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The search for more effective drugs for the management of common hair growth disorders remains a top
priority, both for clinical dermatology and industry. In this pilot study, we report a pragmatic organotypic assay
for basic and applied hair research. The patented technique produces microdroplets, which generate human
folliculoid microspheres (HFMs), consisting of human dermal papilla fibroblasts and outer root sheath
keratinocytes within an extracellular matrix that simulates elements of the hair follicle mesenchyme. Studying a
number of different markers (for example, proliferation, apoptosis, cytokeratin-6, versican), we show that these
HFMs, cultured under well-defined conditions, retain several essential epithelial–mesenchymal interactions
characteristic for human scalp hair follicle. Selected, recognized hair growth-modulatory agents modulate these
parameters in a manner that suggests that HFMs allow the standardized preclinical assessment of test agents on
relevant human hair growth markers under substantially simplified in vitro conditions that approximate the
in vivo situation. Furthermore, we show by immunohistochemistry, reverse transcriptase–PCR, and DNA
microarray techniques that HFMs also offer a useful discovery tool for the identification of target genes and
their products for candidate hair drugs. HFM thus represent an instructive modern experimental and screening
tool for basic and applied hair research in the human system.

Journal of Investigative Dermatology (2009) 129, 972–983; doi:10.1038/jid.2008.315; published online 16 October 2008

INTRODUCTION
The loss of scalp hair (effluvium, alopecia) can be accom-
panied by severe psychological problems in a vastly under-
estimated number of afflicted patients (Hadshiew et al.,
2004). Therefore the development of ever new and hopefully
more effective hair drugs for the management of common
hair growth disorders remains a top priority both for clinical

dermatology and industry (Paus, 2006). The search for such
agents is, however, severely handicapped by the lack of
satisfactory three dimensional (3D) in vitro screening systems
that sufficiently mimic important epithelial–mesenchymal
interactions as they occur in human hair follicles (HFs).
Therefore, pragmatic 3D screening systems are badly needed,
whose preservation of native epithelial–mesenchymal inter-
actions is superior to simple coculture assays for isolated HF
cell populations in which these interactions are disrupted
(Limat et al., 1993; Roh et al., 2004). Hence data produced
with such cell culture studies reflect highly artificial condi-
tions, carry very uncertain predictive value for the clinical
situation, and are therefore inappropriate for the screening
purposes in question here.

The complexity of epithelial–mesenchymal interactions that
underlie HF growth and cycling (Paus and Cotsarelis, 1999;
Stenn and Paus, 2001; Paus and Foitzik, 2004, Rendl et al.,
2005) makes it unlikely that these will ever be fully reproduced
in vitro. Nevertheless, it should be possible to develop 3D
systems that: (1) imitate at least some essential interactions
characteristic for human HF biology; (2) show expected
responses to recognized hair growth-modulatory agents; and
(3) have a reasonable predictive value for how human HFs will
respond to the same test agent in vivo. For preclinical research
and development purposes, such simplified 3D folliculoid
systems would offer a first-line screening tool for large-scale
in vitro testing, to be followed by the organ culture of
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microdissected human anagen hair bulbs (Philpott et al., 1990)
and histocultures of hair-bearing skin, that is, microdissected
normal skin (Li et al., 1991, 1992; Lu et al., 2007) for the most
promising agents that have been identified in this manner as a
second-line assay, and eventual clinical testing as the ultimate
and only fully reliable test system.

Previously, we have defined basic criteria that all hair
biology-related organotypic systems should meet to support the
claim that they mimic the in vivo situation as closely as possible
(Havlickova et al., 2004). Briefly, these criteria are: outer root
sheath keratinocytes (ORSK) and follicular dermal papilla
fibroblasts (DPC) should be physically interacting; the extra-
cellular matrix through which this occurs should contain
basement membrane components; the epithelial HF cells should
form cell aggregates; epithelial HF cells should show substantial
proliferation as well as HF-type keratinization and a low level of
apoptosis; mesenchymal cells should show minimal prolifera-
tion, minimal apoptosis and should display specialized HF-type
secretory activities; and these organotypic systems should be
cultured under continuously submerged culture conditions in
well-defined media (that is, under serum-free conditions and
with a defined concentration of calcium ions).

Using these criteria, we have developed two folliculoid
organotypic systems (Havlickova et al., 2004). In one of these
systems, a 3D pseudodermis (collagen I mixed with human
dermal fibroblasts; HDF) is first generated, then Matrigel with
DPC is mixed and layered on top of the pseudodermis,
followed by an ORSK cell suspension (‘‘layered sandwich’’).
Alternatively, a mixture of Matrigel, DPC, and ORSK is
placed on top of a pseudodermis (‘‘mixed sandwich’’).
Comparison of these systems indicated that the ‘‘mixed
sandwich’’ system cultivated under continuously submerged
condition in serum-free, low-calcium medium meets all basic
criteria and offers several advantages over previously avail-
able assays (Limat et al. 1994a, b; Havlickova et al., 2004).

However, these assays are still very laborious and time
consuming, and only a very limited number of such
‘‘sandwiches’’ can be generated at any time, thus hampering
the usefulness of this system as a higher throughput screening
tool. Therefore, in this pilot study, our goal was to develop a
more easy-to-handle in vitro assay which:

(1) requires lower cell numbers (especially of DPC) per test unit;
(2) is easier and faster to prepare than previously published

3D folliculoid systems;
(3) is well reproducible with a large number of test units;
(4) is less expensive;
(5) responds to recognized hair growth-modulatory drugs in

a manner that at least approximates the appreciated
clinical response to these agents; and

(6) functions as a discovery tool for identifying new target
genes and/or their protein products for candidate hair
growth-modulatory agents.

In this pilot study, we report a pragmatic human folliculoid
microsphere (HFM) assay that meets all the basic and
modified prerequisites for in vitro higher throughput screen-
ing systems for preclinical candidate hair drug screening.

RESULTS
Characteristics of interacting human HF-derived epithelial and
mesenchymal cells in HFM

We first investigated the characteristics of the cells within the
HFM system (Figure 1a). We found that ORSK and DPC,
forming spheroid cell aggregates, were indeed in close
physical contact in HFM (Figure 1b and c) and that the
employed extracellular matrix indeed contained basement
membrane components such as fibronectin (Figure 1d and e).
In addition, epithelial ORSK showed HF-type keratinization
(that is, CK6 expression; Figure 1g, h, k, and l), substantial
proliferation (that is, Ki67 expression in the CK6-positive
cells; Figures 1k and 2a), and a low level of apoptosis
(number of TUNEL-positive ORSK; Figures 1l and 2c).
Instead, the HF mesenchymal DPC exhibited minimal
proliferation and apoptosis (Figures 1m and n, 2b and d) but
maintained their characteristic, specific secretory activity, that
is, they displayed strong expression of the large proteoglycan
versican (Soma et al., 2005; Figure 1i, j, m, and n).

In most of our experiments, in accordance with our
findings in the previously developed ‘‘sandwich’’ 3D systems
(Havlickova et al., 2004), we used serum-free culturing
media that contained low concentrations of calcium (Ca)
(0.15 mM). However, we also intended to determine the
biological features of the cells in the HFM cultured in high-
calcium concentration solutions (1.8 mM). During the culture
period of 10 days, we found no difference in proliferation and
apoptosis of ORSK in the two different media (Figure 2a and
c). In contrast, both the proliferation and the apoptosis of
DPC significantly increased in high-Ca medium compared to
low-Ca solution (Figure 2b and d).

Furthermore, we investigated the processes of possible
necrosis by measuring the lactate-dehydrogenase (LDH)
release during the culture period of 10 days in low-Ca
media. The maximum amount of LDH (20 U l�1) was seen on
day 3 when the system was (most probably) still under the
‘‘stress’’ occurred during the preparation of HFM. On days 7
and 10, the LDH levels were normalized which suggested the
full cell recovery in HFMs (Figure 2e).

We conclude, therefore, that HFMs meet all the basic
criteria for organotypic folliculoid systems, that they can be
successfully cultivated under continuously submerged cul-
ture conditions (most efficiently in low-Ca media) and that
they remain vital for at least 10 days.

Hair folliculoid HFM show several advantages over folliculoid
‘‘sandwich’’ systems

Comparison of the current data with those obtained by
previous ‘‘sandwich’’ systems also revealed that the prepara-
tion of microspheres:

(1) requires lower number, yet higher density of cells
(especially DPC) per test unit. Although the density of
ORSK was essentially the same (1� 106 cells per ml)
both in the ‘‘sandwich’’ and HFM systems, we could
achieve double DPC density (2�106 cells per ml) in the
HFM. In addition, the remarkably higher number of test
units that can be obtained using 1 ml of cell suspension
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in the HFM system (that is, 30–50 HFMs compared to the
10 ‘‘sandwiches’’) also suggests that the same amount of
test units can be prepared using much fewer cells;

(2) is easier and faster. The average time to prepare the
HFMs is only few hours compared to the approximately
5-day-long preparation time minimally needed for any
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Figure 1. Microscopic photography and histology of the microspheres and the expression of certain markers in cells and matrix of HFM. (a) Photomicrographs of

HFMs in culture at day 10. (b, c) Histology of HFM structure (hematoxylin-eosin staining). ORSK, outer root sheath keratinocytes; DPC, dermal papilla cells. Note the

physical contact of ORKS and DPC in HFMs. (d, e) Expression of fibronectin (as revealed by FITC immunostaining, green fluorescence) in HFMs (d) and in

microdissected HF used as a positive control (e) DP, dermal papilla; CTS, connective tissue sheath. (f) Negative control, the primary antibody was omitted. (g, h)

Expression of the ORSK marker CK6 (as revealed by rhodamine immunostaining, red fluorescence) in HFMs (g) and in microdissected HF (h). (i, j) Expression of the

large proteoglycan versican (DPC marker; as revealed by rhodamine immunostaining, red fluorescence) in HFMs (i) and in microdissected HF (j). (k, l) Double

immunolabeling of the ORSK marker CK6 (as revealed by rhodamine immunostaining, red fluorescence) with the proliferation marker Ki67 (k) or with the apoptosis

marker TUNEL (l) (in both cases, FITC immunostaining, green fluorescence). (m, n) Double immunolabeling of the DPC marker versican (as revealed by rhodamine

immunostaining, red fluorescence) with the proliferation marker Ki67 (m) or with the apoptosis marker TUNEL (n) (in both cases, FITC immunostaining, green

fluorescence). Original magnification, � 40 for (a); �100 for (b, d–f, h, j); �250 for (c, g, i, k-n). For (d–n), nuclei were counterstained with DAPI (blue fluorescence).
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of the two ‘‘sandwich’’ systems presented before
(Havlickova et al., 2004);

(3) is easily repeatable with a higher number of test units,
which allows a higher degree of standardization and
greatly facilitates automatization. In addition, the HFM
system allows for the preparation of test units with
variable sizes, depending on specific experimental
needs;

(4) and due to the dramatic decrease in culturing time and
consumables, HFM preparation is less expensive.

Negative regulators of HF growth differentially inhibit
proliferation and induce apoptosis in cells growing in HFMs

In the next phase of our experiments, we assessed whether
the HFM system is also suitable to analyze the actions of

recognized hair growth-modulatory drugs (the effects
of all agents examined are summarized in Tables 1 and 2).
We first investigated the effects of the potent HF growth
inhibitory agents, that is, 10�6 M tretinoin (Foitzik
et al., 2005), 25 ng ml�1 transforming growth factor-b2
(TGFb2; Soma et al., 2002; Hibino and Nishiyama, 2004),
and 10�7 M corticotropin-releasing hormone (CRH) (Slominski
et al., 2000; Ito et al., 2005; Table 1). As expected, all agents
significantly decreased the number of Ki67-positive (hence
proliferating) cells in the CK6-positive ORSK (Figures 3a
and 4a; Table 1a). In addition, tretinoin (Figure 3c) and
TGFb2 (Figure 4c), but not CRH (Table 1b), increased the
number of TUNEL-positive ORSK, suggesting stimulation of
apoptosis. Furthermore, TGFb2 (Figure 4b) suppressed the
number of Ki67-positive DPC, whereas the other two agents
did not affect the proliferation of these cells (Figure 3b; Table
1a). Finally, tretinoin (Figure 3d) and TGFb2 (Figure 4d)
stimulated apoptosis in DPC as well, whereas CRH, similar to
its lack of action as seen on ORSK, did not affect the process
(Table 1b).

Positive regulators of HF growth stimulate proliferation of
ORSK and DPC in HFMs without affecting apoptosis

We then investigated the effect of recognized HF growth-
promoting agents, that is, insulin-like growth factor I (IGF-I)
(Philpott et al., 1994), 1a,25 dihydroxyvitamin D3
(1,25(OH)2D3, calcitriol; Harmon and Nevins, 1994; Schilli
et al., 1998; Vegesna et al., 2002), cyclosporin A (CsA; Kurata
et al., 1996), and hepatocyte growth factor (HGF; Jindo et al.,
1995; Table 2). Applications of 100 ng ml�1 of IGF-I, 10�8 M
calcitriol, 10 ng ml�1 CsA, and 10 ng ml�1 HGF resulted in
very similar modifications in the functions of the cells in the
microspheres (Table 2). Namely, all agents increased the
proliferation (elevated the number of Ki67-positive cells
(Table 2a)) both in the ORSK (Figures 5a and c, 6a and c) and
DPC (Figures 5b and d, 6b and d) populations without
exerting any measurable effect on the apoptosis of these cells
(Table 2b).

The effects of CsA and HGF are modified by the alteration in the
calcium concentration of the culturing media

The above data, as mentioned before, were obtained in such
experiments where low-Ca media were used to culture
HFMs. Previous studies, however, suggested that the effects
of CsA (Takahashi and Kamimura, 2001) and HGF (Sato et al.,
1995) on the proliferation of keratinocytes were strongly
affected by the calcium content of the culturing media.
Therefore, these molecules were also tested on HFM cultured
under high-Ca conditions. In marked contrast to data
obtained in the low-Ca medium, 10 ng ml�1 CsA in high-Ca
solution did not significantly stimulate the proliferation of
ORSK and DPC (Table 2a) but, intriguingly, induced
apoptosis in the ORSK (Table 2b). The effects of HGF
(10 ng ml�1) to stimulate proliferation of ORSK (Table 2a) and
not to modify apoptosis of ORSK and DPC (Table 2b) were
essentially the same in the two media. However, contrary to
the low-Ca data, HGF was unable to promote proliferation of
DPC in HFM cultured in high-Ca solution (Table 2a). These
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Figure 2. Quantitative analysis of proliferation and apoptosis of ORSK and

DPC in the HFM cultured in low or high calcium concentration media for 10

days. Series of double immunolabeling were performed to define the number of

Ki67-positive (proliferating, a and b) and TUNEL-positive (apoptotic, c and d)

cells in CK6 expressing outer root sheath keratinocytes (ORSK, a and c) or

versican expressing dermal papilla fibroblasts (DPC, b and d), as described in

Materials and methods section. The numbers of double positive cells (Ki67þ /

CK6þ , TUNELþ /CK6þ , Ki67þ /versicanþ , TUNELþ /versicanþ ) in each

group were determined, and expressed as a percentage of total number of cells

expressing the respective marker for ORSK (CK6þ ) or for DPC (versicanþ ). All

data are shown as mean±SD. Asterisks mark significant (*Po0.05) differences.

(e) Determination of level of the released lactate dehydrogenase (LDH) during

culturing. All data are shown as mean value±SD.
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Table 1. The effect of hair growth inhibitors on proliferation (a) and apoptosis (b) of ORSK and DPC in the HFM

(a) Effects of hair growth inhibitors on proliferation

Ki67-positive cells in ORS (% of control) Ki67-positive cells in DPC (% of control)

Days of culture Day 7 Day 10 Day 7 Day 10

Tretinoin 40.9±23 k** 34.4±26 k** 100.5±23 98.2±27

TGFb2 48.4±19 k* 37.7±23 k** 22.7±14 k** 26.4±27 k**

CRH 61.3±19 k* 62.8±15 k* 92.6±37 93.1±38

(b) Effects of hair growth inhibitors on apoptosis

TUNEL-positive cells in ORS (% of control) TUNEL-positive cells in DPC (% of control)

Tretinoin 176.2±22 m* 195.8±24 m* 105.6±29 226.8±37 m**

TGFb2 185.4±24 m* 245.5±23 m** 188.1±27 m** 225.23±36 m**

CRH 115.8±23 91.6±32 96.9±29 91.4±36

CRH, corticotropin-releasing hormone; TGFb2, transforming growth factor-b2.
Series of double immunolabeling were performed to define the number of Ki67-positive (proliferating, a) and TUNEL-positive (apoptotic, b) cells in CK6
expressing outer root sheath keratinocytes (ORSK) or versican expressing dermal papilla fibroblasts (DPC). The numbers of double positive cells (Ki67+/
CK6+, TUNEL+/CK6+, Ki67+/versican+, TUNEL+/versican+) in each group were determined, and expressed as mean ±SD values as a percentage of the
control (non-treated) samples regarded as 100%. All data are shown as mean value ±SD. Asterisks mark significant (*Po0.05; **Po0.01) differences.

Table 2. The effect of hair growth stimulators on proliferation (a) and apoptosis (b) of ORSK and DPC in the HFM

(a) Effects of hair growth stimulators on proliferation

Ki67-positive cells in ORS (% of control) Ki67-positive cells in DPC (% of control)

Days of culture Day 7 Day 10 Day 7 Day 10

IGF-I 192.8±37 m* 215.5±28 m** 266.9±38 m** 360.6±42 m**

Calcitriol 193.7±26 m** 198.1±30 m** 220.9±21 m** 117.5±27

CsA, low Ca 170.8±26 m* 195.4±29 m** 212.8±21 m** 252.9±32 m**

CsA, high Ca 124.7±38 116.3±21 115.6±19 123.8±29

HGF, low Ca 197.5±33 m* 169.5±28 m* 106.7±34 176.3±30 m*

HGF, high Ca 167.1±19 m* 196.9±21 m** 116.8±22 94.1±26

(b) Effects of hair growth stimulators on apoptosis

TUNEL-positive cells in ORS (% of control) TUNEL-positive cells in DPC (% of control)

IGF-I 87.3±30 129.2±55 97.6±31 94.6±27

Calcitriol 127.5±39 112.7±23 121.5±27 125.9±28

CsA, low Ca 117.9±27 123.9±33 93.5±20 114.9±28

CsA, high Ca 116.01±31 215.7±37 m* 119.39±64 118.42±62

HGF, low Ca 86.8±31 92.3±22 111.2±26 84.7±29

HGF, high Ca 90.9±19 90.4±18 91.8±24 93.3±16

CsA, cyclosporin A; HGF, hepatocyte growth factor; IGF-1, insulin-like growth factor 1.
Series of double immunolabeling were performed to define the number of Ki67-positive (proliferating, a) and TUNEL-positive (apoptotic, b) cells in CK6
expressing outer root sheath keratinocytes (ORSK) or versican expressing dermal papilla fibroblasts (DPC). The numbers of double positive cells (Ki67+/
CK6+, TUNEL+/CK6+, Ki67+/versican+, TUNEL+/versican+) in each group were determined, and expressed as mean value ±SD values as a percentage of
the control (non-treated) samples regarded as 100%. All data are shown as mean value ±SD. Asterisks mark significant (*Po0.05; **Po0.01) differences.
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findings strongly suggest to carefully control and select the
calcium concentration in the culture media for such studies.

HFMs are suitable to investigate the protein and gene
expression of cytokines and growth factors involved in HF
biology

We furthermore dissected whether the HFM system operates
as a discovery tool for identifying new target genes (and their
protein products) for candidate hair growth modulatory
agents. Therefore, we measured the expression at protein
and mRNA level of such biological markers in HFMs, which
were previously described as important regulators in HF
biology in vivo. Using immunofluorescence, we were able to
detect the expression of TGFb2 (negative regulator of hair
growth) and stem cell factor (SCF, hair growth stimulator;
Stenn and Paus, 2001; Peters et al., 2003) in the cells of the
microspheres (Figure 7a–d). In addition, employing reverse
transcriptase (RT)–PCR on total RNA isolated from HFM, we
could also identify the mRNA transcripts for these molecules
(Figure 7e and f).

Positive and negative regulators of hair growth not only
directly alter biological functions of individual HF cell
populations, but also significantly modulate the complex
cytokine/growth factor network of this mini organ. Therefore,
using RT–PCR, we investigated the effects of some of
those hair growth-modulatory agents on the expression of

endogenous TGFb2 and SCF which, when applied ‘‘exogen-
ously’’, significantly affected proliferation and apoptosis of
cells in HFMs (see above).

As shown in Figure 7g, 25 ng ml�1 ‘‘exogenous’’ growth
inhibitor TGFb2 (Figure 4; Table 1) remarkably upregulated
the gene expression of ‘‘endogenous’’ TGFb2 but did not
affect the expression of SCF. Partly similar to these findings,
10�6 M tretinoin (another negative regulator; Figure 3;
Table 1) also significantly increased the level of TGFb2
mRNA transcripts; however, in contrast to the effect of
‘‘exogenous’’ TGFb2, it also significantly decreased the
expression of the growth-promoter SCF. Moreover, we were
able to show that CsA (a positive regulator of HF growth;
Figure 6a and b), significantly suppressed the expression of
the growth-inhibitory TGFb2 without affecting the level of
SCF.

HFMs are suitable to investigate global gene expression profiles
as well

Finally, we wished to analyze whether our model system
allows the determination of changes of global gene expres-
sion profiles upon experimental manipulations. Therefore, in
a pilot study, HFMs were treated with certain hair growth
stimulatory agents (such as HGF, calcitriol, IGF-I, and 17b
Estradiol; Philpott et al., 1995; Thornton 2005; Conrad et al
2005; Ohnemus et al., 2006) for 7 days, then a Microarray
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cells expressing the respective marker for ORSK (CK6þ ) or for DPC

(versicanþ ). All data are shown as mean value±SD. Asterisks mark

significant (*Po0.05; **Po0.01) differences.
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analysis that represented the whole human genome (Agilent,
44K, G4112A) was performed to follow gene expression
alterations. As seen in Supplementary Table S1 (showing
changes of only selected genes), treatment of HFM with
recognized growth stimulators induced remarkable changes
in the expressions of certain genes with potential roles in
regulation of HF growth, development, and cycling. Hence,
although these preliminary findings remain to be repeated
and confirmed by quantitative ‘‘real-time’’ PCR, our data (in
accordance with the above findings, see Figure 7) further
indicate that the HFM system is indeed a suitable hair
research tool, since prototypic hair growth-modulatory agents
that are recognized to alter gene and protein expression
patterns in human HFs also do so in HFMs.

DISCUSSION
Studies of the epithelial–mesenchymal interactions in HF
have been limited due to a lack of suitable in vitro screening
systems that sufficiently mimic conditions as they occur in
human HFs. So far, there are no available systems, which
allow a higher throughput screening of candidate hair drugs
than can be obtained by skin organ or histoculture techniques
(Li et al., 1992; Lu et al., 2007) or by the classical organ
culture of microdissected, amputated human scalp HF in the
anagen VI phase of the hair cycle (Philpott et al., 1990,

Magerl et al., 2002). Even if this method, which is still the
gold standard for in vitro analyses of human hair growth, is
complemented by the addition of read-out parameters
beyond hair shaft elongation (for example, Soma et al.,
2002; Foitzik et al., 2005; Peters et al., 2005), the very limited
number of human HFs available severely restricts the number
of agents that can be screened. Also, although our under-
standing of epithelial–mesenchymal interactions in murine
HFs has recently progressed very substantially (for example,
Rendl et al., 2005), our corresponding understanding of these
interactions in human HFs is still very rudimentary.

Some HF-like in vitro models derived from human
follicular cells have been described (Limat et al., 1994a, b,
Stark et al., 1999; Havlickova et al., 2004; Krugluger et al.,
2005): however, so far none of them was prepared with
relative ease in high amount to allow high-throughput
screening and the proper investigation of epithelial–mesench-
ymal interactions. Our aim was, therefore, to develop a 3D
in vitro system that allows a more detailed study of the basic
molecular processes involved in HF growth and development
with a robust reproducibility.

In this pilot study, we reported a very pragmatic
organotypic assay, which imitates human HF-like epithe-
lial–mesenchymal interactions and is prepared with com-
parative ease. Studying the expression of a number of
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different markers (for example, proliferation, apoptosis, CK6,
and versican expression), we show that, under
culture conditions with a serum-free, low-Ca medium, these
HFMs retain several essential characteristics for human scalp
HFs.

The technique of the microsphere preparation by jellifica-
tion process of the matrix and cell mixture sustains high cell
viability. The inclusion of Matrigel (containing laminin and
collagen IV) imitates the matrix environment of the follicular
dermal papilla, namely that it more closely resembles that of
basement membranes, rather than of interfollicular dermis
and enables to very closely mimic an extracellular matrix of
the HF mesenchyme. The low number of TUNEL-positive
cells in later phases of the culture with normalized LDH level
suggests the optimal nutrient supply to HFMs also when the
cell number has increased. Culturing for more than 10 days is
feasible when the number of cells, volume of extracellular
matrix, and size of the HFM is increased during the
preparation process. The system is highly reproducible,
because we generated thousands of microspheres in 10
previous experiments.

The technique of the HFM preparation also facititates cell
migration within the microsphere compared to other spheroid
systems. Nevertheless, although a mixture of isolated ORS
and DPC with HF inductive potential (Reynolds and Jahoda,
1992) was used in our experiments and cell migration and
matrix reorganization within the microsphere were indeed
observed, new HF units did not spontaneously from under
these assay conditions. This suggests that the interaction and
signaling of the follicular cells with surrounding dermal
microenvironment are crucial for morphogenesis and devel-
opment of HF. However, the main aim of this study was to
develop a simplified HF-like 3D in vitro system rather then to
induce terminal HF formation.

All hair growth-modulatory agents investigated altered
apoptosis, proliferation, protein, and gene expression in
different cell populations within HFM system in a manner
that suggests that HFMs allow the standardized preclinical
assessment of test agents on relevant human hair growth
markers under substantially simplified in vitro conditions that
approximate the in vivo situation. We furthermore show by
DNA microarray that HFM also offers a useful discovery tool
for the identification of target genes for candidate hair drugs.
Evidently, the HFM method still has limitations, especially in
the rapid analysis of various read-out parameters. These
shortcomings will hopefully be overcome in the near future
with the ‘‘automatization’’ of the evaluation process by
employing, for example, staining ‘‘robots’’, automated image
analyzer software packages, and high-content screening
devices. Nevertheless, our assay system is currently the only
one that can claim to come at least close to overcoming the
formidable remaining methodological challenges that have to
be met before automatization.

In HFM, we were also able to identify several other
markers important for the HF development and differentiation
(for example, CK14, b-catenin, IGF-I, IGF-I receptor, alkaline
phosphatase; data not shown). Due to the fact that there is no
exclusively ORS-specific marker available (Langbein et al.,

2001, Langbein and Schweizer, 2005), the use of CK6
immunostaining as a ‘‘HF-type keratinization marker for
ORS’’ is a reasonable approach, even though it must be kept
in mind that CK6 is also expressed by activated (for example,
wounded, inflamed or UV-irradiated) interfollicular epider-
mal keratinocytes and in the companion layer of HF
(Langbein and Schweizer, 2005). The latter is unproblematic,
because CK6 immunoreactivity originating from a compa-
nion layer-type epithelium within the microspheres would
still reflect and confirm a HF-type keratinization pattern (the
companion layer only exists within the HF epithelium). In
addition, during our ORS isolation method and culture, no
epidermal components were present, and pure ORSK cultures
were generated (as confirmed by negative inner root sheath
markers; data not shown).

In conclusion, our data suggest that HFMs represent a
valuable system to study epithelial–mesenchymal interactions
and their changes in response to treatment with various
candidate hair drugs. HFMs, thus, offer not only a pragmatic
basic screening tool, but also an instructive new experimental
system for basic and applied preclinical hair research in the
human system.

MATERIALS AND METHODS
Cell isolation and culture

ORS keratinocytes were isolated from plucked anagen HF by

trypsinization (Limat and Noser, 1986). Primary cultures of ORSK

were then cultured on feeder layer of X-ray irradiated HDF, obtained

from human skin from deepidermized dermis using enzymatic

digestion (Limat et al., 1989), in defined keratinocyte serum-free

medium (Invitrogen, Paisley, UK) supplemented with 0.1 nM cholera

toxin, 5mg ml�1 insulin, 0.4 mg ml�1 hydrocortisone, 2.43 mg ml�1

adenine, 2 nM triiodthyronine, 10 ng ml�1 epidermal growth factor,

1 mM ascorbyl-2-phosphate, and antibiotics penicillin G, gentami-

cin (all reagent purchased from Sigma-Aldrich, Taufkirchen,

Germany; Havlickova et al., 2004). Cells at early passage (2–4)

were used.

After microdissection of anagen VI HF from scalp-skin biopsies

using a method modified from Philpott et al (1990), isolation of DPC

from HF was established according to Magerl et al (2002) and

cultured in Chang’s medium (Trinova, Santa Ana, CA) with 10% fetal

bovine serum (Biochrom KG, Berlin, Germany) (Messenger et al.,

1986). The passages of 1–2 were used.

Preparation of human folliculoid microspheres

As described in patent EP1231949, a beaker containing two phases

of immiscible autoclaved liquids (lower phase: 250 ml of perfluor-

ether (Fluorinert FC-40; 3M Corp., Germany); upper phase: 500 ml of

defined triglyceride mixture (Miglyol, Hüls, Germany)) was prepared

and warmed up to 37 1C with continuous magnetic stirring to

prevent sedimentation and attachment of prepared HFM (see below).

Then a cell–matrix mixture of HFM was prepared, following the

optimized protocol for the previously described (Havlickova et al.,

2004) preparation of ‘‘mixed sandwich’’ 3D system. Mixture of

collagen I and Matrigel Basement Membrane Matrix (ratio 4:1) was

used as a matrix for cells. Ice-cold collagen type I extracted from rat

tail tendons (BD Biosciences, Bedford, MA) at a final concentration

of 4 mg ml�1 was mixed with 10� Hank’s buffered saline
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(Invitrogen) followed by neutralization with 1 M NaOH (Invitrogen),

then appropriate volume of Matrigel (BD Biosciences) was added

and mixed. One volume of fetal bovine serum with resuspended

cells (ORSK and DPC in the ratio 1:2) was then added to the matrix

and mixed thoroughly (the cell density of ORSK was 1� 106 cells per

ml and of DPC was 2� 106 cells per ml). A 1 ml syringe was then

filled with the above cell–matrix suspension and, by gently pressing

the syringe, small droplets entered into the Miglyol-FC-40 mixture

and formed HFM by a gelling process at 37 1C (Bettermann and

Hübner, 2000). HFMs were left in this liquid for 5 minutes (with

continuous stirring), then removed by a net, washed immediately in

the culture medium and placed in culture Petri dishes. HFMs were

cultivated submerged in the aforementioned (see Cell isolation and

cell culture) supplemented low-Ca (0.15 mM) serum-free medium for

10 days (Figure 1a). Under these conditions, the average size of the

HFM was 1.73±0.33 mm on day 0 and 1.03±0.20 mm on day 7. In

addition, to determine the effects of high-Ca content in growth

media, in some experiments a medium with a calcium concentration

of 1.8 mM was used. This (also serum-free) solution was composed

of three parts of DMEM, one part of Ham’s F 12 (both from Sigma),

and the above additives.

The agents investigated were resuspended in the appropriate

vehicle and were added to the medium on day 0. The medium was

changed on days 3 and 7, and collected for LDH analysis (see

Cytotoxicity assay). HFMs (20–30 per group) were cultured

submerged in culture medium, and one third of the samples were

collected on days 3, 7, and 10 each.

Histology
For morphological analysis of the HFM, samples were embedded in

Thermo Shandon Cryochrome solution (Thermo Shandon Inc.,

Pittsburgh, PA) and frozen in liquid nitrogen vapor. Sections

(10 mm) were then cut, and, after fixation in ice-cold acetone, the

samples were stained with hematoxylin-eosin (Sigma).

Immunofluorescence

Sections were fixed for 10 minutes in acetone at �20 1C, rehydrated

in phosphate-buffered saline, and then they were preincubated with

10% serum originating from species of the secondary antibody for

20 minutes. For immunofluorescence labeling, the following primary

antibodies were employed: mouse anti-fibronectin (1:10; Acris,

Hiddenhausen, Germany), mouse anti-cytokeratin-6 (CK6, clone

KA12, 1:10; Progen, Heidelberg, Germany), mouse anti-c-kit/

scattered factor (SCF, 1:100; Santa Cruz Biotech, Santa Cruz, CA),

and rabbit anti- TGFb2 (1:50; Santa Cruz Biotech). Sections were

then labeled with appropriate FITC- or rhodamine-conjugated goat

anti-mouse or anti-rabbit secondary antibodies (Jackson Immuno-

Research, West Grove, PA). For positive controls, cryosections of

human HFs and tissues with specific expression of markers were

stained similarly as described above.

To assess proliferation of different cell types in HFM, a double

immunolabeling was performed. For detection of proliferation in the

ORSK and DPC, sections were incubated overnight with the first

primary antibody against the recognized proliferation marker Ki67

(1:10 of rabbit anti-human Ki67; Zymed, San Francisco, CA) at 4 1C,
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then with the first secondary antibody (goat anti-rabbit, FITC-

conjugated) for 45 minutes at room temperature. Then samples were

incubated with either an antibody against CK6, which is not

expressed by normal epidermal keratinocytes, yet is characteristic

for normal ORSK (1:10 of mouse anti-human CK6; Progen; Langbein

et al., 2001; Langbein and Schweizer, 2005) or with an antibody

against the DPC-specific extracellular matrix antigen, large proteo-

glycan versican (1:500 of mouse anti-human versican; Seikagaku

Corporation, Tokyo, Japan; Kishimoto et al., 1999, Soma et al.,

2005, Kim et al., 2006) for 1 hour at 37 1C. Finally, the second

secondary antibody (goat anti-mouse, rhodamine-conjugated) was

applied for 45 minutes at room temperature. Sections were then

washed in phosphate-buffered saline, counterstained with 40,6-

diamidino-2-phenylindole dihydrochloride (Sigma) and mounted

with Fluoromount G (Southern Biotechnology Associates, Birming-

ham, AL).

For measurement of apoptosis in the ORSK and DPC, a similar

double staining protocol was used. In this case, however, instead of

Ki67 labeling, components of an ApopTag TUNEL (terminal dUTP

nick-end labeling) apoptosis assay kit (Intergen, Purchase, NY) were

employed following the instructions suggested by the manufacturer.

Cytotoxicity assay
To assess the presence of necrotic cells within the HFM, a LDH-

based cytotoxicity assay was applied (Bio Vision, Mountain View,

CA). Briefly, the culture media of HFM of all treated groups were

collected on days 3, 7, and 10 and the amount of LDH, as a marker

of necrotic cell death, was colorimetrically determined according to

the protocol suggested by the manufacturer.

Semi-quantitative RT-PCR technique

The expression of mRNA for TGFb2 and SCF in HFM (and in

microdissected human scalp HFs, used as positive controls) was

determined by semi-quantitative RT-PCR. The total RNA was

extracted using the RNA easy kit (Qiagen, Hilden, Germany) and

then was reverse transcribed with random primers and reverse

transcriptase provided in first strand cDNA synthesis kit for RT–PCR

(Boehringer, Mannheim, Germany). Subsequent PCR amplification

(94 1C for 5 minutes; 30 cycles of 94 1C for 30 seconds, 57 1C for

60 seconds, 72 1C for 60 seconds; 72 1C for 10 minutes) was

performed on the UNO-Thermoblock (Biometra, Göttingen, Ger-

many) with the following primers (all from Sigma): TGFb2, 50-ATCC

CGCCCACTTTCTACAGAC-30 and 50-CATCCAAAGCACGCTTCTTC

C-30 (GenBank accession number: Y00083); SCF, 50-ATTCAA

GAGCCCAGAACCCA and CTGTTAACCAGCCAATGTACG (Gen-

Bank accession number: M59964); b-actin, 50-CGACAACGGCTCC

GGCATGTGC-30 and 50-CGTCACCGGAGTCCATCACGATGC-30

(GenBank accession number: NM001101). The PCR products were

visualized on a 2% agarose gel with ethidium bromide, and the

photographed bands were quantified by an Image Pro Plus 4.5.0

software (Media Cybernetics, Silver Springs, MD).

Microarray gene expression analysis

The microarray experiment was based on a two-color ratio

hybridization and a low RNA input fluorescent linear amplification

kit (Agilent Technologies, Böblingen, Germany) for RNA labeling. In

short, 500 ng of total RNA (isolated from control and treated HFM as

described above) was reverse transcribed with an oligo(dT)-T7

promoter primer and Moloney murine leukemia virus-reverse

transcriptase (Applera, Darmstadt, Germany) to synthesize first and

second-strand of cDNA. Fluorescent antisense cRNA was synthe-

sized with T7 RNA polymerase, which simultaneously incorporated

either cyanine 3-cytidine 50-triphosphate (3-CTP) or cyanine 5-CTP

(both from Cy Scribe, Amersham, Freiburg, Germany). The purified

products were quantified by absorbance at a 552 nm for cyanine 3-

CTP and a 650 nm for cyanine 5-CTP, and labeling efficiency was

verified with a nanodrop photometer (Kisker, Steinfurt, Germany).

Before hybridization, 2mg of each labeled cRNA product were

fragmented and mixed with control targets and hybridization buffer

according to the supplier’s protocol (Agilent Technologies). Hybri-

dizations were done overnight for 19 hours at 60 1C. The slides were

then washed according to the manufacturer’s manual, and the

scanning of microarrays was performed with 5-mm resolution using a

DNA microarray laser scanner (Agilent Technologies). Features were

extracted with an image analysis tool version A 6.1.1 (Agilent

Technologies) using default settings. Data analysis was conducted on

the Rosetta Inpharmatics Platform Resolver Built 4.0. Expression

patterns were identified by stringent data analysis using a two-fold

expression cut-off and an exclusion of data points with a low P-value

(Po0.01). By using this strategy, data selection was independent of

error models implemented in the Rosetta Resolver system.

Statistical analysis

To compare the proliferation and apoptosis of cells in HFM, the

percentage of Ki67- or TUNEL-positive cells was determined (both in

ORSK and in DPC using a double immunolabeling) in five samples per

group for each experiment. After TUNEL staining the apoptotic cells

were distinguished from necrotic cells according to the morphological

criteria, and only apoptotic cells were assessed. The values were then

averaged and were expressed as mean±SD. Statistical analysis was

performed using Mann–Whitney’s nonparametric test.
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