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Abstract

Generalised unitarity techniques are used to calculate the coefficients of box and triangle integral functions of
gluon scattering amplitudes in gauge theories withN < 4 supersymmetries. We show that the box coefficients inN = 1 and
N = 0 theories inherit the same coplanar and collinear constraints as the correspondingN = 4 coefficients. We use triple cu
to determine the coefficients of the triangle integral functions and present, as an example, the full expression for the
amplitudeAN=1(1−,2−,3−,4+, . . . , n+).
 2005 Elsevier B.V.

1. Introduction

The proposal of a “weak–weak” duality betweenN = 4 super-Yang–Mills theory and a topological string the
[1] has led to significant progress in the computation of amplitudes in gauge theories.

At tree level, amplitudes display a structure which is inherited from the twistor string description. Th
inspired several reformulations of tree level amplitudes. Specifically, Cachazo, Svrček and Witten[2] proposed a
formulation for calculating tree amplitudes using “MHV-vertices” rather than using conventional three an
point Feynman vertices. A MHV vertex is an off-shell continuation of the Parke–Taylor formula[3,4] for physical
on-shell tree amplitudes where two gluons have negative helicity and the remaining helicities are all positiv
are also known as “Maximally Helicity Violating” (MHV) amplitudes). This CSW formalism has proven
useful in obtaining compact expressions for tree amplitudes and has been extended to include external
and scalars[5] and even to theories with massive electroweak particles[6]. The MHV vertex approach extends
one-loop scattering amplitudes as demonstrated by the recomputation of the MHV one-loop amplitudes[7–9].

E-mail addresses:pysb@swan.ac.uk(S.J. Bidder),n.e.j.bjerrum-bohr@swan.ac.uk(N.E.J. Bjerrum-Bohr),d.c.dunbar@swan.ac.uk
(D.C. Dunbar),w.perkins@swan.ac.uk(W.B. Perkins).

Open access under CC BY license.
0370-2693  2005 Elsevier B.V.
doi:10.1016/j.physletb.2005.02.045

Open access under CC BY license.

https://core.ac.uk/display/82594185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:pysb@swan.ac.uk
mailto:n.e.j.bjerrum-bohr@swan.ac.uk
mailto:d.c.dunbar@swan.ac.uk
mailto:w.perkins@swan.ac.uk
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


76 S.J. Bidder et al. / Physics Letters B 612 (2005) 75–88

es more
of the

feature
ertices.)
g

nstraints
ymmetric
scalar

rest
t
wo

ch. MHV
d to anni-
e cuts

ients
e seven
g
as a
an signa-
nature

th

nd
fficients
coplanar

plitude.
e full

within
s as-
s which
mely use-
ient to

ciple be
“cut-
sions.

for on-
At one loop level, over many years, various techniques have been developed to calculate loop-amplitud
efficiently than conventional Feynman diagram approaches. A key ingredient is the careful organisation
amplitude in terms of the physical properties and factorisation of the amplitudes. (In fact, an important
of the CSW approach is that the MHV vertices are much closer to physical amplitudes than Feynman v
Ideas such as the spinor helicity formalism[10] and colour-ordering[11], which organise amplitudes accordin
to the physical outgoing states are very useful in determining tree amplitudes. Beyond tree level, the co
demanded by unitarity have been used to compute one-loop gluon scattering amplitudes in various supers
theories. InN = 4 super-Yang–Mills a one-loop amplitude is completely specified by the coefficients of
box functions[12,13]. The one-loop MHV amplitudes have been computed in bothN = 4 super-Yang–Mills[12]
and inN = 1 super-Yang–Mills[13]. The one-loop NMHV amplitudes with three negative helicities and the
positive (known as next-to-MHV or NMHV amplitudes) have been calculated inN = 4 super-Yang–Mills, first a
six points[13], then at seven points[14] and finally for alln [15]. These computations involve computing the t
particle cuts[16] of an amplitude or more general cuts and factorisation properties[17,18].

These methods have been complemented by techniques derived or inspired by the twistor string approa
and NMHV tree amplitudes have collinear and coplanar support in twistor space: these features correspon
hilation of the amplitude by particular differential operators. By acting with these differential operators on th
of an amplitude one can obtain[19–23]algebraic equations which may be useful in computing the box-coeffic
in one-loop amplitudes. The utility of this approach was demonstrated by the computation of one of th
pointN = 4 one-loop amplitudes[23]. More recently, Britto, Cachazo and Feng[24] demonstrated, by continuin
three-point tree amplitudes to signature(− − ++), how these box-coefficients could be computed directly
quadruple product of tree amplitudes. (The continuation of the signature can best be seen as a Lorentzi
ture with complex momenta. Although the unitarity properties are obscure in normal field theory, the sig
(− − ++) is more natural from a twistor space perspective[1].)

In this Letter we examine generalised unitarity techniques[15,17] for calculating amplitudes in theories wi
N < 4 supersymmetries. Firstly, we examine the box-coefficients for a variety of helicity configurations inN = 1
andN = 0 theories: determining these from the quadruple cuts[24]. These box coefficients satisfy collinearity a
coplanarity constraints which have a geometric interpretation in twistor space. Interestingly, the box-coe
obey these constraints independently of supersymmetry. Specifically the box-coefficients we compute are
for NMHV amplitudes even in theN = 0 case.

Box coefficients are an important ingredient in these amplitudes but do not completely specify the am
We demonstrate how triple cuts[15,17]can be used to determine the remaining triangle integrals and give th
result for the previously unknown amplitude,

(1.1)A
(
1−,2−,3−,4+,5+, . . . , n+)

,

in theN = 1 theory.

2. Generalised unitarity and relationships between box-coefficients

The idea that an amplitude might be reconstructed by its unitarity constraints was originally investigated
the context ofS-matrix theories in the 1960s[25] with relatively limited success. However, these approache
sumed relatively little about the actual theories considered. If one restricts these investigations to theorie
have a Quantum Field Theory description, e.g., gauge theories, then these techniques have proven extre
ful. In principle, a complete understanding of all cuts and factorisations in all channels should be suffic
completely reconstruct all loop amplitudes. Part of the complete understanding is that cuts must in prin
evaluated with loop momentum in 4− 2ε dimensions. However, for supersymmetric theories, amplitudes are
constructible”[12], meaning that it is sufficient to calculate the cuts using momenta restricted to four dimen
This is an enormous simplification, allowing one to exploit the relatively simple expressions obtainable
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shell tree amplitudes. While in special cases the two-particle cuts are enough to compute an amplitude e
other cases we must use higher-point and more generalised cuts[13,17]. For example, at two-loops one must a
consider three particle cuts and double–double cuts.

Within gauge-theories, amplitudes can be expanded in terms of various integral functions,

(2.1)A =
∑

ĉiI4 +
∑

d̂iI3 +
∑

êiI2 + · · · ,
where, in general, theories with more supersymmetry have a more restricted set of integral functions. FoN = 4
theories the series only contains the scalar box functions,I4, and hence is entirely determined by the bo
coefficientsĉi [12]. ForN = 1 super-Yang–Mills we have to consider box functions together with scalar tria
and bubble functions,I3 andI2 [13]. For theories without supersymmetry the amplitude may also contain rat
pieces which have only been calculated in a relatively small number of cases.

For N = 4 amplitudes analysis of the two particle cuts has enabled a computation of the box-coefficie
arbitrary numbers of particles in the MHV[12] and NMHV cases[13–15], either by evaluating the cuts or by actin
on the cut with differential operators[20,22,23].

Recently, Britto, Cachazo and Feng demonstrated, by analytically continuing tree amplitudes to a sign
(− − ++), and using these to calculate quadruple cuts, that box coefficients can be determined algebraica
products of on-shell tree amplitudes[24]. Specifically, considering a generic amplitude containing the scalar
integral function,

its coefficient is given by the product of four tree amplitudes where the cut legs satisfy on-shell conditions

(2.2)

ĉ = 1

2

∑
S

(
Atree(�1, i1, . . . , i2, �2)A

tree(�2, i3, . . . , i4, �3)A
tree(�3, i5, . . . , i6, �4)A

tree(�4, i7, . . . , i8, �1)
)
,

whereS indicates the set of helicity configurations and particle types of the legs�j giving a non-vanishing prod
uct of tree amplitudes. The analytic continuation allows this to be evaluated even when one or more of
amplitudes in Eq.(2.2) is a three point amplitude which would vanish in Minkowski signature.

In this section we restrict ourselves to a class of boxes where the amplitude at each corner is either a M
plitude with two negative helicity legs or aMHV amplitude with two positive helicity legs. This class of diagra
is quite large and includes all helicity cases up to six-point amplitudes and the MHV loop amplitudes them
For convenience, we describe such amplitudes as “MHV-deconstructible”.

We will consider three possible matter contributions to the box-coefficients; the entireN = 4 multiplet; the
N = 1 chiral multiplet consisting of a fermion and a scalar; and the contribution from a complex scalar circ
in the loop. We often, perhaps perversely, describe these last as theN = 0 matter contribution. We can obtain th
contribution of any matter content by summing over linear combinations of these three matter multiplet
decompositions arise very naturally in a string based approach[26].

For N = 1 super-Yang–Mills with external gluons there are two possible supermultiplets contributing
loop amplitude—the vector and the chiral matter multiplets. For simplicity we consider colour-ordered on
amplitudes. These can be decomposed into the contributions from single particle spins,

(2.3)AN=1vector
n ≡ A[1]

n + A
[1/2]
n , AN=1chiral

n ≡ A
[1/2]
n + A[0]

n ,
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[J ]
n is the one-loop amplitude withn external gluons and particles of spin-J circulating in the loop. (For

spin 0 we mean a complex scalar.) ForN = 4 super-Yang–Mills theory there is a single multiplet which is giv
by

(2.4)AN=4
n ≡ A[1]

n + 4A
[1/2]
n + 3A[0]

n .

The contributions from these three multiplets are not independent but satisfy

(2.5)AN=1vector
n ≡ AN=4

n − 3AN=1chiral
n .

Throughout we assume the use of a supersymmetry preserving regulator[26–28].
We first show that the box-coefficients for the three matter contributions arenot independent for MHV-

deconstructible boxes but that theN = 0 coefficient can be derived from theN = 4 andN = 1 coefficients.
For MHV (andMHV by conjugation) tree amplitudes the contributions from the non-scalar particles can be r
to that of the real scalar via supersymmetric Ward identities[4,29] and are simply,

(2.6)Atree((�1)
∓, i1, . . . , i2, (�2)

±) = (x)±2hAtree((�1)
s, i1, . . . , i2, (�2)

s
)
,

whereh = 1/2 for fermions andh = 1 for gluons andx = 〈l1 ia〉/〈l2 ia〉 with ia being the negative helicity gluo
leg. The contribution to the box-coefficient will then be

(2.7)(X)2h × real scalar contribution,

whereX = x1x2x3x4, andxj is the factor from thej th corner.
When we consider the contribution from a supersymmetric multiplet to the loop amplitude, we must su

particle types. For the chiral multiplet the contribution, relative to the real scalar, has a factor

(2.8)ρN=1 = −X + 2− 1

X
= − (X − 1)2

X
,

whilst for theN = 4 multiplet the factor is

(2.9)ρN=4 = X2 − 4X + 6− 4
1

X
+ 1

X2
= (X − 1)4

X2
= (

ρN=1)2
.

ForN = 4 boxes we also have solutions where the two cut legs attached to a corner have the same helicity.
amplitudes are only non-zero if the cut legs are gluons. We refer to such configurations as “singlet” contri
It is the remaining “non-singlet” contributions which can be obtained from the scalar by applying a factor ofρN=4.
We thus have

(2.10)ĉN=4non-singlet= ρN=4ĉreal scalar, ĉN=1chiral= ρN=1ĉreal scalar,

which given thatρN=4 = (ρN=1)2 yields

(2.11)ĉN=0 = 2
(ĉN=1chiral)2

ĉN=4non-singlet
.

This formula applies to any box which is MHV-deconstructible. It can be used to determine theN = 0 (or scalar)
coefficient from the two supersymmetric coefficientsprovidedwe have identified the non-singlet contribution
theN = 4 case.

Such a formula will have several analogs in gravity amplitudes. For graviton one-loop amplitudes expli
mulations[30,31]give

(2.12)ĉN=0 = 2
(ĉN=4matter)2

ĉN=8non-singlet
,
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whereN = 8 denotes the fullN = 8 multiplet[32], N = 4matterdenotes theN = 4 matter multiplet containing
particles of spins 1, 1/2 and 0 andN = 0 denotes the scalar contribution.

Not all box-coefficients are MHV-deconstructible. For example, in the amplitude

(2.13)A
(
1−,2−,3+,4−,5+,6+,7+)

the box

will have a NMHV corner. The scalar tree amplitude at this corner is of the form

(2.14)
C1

K2
671

+ C2

K2
712

,

whereKi...j ≡ (ki + · · · + kj ) and the amplitudes for other particles types[5,33] are of the form

(2.15)xh
1

C1

K2
671

+ xh
2

C2

K2
712

,

which leads to box coefficients which are a sum of two terms

(2.16)ĉ = ĉA + ĉB,

each of which satisfy Eq.(2.11)individually,

(2.17)ĉN=0
A = 2

(ĉN=1chiral
A )2

ĉ
N=4non-singlet
A

and ĉN=0
B = 2

(ĉN=1chiral
B )2

ĉ
N=4non-singlet
B

.

This formula has obvious generalisations to higher point box coefficients.

3. Example box coefficients

In this section we present some specific examples of “MHV deconstructible” box-coefficients. We use
ordered amplitudes[11,34] throughout and only present the leading in colour expression.

There is a choice of representations for the box-integral functions. There are scalar box-integral functi
F -functions which have zero mass dimension and are related to the former by the removal of the mo
prefactors[12],

(3.1)I4 = 1

K
F.

We denote the coefficients of the scalar box functions asĉi and those of theF -functions asci . Both theĉi andci

satisfy the relations(2.11).
In all cases we present theN = 4, N = 1 andN = 0 results. For theN = 4 case the results are genera

already known[12–15]whilst the six pointN = 1 box coefficients appear in[35].
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3.1. MHV box-coefficients

Consider the case of MHV-amplitudes where all box coefficients are known and we may check the rela
(2.11). In general, the box functions are “two-mass-easy” boxes and single mass boxes. TheN = 4 non-singlet
terms occur where there is a single negative helicity leg in each massive corner. TheN = 4 amplitude was calcu
lated in Ref.[12] and theN = 1 in Ref.[13] (the five point amplitude appeared earlier in[36]) whilst theN = 0
coefficient was computed by Bedford et al.[9]. Denoting the two negative helicities asi andj and considering the
box with two massless legsm1 andm2, the coefficients of theF -functions are

cN=4 = Atree× 1,

cN=1 = Atree× b
ij
m1m2

2
,

(3.2)cN=0 = Atree× (b
ij
m1m2)

2

2
,

where

(3.3)b
ij
m1m2 = 2

〈i m1〉〈i m2〉〈j m1〉〈j m2〉
〈i j 〉2〈m1 m2〉2

,

and we use spinor inner-products,〈j l〉 ≡ 〈j−|l+〉, [j l] ≡ 〈j+|l−〉, where|i±〉 is a massless Weyl spinor wit
momentumki and chirality± [10,37].

Clearly these amplitudes satisfy the relation(2.11).

3.2. Six point NMHV box-coefficients

All boxes for the six point amplitudes are MHV-deconstructible and the box coefficients are known fo
N = 4 andN = 1 [13,35], so we can apply(2.11)to generate the coefficients of the scalar boxes. The amplit
with all-positive helicity legs and those with one-negative helicity leg are non-zero in non-supersymmetri
ries, however these amplitudes are rational functions with no scalar box contributions. Thus, the two inde
amplitudes with non-vanishing box-coefficients are the MHV case (orMHV), which was covered in the previou
section, and the NMHV case with three negative helicities.

There are three independent amplitudes with three negative helicity legs:A(1−,2−,3−,4+,5+,6+), A(1−,2−,

3+,4−,5+,6+) andA(1−,2+,3−,4+,5−,6+). Of these, the first has vanishing box-coefficients forN = 1 and
N = 0,

(3.4)AN=0,1(1−,2−,3−,4+,5+,6+)∣∣
box = 0.

TheN = 4 amplitude only has singlet contributions in this case.
The second amplitude,A(1−,2−,3+,4−,5+,6+), does have a non-trivial box structure,

(3.5)A
(
1−,2−,3+,4−,5+,6+)∣∣

box = c1F
2mh
4:4 + c2F

2mh
4:6 + c3F

2mh
4:2 + c4F

1m
4:2 + c5F

1m
4:3 ,

which is depicted

c1 + c2 + c3 + c4 + c5

Of these coefficients, only three are truly independent, since under flipping, conjugation and relabeling,

(3.6)c1 ↔ c3, c4 ↔ c5.
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Explicitly, the remaining box-coefficients are

c
N=4non-singlet
1 = i

〈3+|/K|1+〉4

[2 3][3 4]〈5 6〉〈6 1〉〈2+|/K|5+〉〈4+|/K|1+〉K2
,

cN=1chiral
1 = i

〈5 1〉〈3+|/K|1+〉2〈3+|/K|5+〉
[2 3]〈5 6〉〈6 1〉〈2+|/K|5+〉〈4+|/K|5+〉2

,

(3.7)cN=0
1 = 2i

〈1 5〉2[3 4]〈3+|/K|5+〉2〈4+|/K|1+〉K2

[2 3]〈5 6〉〈6 1〉〈2+|/K|5+〉〈4+|/K|5+〉4
, K = K234,

c
N=4non-singlet
2 = i

〈3+|/K|4+〉4

[1 2][2 3]〈4 5〉〈5 6〉〈1+|/K|4+〉〈3+|/K|6+〉K2
,

cN=1chiral
2 = i

[3 1]〈6 4〉〈3+|/K|4+〉2

[1 2][2 3]〈4 5〉〈5 6〉〈1+|/K|6+〉2
,

(3.8)cN=0
2 = 2i

[3 1]2〈6 4〉2〈1+|/K|4+〉〈3+|/K|6+〉K2

[1 2][2 3]〈4 5〉〈5 6〉〈1+|/K|6+〉4
, K = K123,

c
N=4non-singlet
5 = 〈6+|/K|4+〉4

[6 1][1 2]〈3 4〉〈4 5〉〈6+|/K|3+〉〈2+|/K|5+〉K2
,

cN=1chiral
5 = i

〈6+|/K|4+〉2〈6+|/K|5+〉
[6 1][1 2]〈3 5〉2〈2+|/K|5+〉K2

,

(3.9)cN=0
5 = 2i

〈3 4〉〈4 5〉〈6+|/K|5+〉2〈6+|/K|3+〉2

〈3 5〉4[6 1][1 2]〈2+|/K|5+〉K2
, K = K345.

The remaining amplitude,A(1−,2+,3−,4+,5−,6+), contains all six one-mass and all six “two-mass-hard” bo

(3.10)A
(
1−,2+,3−,4+,5−,6+)

box =
6∑

i=1

aiF
1m
4:i +

6∑
i=1

biF
2m,h
4:i .

These are not all independent and symmetry demands relationships amongst theai ’s,

a3(123456) = a1(345612), a5(123456) = a1(561234),

a4(123456) = a2(345612), a6(123456) = a2(561234),

(3.11)a2(123456) = ā1(234561), a1(123456) = a1(321654),

whereā1 denotesa1 with 〈i j 〉 ↔ [i j ]. Thus there is a single independentai . Similarly we can use symmetry t
generate all thebi ’s from b2. The expressions fora1 andb2 are

a
N=4non-singlet
1 = i

〈2+|/K|5+〉4

[1 2][2 3]〈4 5〉〈5 6〉〈1+|/K|4+〉〈3+|/K|6+〉K2
,

aN=1chiral
1 = i

〈2+|/K|5+〉2〈1+|/K|5+〉〈3+|/K|5+〉
[1 3]2〈4 5〉〈5 6〉〈1+|/K|4+〉〈3+|/K|6+〉K2

,

(3.12)aN=0
1 = 2i

[1 2][2 3]〈1+|/K|5+〉2〈3+|/K|5+〉2

[1 3]4〈4 5〉〈5 6〉〈1+|/K|4+〉〈3+|/K|6+〉K2
, K = K123,

b
N=4non-singlet
2 = i

〈2+|/K|5+〉4

,
[1 2][2 3]〈4 5〉〈5 6〉〈1+|/K|4+〉〈3+|/K|6+〉K2
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bN=1chiral
2 = i

〈2+|/K|5+〉2〈3+|/K|5+〉〈2+|/K|4+〉
[1 2]〈5 6〉〈3+|/K|6+〉〈1+|/K|4+〉〈3+|/K|4+〉2

,

(3.13)bN=0
2 = 2i

[2 3]〈4 5〉〈3+|/K|5+〉2〈2+|/K|4+〉2K2

[1 2]〈5 6〉〈3+|/K|6+〉〈1+|/K|4+〉〈3+|/K|4+〉4
, K = K123.

3.3. Two-mass hard box

As ann-point example, we can consider the coefficient of the following box function

which has two massless corners, a corner with a single external positive helicity leg and a corner with
external negative helicity leg. This box is thus MHV-deconstructible and can be computed using quadruple
the technique of Britto, Cachazo and Feng[24] whereby the massless legs are analytically continued to sign
(− − ++) so that the massless corners do not vanish.

Solving for the box-coefficients we find

(3.14)ρN=1 = − 〈1+|/K|n+〉2〈a+|/K|b+〉2

K2[a 1]〈nb〉(K2[a 1]〈nb〉 − 〈1+|/K|n+〉〈a+|/K|b+〉) ,

whereK = K1...r and the box coefficients

cN=4non-singlet= i
sn1〈a+|/K|b+〉4

[1 2] · · · [r − 1r]〈r + 1r + 2〉 · · · 〈n − 1n〉〈1+|/K|r + 1+〉〈r+|/K|n+〉 ,

cN=1chiral= i
[a 1]〈b n〉(K2[a 1]〈nb〉 − 〈1+|/K|n+〉〈a+|/K|b+〉)sn1(K

2)〈a+|/K|b+〉2

[1 2] · · · [r − 1r]〈r + 1r + 2〉 · · · 〈n − 1n〉〈1+|/K|n+〉2〈1+|/K|r + 1+〉〈r+|/K|n+〉 ,

(3.15)cN=0 = 2i
[a 1]2〈b n〉2(K2[a 1]〈nb〉 − 〈1+|/K|n+〉〈a+|/K|b+〉)2sn1(K

2)2

[1 2] · · · [r − 1r]〈r + 1r + 2〉 · · · 〈n − 1n〉〈1+|/K|n+〉4〈1+|/K|r + 1+〉〈r+|/K|n+〉 .

3.4. The one-mass boxes

For a one-mass box, adjacent massless legs must have opposite helicity[24] to yield a non-vanishing result upo
analytic continuation. Using parity we need only consider the case where the massive corner is mostly
The case where exactly two of the massless legs have positive helicity is just the MHV case considered pr

The remaining case where exactly two of the massless legs have negative helicity is a contribution to the
amplitudes. Specifically we have the one-mass scalar box:
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Using the quadruple cuts we can easily determine the coefficients in the three cases:

cN=4non-singlet= i
〈2+|/K|i+〉4

[1 2][2 3]〈4 5〉 · · · 〈i i + 1〉 · · · 〈n − 1n〉〈1+|/K|4+〉〈3+|/K|n+〉K2
,

cN=1chiral= i
〈2+|/K|i+〉2〈1+|/K|i+〉〈3+|/K|i+〉

[1 3]2〈4 5〉 · · · 〈i i + 1〉 · · · 〈n − 1n〉〈1+|/K|4+〉〈3+|/K|n+〉K2
,

(3.16)cN=0 = 2i
[1 2][2 3]〈1+|/K|i+〉2〈3+|/K|i+〉2

[1 3]4〈4 5〉 · · · 〈i i + 1〉 · · · 〈n − 1n〉〈1+|/K|4+〉2〈3+|/K|n+〉2
K2

, K = K123.

3.5. The two-mass-easy boxes

In the case of two mass easy boxes, there are no solutions to the kinematic constraints if the mass
have opposite parity, socN=0, cN=1chiral andcN=4non-singlet vanish for such configurations. As an example
a non-vanishing two mass easy box we consider the box below, which has a single negative helicity leg
corner.

Setting,K2 = k2 + k3 + · · · + kj + · · · + kq−1 andK4 = kq+1 + · · · + kk + · · · + kn, we find

cN=4non-singlet= i

D 〈j−|K2K4|k−〉4,

cN=1chiral= − i

D
〈q+|/K2|j+〉〈1+|/K2|j+〉〈1+|/K4|k+〉〈q+|/K4|k+〉〈j−|K2K4|k+〉2

[1q]2 ,

(3.17)cN=0 = 2
i

D
〈q+|/K2|j+〉2〈1+|/K2|j+〉2〈1+|/K4|k+〉2〈q+|/K4|k+〉2

[1q]4 ,

where

D = K2
2K2

4〈q+|/K2|2+〉〈1+|/K2|q − 1+〉〈1+|/K4|q + 1+〉〈q+|/K4|n+〉
(3.18)× 〈2 3〉〈3 4〉 · · · 〈q − 2q − 1〉〈q + 1q + 2〉〈q + 2q + 3〉 · · · 〈n − 1n〉.

4. Twistor-related properties of box coefficients

The results for the twistor structure of the box-coefficients are relatively simple. We find that the box-coef
within the MHV amplitudes have collinear support in twistor space

(4.1)Fijkc
N=4MHV = Fijkc

N=1MHV = Fijkc
N=0MHV = 0,

while box-coefficients within NMHV amplitudes have coplanar support

(4.2)Kijklc
N=4NMHV = Kijklc

N=1NMHV = Kijklc
N=0NMHV = 0,
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in twistor space. The coplanarity of the box-coefficients for theN = 4 amplitudes was shown in Refs.[14,38]. It
was verified for theN = 1 box coefficients in[35].

In the generic NMHV case, where we have a three mass box, the legs will have support upon three inte
lines in twistor space, with the legs at each massive corner being collinear. The geometric picture of this is i
to that ofN = 4 [15] and indeed this pattern is also inherited by gravity amplitudes[31]. Since the three contribu
tions in a supersymmetric decomposition obey the same twistor space conditions, it follows that these co
will apply to gluon scattering in many massless gauge theories.

5. Triangles from triple cuts

To obtain the coefficients of triangle integral functions we consider triple cuts[17]. This corresponds to insertin
threeδ(�2

i ) functions into the four-dimensional integrals. Specifically, we consider∫
d4�1 d4�2 d4�3 δ4(�1 − �2 − K1)δ

4(�2 − �3 − K2)δ
(
�2

1

)
δ
(
�2

2

)
δ
(
�2

3

)
(5.1)× Atree(�1, k1, . . . , kr , �2)A

tree(−�2, kr+1, . . . , kr ′ , �3)A
tree(−�3, kr ′+1, . . . , kn,−�1).

Both triangle functions and box functions contribute to this triple cut. As a strategy, one can first determine t
coefficients from quadruple cuts and then subtract these from the triple cut to obtain the triangle coefficients
the quadruple cuts case, the threeδ(�2

i ) functions do not freeze the integral, so we must carry out manipula
within the cut integral to recognise the coefficient.

As an example application of triple cuts, consider the amplitude

(5.2)AN=1(1−,2−,3−,4+,5+, . . . , n+)
.

This amplitude is particularly amenable in that it contains no box integral functions. This can be seen by ex
the integrals in a two-particle cut[39] or, fairly obviously, by observing that there are no solutions to the quadr
cuts.

Consider the following triple cut:

with the momenta on the two massive legs beingP ≡ kr+1 + · · · + kn + k1 andQ ≡ k3 + k4 + · · · + kr . Within the
cut integral, where the cut legs are scalars, the product of the three tree amplitudes is

(5.3)
〈1�1〉2〈1�r 〉2

〈r + 1r + 2〉 · · · 〈n1〉〈1�1〉〈�1 �r 〉〈�r r + 1〉
〈3�2〉2〈3�r〉2

〈3 4〉 · · · 〈r − 1r〉〈r �r 〉〈�r �2〉〈�2 3〉
〈2�1〉〈2�2〉

〈�1 �2〉 .

To obtain the contribution from theN = 1 multiplet we must multiply this byρN=1 within the integral. Using

(5.4)
1

〈�1 �r 〉 = [�1 �r ]
P 2

,
1

〈�2 �r 〉 = [�2 �r ]
Q2

,
1

〈r �r 〉 = [�r 2]
〈r �r 〉[�r 2] = [�r 2]

〈2+|/P |r+〉 ,

this product can be rearranged to give

(5.5)
F [�i]ρN=1

,
〈2+|P |r+〉〈2+|P |r + 1+〉〈3 4〉 · · · 〈r − 1r〉〈r + 1r + 2〉 · · · 〈n1〉P 2Q2〈�1 �2〉
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where much of the denominator can now be taken outside the cut integral and

(5.6)F [�i] = 〈1�1〉〈1�r 〉2〈3�2〉〈3�r 〉2〈2�1〉〈2�2〉[�2 �r ][�1 �r ][2�r ]2.
When combining the different particles’ contributions we have

(5.7)X = 〈1�1〉
〈1�r 〉

〈2�2〉
〈2�1〉

〈3�r 〉
〈3�2〉 , so thatρN=1 = (〈1�1〉〈2�2〉〈3�r 〉 − 〈1�r 〉〈2�1〉〈3�2〉)2

〈1�1〉〈1�r 〉〈2�2〉〈2�1〉〈3�r〉〈3�2〉 .

Thus the loop momentum dependent part of the integrand is

(5.8)
F [�i]ρN=1

〈�1 �2〉 = 〈1�r 〉〈3�r 〉[�2 �r ][�1 �r ][2�r ]2(〈1�1〉〈2�2〉〈3�r 〉 − 〈1�r 〉〈2�1〉〈3�2〉)2

〈�1 �2〉 .

To evaluate this we use the identity

(5.9)〈1�1〉〈2�2〉〈3�r 〉 − 〈1�r 〉〈2�1〉〈3�2〉 = 〈3−|QP |1+〉〈�1 �2〉
[2�r ] ,

which is valid due to the momentum constraints. The part of the integrand which still depends on the loop m
tum can be rearranged

〈1�r 〉〈3�r 〉[�2 �r ][�1 �r ]〈�1 �2〉 = 〈1�r〉[�r �1]〈�1 �2〉[�2 �r ]〈�r 3〉
(5.10)= 〈1−|/�r/�1/�2/�r |3+〉 = 〈1−|/P/�1/�2/Q|3+〉,

using/�r = /�1 + /P , /�r = /�2 − /Q. Finally we can reduce this to a linear function by using/�1 = /�2 + /k2,

(5.11)
1

2
〈1−|/P (/k2/�2 − /�1/k2)/Q|3+〉,

where we chose to perform the algebra in such a way as to reflect the symmetry of the diagram: this facili
identification of the triangle coefficients. To solve this triangle we first Feynman parameterise and make a
momenta

(5.12)�
µ
1 −→ �

µ ′
1 − k

µ
2 a3 − (k2 + Q)µar+1, �

µ
2 −→ �

µ ′
1 − k

µ
2 a3 − (k2 + Q)µar+1 − k

µ
2 ,

leading to

(5.13)
1

2
〈1−|/P (/k2/Q − /Q/k2)/Q|3+〉ar+1.

Finally, the Feynman parameter integralI [ar+1] can be expressed in terms of the L0 functions

(5.14)I [ar+1] = L0[P 2/Q2]
Q2

,

where we use the integral functions

(5.15)L0[r] = ln(r)

1− r
+O(ε) and K0(s) =

(
− ln(−s) + 2+ 1

ε

)
+O(ε).

From the triple cut we can now identify the coefficient of the L0 triangle function:

(5.16)
(〈3−|QP |1+〉)2〈3−|(Q(2P − P2)P )|1+〉

〈2+|P |r+〉〈2+|P |r + 1+〉〈3 4〉 · · · 〈r − 1r〉〈r + 1r + 2〉 · · · 〈n1〉P 2Q2
.
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Similarly, we can determine all the triangle functions present in the amplitude using triplet cuts, obtain
expression for the full amplitude

AN=1(1−,2−,3−,4+,5+, . . . , n+) = Atree

2

(
K0(sn1) + K0(s34)

) − i

2

n−1∑
r=4

d̂n,r

L0[t [r−2]
3 /t

[r−1]
2 ]

t
[r−1]
2

(5.17)− i

2

n−2∑
r=4

ĝn,r

L0[t [r−1]
2 /t

[r]
2 ]

t
[r]
2

− i

2

n−2∑
r=4

ĥn,r

L0[t [r−2]
3 /t

[r−1]
3 ]

t
[r−1]
3

,

which can be depicted in the following way:

AN=1(1−,2−,3−,4+,5+, . . . , n+)

= 1

2
Atree + 1

2
Atree

+
n−1∑
r=4

d̂n,r +
n−2∑
r=4

ĝn,r +
n−2∑
r=4

ĥn,r

where

d̂n,r = (〈3−|Kr−3K̄r−3|1+〉)2〈3−|Kr−3(k2K̄r−3 − K̄r−3k2)K̄r−3)|1+〉
〈2+|K̄r−3|r+〉〈2+|K̄r−3|r + 1+〉〈3 4〉 · · · 〈r − 1r〉〈r + 1r + 2〉 · · · 〈n1〉K̄2

r−3K
2
r−3

,

ĝn,r =
r−3∑
i=1

〈3−|KiK̄i |1+〉2〈3−|KiK̄i(kr+1K̄r−3 − K̄r−3kr+1)|1+〉〈i + 3i + 4〉
〈2+|/Ki |i + 3+〉〈2+|/Ki |i + 4+〉〈3 4〉〈4 5〉 · · · 〈n1〉K2

i K̄2
i

,

(5.18)ĥn,r = ĝn,n−r+2|(123...n)→(321n...4),

with Ki = k3 + k4 + · · · + ki+3 andK̄i = k2 + k3 + · · · + ki+3. We have checked that this expression satisfies
correct collinear and soft limits thus confirming the normalisation.

6. Conclusion

Perturbative amplitudes in quantum field theories are complex objects which contain a great deal of i
tion, some of which is rather well understood and some less so. The recently proposed relationships
perturbative gauge theories and twistor strings provide a fascinating insight into gauge theories and may
useful in perturbative calculations. It also remains an open question as to whether a string theory can be co
reconstructed from its states and its on-shell tree amplitudes using unitarity and other techniques.

Although relations with twistor string theories have been observed forN = 4 super-Yang–Mills, it is an ope
question as to what degree theories with less or no supersymmetry are related to a twistor string theory[40]. Until
a direct connection is uncovered it is reasonable to gather evidence by studying the properties of amplitu
box-coefficients are a physically meaningful subset of an amplitude being the coefficients of distinct func
the class ln(s) ln(s′). By computing some special examples, we have observed that even for non-supersym
theories (but still massless) box-coefficients satisfy the same collinearity and coplanarity constraints as inN = 4
theories. These constraints can be seen as a consequence of the construction of box coefficients using un
may be a hint of the underlying string structure.
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For N = 4 theories the amplitudes are completely determined from the box-coefficients. For theorie
less supersymmetry the amplitudes contain additional, and important, functional information. As an exa
using unitarity constraints, we have presented the full structure of the simplest NMHV configuration forn-gluons
in N = 1 super-Yang–Mills. This amplitude is entirely expressed in terms of (specific) triangle functions
coefficients of these functions were determined by carrying out triple cuts of the amplitude. These coeffic
not have an obvious twistor property such as coplanarity.

Theories without supersymmetry are the most interesting phenomenologically and, arguably, formally. U
techniques, generalised sufficiently, may in principle determine such perturbative amplitudes[41,42]but practical
computations are extremely sparse at this point. It remains a challenge to develop techniques and perform
tions for theories without any supersymmetry.
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