). 

Thus by Lemma 2.5, x = Uv where U E (SIC)* lifts to u E S* and u is the 

determinant of an automorphism of Scl,(M)IC[cl,(M)] which carries cl,(M)/ 

C[cl,(A)] into itself. For any R-module J such that u(JICJ) C JICJ we get 

N@J~M*@J~M”G3J~MMJ”~M@J. For instance, letting Z=cl(M), if 

IlUg R/C or Z:,Z = R, then it follows that M and N are stably isomorphic. It 

follows from Proposition 5.1(a) and local cancellation that conversely, if M and N 

are stably isomorphic, then M, g N, for each maximal ideal m of R and 

cl(M) = cl(N). 

The following gives some other simple consequences of Theorem 5.3. Recall 

that an ideal Z is called regular if it contains a non-zerodivisor. 

Remark 5.5. (a) If J is a regular ideal of R and [I] E D(R), then [J]“’ = [ZJ]. 
(b) If J and L are regular ideals of R, and S is an overring of R such that SJ 

and SL are projective over S, then J(L”) = (JL)” for each x E (S/C)*. 

Proof. First consider (b). We have (JL)* = cl(J@ L)” = cl(J@ L”) = J(L”). Now 
to prove (a) let S be an overring of S with conductor C such that SJ is 

S-projective, and write I= [R/C, S, x] with x E (SIC)*. Then J” = (JR)” = 
J(R”) = JZ. 0 

Remark 5.6. An alternate approach to Theorem 5.3 is to prove Remark 5.5(b) 

directly and then Theorem 5.3 follows easily from this. 
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