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Abstract

Generalised unitarity techniques are used to calculate the coefficients of box and triangle integral functions of one-loop
gluon scattering amplitudes in gauge theories wifh< 4 supersymmetries. We show that the box coefficient¥ie- 1 and
N = 0 theories inherit the same coplanar and collinear constraints as the correspbhdidgcoefficients. We use triple cuts
to determine the coefficients of the triangle integral functions and present, as an example, the full expression for the one-loop
amplitudeAN=1(1,2—,37,4%,...,n").
0 2005 Elsevier B.V. Open access under CC BY license.

1. Introduction

The proposal of a “weak—weak” duality betwe&h= 4 super-Yang—Mills theory and a topological string theory
[1] has led to significant progress in the computation of amplitudes in gauge theories.

At tree level, amplitudes display a structure which is inherited from the twistor string description. This has
inspired several reformulations of tree level amplitudes. Specifically, CachaZmksamd Witter{2] proposed a
formulation for calculating tree amplitudes using “MHV-vertices” rather than using conventional three and four
point Feynman vertices. A MHV vertex is an off-shell continuation of the Parke—Taylor fori@dlfor physical
on-shell tree amplitudes where two gluons have negative helicity and the remaining helicities are all positive (these
are also known as “Maximally Helicity Violating” (MHV) amplitudes). This CSW formalism has proven very
useful in obtaining compact expressions for tree amplitudes and has been extended to include external fermions
and scalar§s] and even to theories with massive electroweak part{@esThe MHV vertex approach extends to
one-loop scattering amplitudes as demonstrated by the recomputation of the MHV one-loop amjptit@fies
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At one loop level, over many years, various techniques have been developed to calculate loop-amplitudes more
efficiently than conventional Feynman diagram approaches. A key ingredient is the careful organisation of the
amplitude in terms of the physical properties and factorisation of the amplitudes. (In fact, an important feature
of the CSW approach is that the MHV vertices are much closer to physical amplitudes than Feynman vertices.)
Ideas such as the spinor helicity formali$h®] and colour-ordering11], which organise amplitudes according
to the physical outgoing states are very useful in determining tree amplitudes. Beyond tree level, the constraints
demanded by unitarity have been used to compute one-loop gluon scattering amplitudes in various supersymmetric
theories. INN = 4 super-Yang-Mills a one-loop amplitude is completely specified by the coefficients of scalar
box functiong12,13] The one-loop MHV amplitudes have been computed in Béth 4 super-Yang—Mill§12]
and in ' = 1 super-Yang-Mill§13]. The one-loop NMHV amplitudes with three negative helicities and the rest
positive (known as next-to-MHV or NMHV amplitudes) have been calculated ia 4 super-Yang—Mills, first at
six points[13], then at seven poinfd4] and finally for alln [15]. These computations involve computing the two
particle cutd16] of an amplitude or more general cuts and factorisation propéite$8]

These methods have been complemented by technigues derived or inspired by the twistor string approach. MHV
and NMHYV tree amplitudes have collinear and coplanar support in twistor space: these features correspond to anni-
hilation of the amplitude by particular differential operators. By acting with these differential operators on the cuts
of an amplitude one can obtgih9—23]algebraic equations which may be useful in computing the box-coefficients
in one-loop amplitudes. The utility of this approach was demonstrated by the computation of one of the seven
point A/ = 4 one-loop amplitudef3]. More recently, Britto, Cachazo and Feji2g] demonstrated, by continuing
three-point tree amplitudes to signature — + +), how these box-coefficients could be computed directly as a
quadruple product of tree amplitudes. (The continuation of the signature can best be seen as a Lorentzian signa-
ture with complex momenta. Although the unitarity properties are obscure in normal field theory, the signature
(— — ++) is more natural from a twistor space perspective)

In this Letter we examine generalised unitarity technigdé&sl7] for calculating amplitudes in theories with
N < 4 supersymmetries. Firstly, we examine the box-coefficients for a variety of helicity configuratiéhs-ih
andN = 0 theories: determining these from the quadruple [24F These box coefficients satisfy collinearity and
coplanarity constraints which have a geometric interpretation in twistor space. Interestingly, the box-coefficients
obey these constraints independently of supersymmetry. Specifically the box-coefficients we compute are coplanar
for NMHV amplitudes even in thd/' = 0 case.

Box coefficients are an important ingredient in these amplitudes but do not completely specify the amplitude.
We demonstrate how triple cuits5,17]can be used to determine the remaining triangle integrals and give the full
result for the previously unknown amplitude,

A(17,27,37,47,5%,...,n"), (1.1)
in the ' =1 theory.

2. Generalised unitarity and relationships between box-coefficients

The idea that an amplitude might be reconstructed by its unitarity constraints was originally investigated within
the context ofS-matrix theories in the 196(25] with relatively limited success. However, these approaches as-
sumed relatively little about the actual theories considered. If one restricts these investigations to theories which
have a Quantum Field Theory description, e.g., gauge theories, then these techniques have proven extremely use
ful. In principle, a complete understanding of all cuts and factorisations in all channels should be sufficient to
completely reconstruct all loop amplitudes. Part of the complete understanding is that cuts must in principle be
evaluated with loop momentum in42¢ dimensions. However, for supersymmetric theories, amplitudes are “cut-
constructible[12], meaning that it is sufficient to calculate the cuts using momenta restricted to four dimensions.
This is an enormous simplification, allowing one to exploit the relatively simple expressions obtainable for on-
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shell tree amplitudes. While in special cases the two-particle cuts are enough to compute an amplitude exactly, in
other cases we must use higher-point and more generaliseld 8(t%] For example, at two-loops one must also
consider three particle cuts and double—double cuts.

Within gauge-theories, amplitudes can be expanded in terms of various integral functions,

AZZéiI4+ZdAi13+Zéilz+"', (2.2)

where, in general, theories with more supersymmetry have a more restricted set of integral functigvis= Bor
theories the series only contains the scalar box functidnsand hence is entirely determined by the box-
coefficientsé; [12]. For N'= 1 super-Yang—Mills we have to consider box functions together with scalar triangle
and bubble functiondz and I, [13]. For theories without supersymmetry the amplitude may also contain rational
pieces which have only been calculated in a relatively small number of cases.

For A/ = 4 amplitudes analysis of the two particle cuts has enabled a computation of the box-coefficients for
arbitrary numbers of particles in the MH¥2] and NMHV case§l13-15] either by evaluating the cuts or by acting
on the cut with differential operatof20,22,23]

Recently, Britto, Cachazo and Feng demonstrated, by analytically continuing tree amplitudes to a signature of
(= —++), and using these to calculate quadruple cuts, that box coefficients can be determined algebraically from
products of on-shell tree amplitudgt]. Specifically, considering a generic amplitude containing the scalar box
integral function,

2 13
i > ez iy
J20 ISR

is . é4 e is
17 16
its coefficient is given by the product of four tree amplitudes where the cut legs satisfy on-shell conditions

1
=3 D (A"l v, . ig, L) A2 i3, ... ia, £3) AT(La s, . .. 6, La) AT®(La, i, ... ig, £1)),
S

(2.2)
whereS indicates the set of helicity configurations and particle types of thedegs/ing a non-vanishing prod-
uct of tree amplitudes. The analytic continuation allows this to be evaluated even when one or more of the tree
amplitudes in Eq(2.2)is a three point amplitude which would vanish in Minkowski signature.
In this section we restrict ourselves to a class of boxes where the amplitude at each corner is either a MHV am-
plitude with two negative helicity legs ordHV amplitude with two positive helicity legs. This class of diagrams
is quite large and includes all helicity cases up to six-point amplitudes and the MHV loop amplitudes themselves.
For convenience, we describe such amplitudes as “MHV-deconstructible”.
We will consider three possible matter contributions to the box-coefficients; the aritieed multiplet; the
N = 1 chiral multiplet consisting of a fermion and a scalar; and the contribution from a complex scalar circulating
in the loop. We often, perhaps perversely, describe these last AS $h® matter contribution. We can obtain the
contribution of any matter content by summing over linear combinations of these three matter multiplets. Such
decompositions arise very naturally in a string based appri@#&gh
For A/ = 1 super-Yang—Mills with external gluons there are two possible supermultiplets contributing to the
loop amplitude—the vector and the chiral matter multiplets. For simplicity we consider colour-ordered one-loop
amplitudes. These can be decomposed into the contributions from single particle spins,
Aé\/:lvector_ A,[11] + A[l/Z] Aé\f:lchiralE AL1/2] + ALO]’ (2_3)

= n s
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whereAL” is the one-loop amplitude with external gluons and particles of spineirculating in the loop. (For
spin 0 we mean a complex scalar.) Pdr= 4 super-Yang—Mills theory there is a single multiplet which is given

by
AN=4= A 4 44T 4 34101 (2.4)
The contributions from these three multiplets are not independent but satisfy

A,r/l\/’:lvectorz A.r/l\/’:4 _ 3Aﬁv:l chiral (2.5)

Throughout we assume the use of a supersymmetry preserving red26+as]

We first show that the box-coefficients for the three matter contributionsheréndependent for MHV-
deconstructible boxes but that thé = 0 coefficient can be derived from th¥ = 4 and A = 1 coefficients.
For MHV (andMHV by conjugation) tree amplitudes the contributions from the non-scalar particles can be related
to that of the real scalar via supersymmetric Ward identjtle®9] and are simply,

AT F, in, .., d2, (E2)F) = ()T AT((00)%, i1, . ., i, (£2)%), (2.6)

whereh = 1/2 for fermions andh = 1 for gluons ande = (/1i,)/(l2i,) with i, being the negative helicity gluon
leg. The contribution to the box-coefficient will then be

(X)?" x real scalar contributian (2.7)

whereX = x1xpx3x4, andx; is the factor from thegith corner.
When we consider the contribution from a supersymmetric multiplet to the loop amplitude, we must sum over
particle types. For the chiral multiplet the contribution, relative to the real scalar, has a factor
1 (X — 1)?

pN=1=—x+2—}= —— (2.8)

whilst for the A" = 4 multiplet the factor is

4
N=4 2 1 1 XxX-1 N =1\2
=X2_4X46-4-4 5="—1" = : 2.9
P + X + X2 X2 ('0 ) ( )
For N = 4 boxes we also have solutions where the two cut legs attached to a corner have the same helicity. Such tree
amplitudes are only non-zero if the cut legs are gluons. We refer to such configurations as “singlet” contributions.
Itis the remaining “non-singlet” contributions which can be obtained from the scalar by applying a fa,c%fﬂ).f

We thus have

CA/\/=4 non-singlet _ p/\/=46rea| scala{ 5/\/:1 chiral _ pN=1éreaI scala’r (2.10)

which given thatpV=% = (oN=1)2 yields

~N'=1chira2
N=0_»5 (¢ )

— © pN'=4nonsinglet (2.11)

This formula applies to any box which is MHV-deconstructible. It can be used to determifé £h8 (or scalar)
coefficient from the two supersymmetric coefficieptsvidedwe have identified the non-singlet contribution in
the ' =4 case.

Such a formula will have several analogs in gravity amplitudes. For graviton one-loop amplitudes explicit for-
mulations[30,31]give

N=0_ o

cN'=8norrsinglet’

~N =4 matter 2
¢ ) (2.12)
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whereA = 8 denotes the fullV' = 8 multiplet[32], ' = 4matterdenotes thé\' = 4 matter multiplet containing
particles of spins 1, /2 and 0 andV = 0 denotes the scalar contribution.
Not all box-coefficients are MHV-deconstructible. For example, in the amplitude

A(l‘,2‘,3+,4_,5+,6+,7+) (2.13)
the box

3t 4~

7+ 6+ 5F

will have a NMHYV corner. The scalar tree amplitude at this corner is of the form

C C
G, G

—, (2.14)
2 2
Kg71  Kipp
wherek; ;= (k; +--- + k;) and the amplitudes for other particles typgsS3] are of the form
C C
Mo a2 (2.15)
Kg71 K712
which leads to box coefficients which are a sum of two terms
&=éa+25, (2.16)
each of which satisfy Eq2.11)individually,
~N'=1chirah2 CA,/\/':lchira 2
eN=0_2 P and &y=0_ 2. ) (2.17)

— T \N=4nonrsinglet — © JN=4nonsinglet’
€A ]

This formula has obvious generalisations to higher point box coefficients.

3. Example box coefficients

In this section we present some specific examples of “MHV deconstructible” box-coefficients. We use colour-
ordered amplitudeld 1,34]throughout and only present the leading in colour expression.

There is a choice of representations for the box-integral functions. There are scalar box-integral functions and
F-functions which have zero mass dimension and are related to the former by the removal of the momentum
prefactorqd12],

1
Ip=—F. 3.1
4= 5 (3.1)

We denote the coefficients of the scalar box function& asd those of thé -functions as;. Both thec; andc;
satisfy the relation§2.11)

In all cases we present th€ = 4, A/ =1 and N = 0 results. For theV' = 4 case the results are generally
already knowrj12—15]whilst the six point\" = 1 box coefficients appear [85].
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3.1. MHV box-coefficients

Consider the case of MHV-amplitudes where all box coefficients are known and we may check the relationship
(2.11) In general, the box functions are “two-mass-easy” boxes and single mass boxe¥. Fkenon-singlet
terms occur where there is a single negative helicity leg in each massive corngy. Erkamplitude was calcu-
lated in Ref[12] and theN = 1 in Ref.[13] (the five point amplitude appeared earlie[3®]) whilst the A" =0
coefficient was computed by Bedford et[@]. Denoting the two negative helicities aand j and considering the
box with two massless legs; andmy, the coefficients of thé -functions are

CN=4 — plree 1,

b
CN:l — Alree, Zmima

5
N=0_ gptree M 3.2)
where
B = 2(1' m1)(i m2)(j mi) (21' ma) (3.3)

(i j)2(mamp)
and we use spinor inner-productg,/) = (j~|I1), [j 11 = (jt|I7), where|i*) is a massless Weyl spinor with
momentumk; and chirality+ [10,37]

Clearly these amplitudes satisfy the relat{@ril 1)

3.2. Six point NMHV box-coefficients

All boxes for the six point amplitudes are MHV-deconstructible and the box coefficients are known for both
N =4 andN = 1[13,35] so we can apply2.11)to generate the coefficients of the scalar boxes. The amplitudes
with all-positive helicity legs and those with one-negative helicity leg are non-zero in non-supersymmetric theo-
ries, however these amplitudes are rational functions with no scalar box contributions. Thus, the two independent
amplitudes with non-vanishing box-coefficients are the MHV casé/ldV), which was covered in the previous
section, and the NMHYV case with three negative helicities.

There are three independent amplitudes with three negative helicitydétys; 2=, 3, 4,57, 67), A(17, 27,
3T,47,57,67) andA(1~, 2", 37, 47,57, 6%). Of these, the first has vanishing box-coefficientsf6&= 1 and
N =0,

AN=01(1- 27 37, 4% 5% 6%)| =0 (3.4)

The N = 4 amplitude only has singlet contributions in this case.
The second amplitudey(1—,2—, 3+, 4~, 5%, 61), does have a non-trivial box structure,

|box

A(17,27,3%,47,57,6")| ., = c1F2" + coF 28" + caF 23" + caFi3 + cs Fi3, (3.5)
which is depicted
6\,1 2\,3 2\/3 4\/5 4\ /5 6y ,1 4 56 1 5 612
c1 +c2 +c3 +c4 +c5
5 4 1 6 3 2 3 2 4 3

Of these coefficients, only three are truly independent, since under flipping, conjugation and relabeling,

c1 < C3, c4 < 5. (3.6)
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Explicitly, the remaining box-coefficients are
CN=4 norrsinglet _ ; (3+ |K|1+)4
! [23][341(56)(6 1)(2F |K|5F) (4T K |1T) K2
Cfl\/=lchiral - (51 (3+ |K|1+>2<3+ |K|5+)
[23](56)(6 1) (2" K |57) (4T |K|5T)2
N0 (15)%[34)(3" K |57)*(4* K |1F) K?
[23](56)(6 1) (2K |5T) (47K |5T)*

K = K>34, (3.7)

N 4nomrsinglet . <3+|K|4+)4
2 ~ ' [12[231(45)(56) (1T K147 (37 K 16%) K2
C/\f Lchiral _ ; [31](64) 3+|K|4+
[12][23](45) 56) 1+|1}('|6Jr 2’
=0 _ o [BUP(B42(LF K |47 (371K 167) K
2 =4 [12][23](45><56 (LK 1654

K = K123, (3.8)

N =4nomsinglet _ 6Jr|1}(>|4Jr
[61][12]<34> 45)(6F|K[3T)(2TIK|5T)K
C/\/':lchiral i (6" |K|4+ (6" |K|5+
> [61][12](35)2 2+|1}('|5+ K?’
N=0_ -, (34(45) (671K |5H) (67 K [3)°
C5 - 2 2 2 5
(3546 L1227 |57) K
The remaining amplitude4 (1—, 2+, 37, 4%, 57, 67), contains all six one-mass and all six “two-mass-hard” boxes,

K = Kgys. (3.9)

A(17,27,37,47,57,6"), = Za,Fj?‘+Zb Famh, (3.10)
i=1 i=1

These are not all independent and symmetry demands relationships amorng'st the
a3(123456 = a1(345613, as(123456 = a1(561234,
a4(123456 = a(345613, as(123456 = a2(561234,
a»(123456 = a1(234561, a1(123456 = a1(321654, (3.11)

wherea; denotesi1 with (i j) <> [i j]. Thus there is a single independegpt Similarly we can use symmetry to
generate all thé;’s from b,. The expressions far; andb, are

a/\/=4non-singlet_ . (2" |K|5+>4

! T [12][23](45)(56) (LH[K|4) (3T K |6T) K2’

N=tohiral_ (2N IKI5T)2(1KI5T) (3" IK|5T)

“ [13]2(45)(56) (1t |K|4+)(3T|K|61) K2

Neo .. [12[231LTIK|5H) (3K |5 B

A= A aaan (56 (1T K4 3T KI6T K2 N K2 (312)
b/\/:4non-sing|et_ . (2" |K|5+>4

2

~ ' [12[231(45) (56) (1T K |47) (37 [ 67) K2
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pN'=Lchiral _; (2T IK|15M)2(3T K |51) (2 K |4T)
2 [12](56)(3+|K|6F) (1K |[4+) (3T |K|4T)2
N=0_ o, [231(45) (3K |52 (2t K |41)2K?
2 T T 1215 6)(3TIK 6T (LT IK [4T) (3T |4T)4

K = K123 (3.13)

3.3. Two-mass hard box

As ann-point example, we can consider the coefficient of the following box function

at r- r4+17 b
2-2 ®n—17
1~ nt

which has two massless corners, a corner with a single external positive helicity leg and a corner with a single
external negative helicity leg. This box is thus MHV-deconstructible and can be computed using quadruple cuts and
the technique of Britto, Cachazo and Fd84d] whereby the massless legs are analytically continued to signature
(— — ++) so that the massless corners do not vanish.

Solving for the box-coefficients we find

(LK [n")%(at K 1bT)?
 K2[a1)(nb)(K2[a1)(nb) — (LK |n ) (@ K [BT))’

whereK = K1 _, and the box coefficients

PN=1= (3.14)

CN:4non-singIet=l- Sn1<a+|K|b+>4
[12]---[r = 1r)r +1r+2)---(n — 1)1 K |r + 1H)(r T K |nt)’
N=tenial_ ;L1 (K2[alnb) — (LK |n ) a* K IbT)sna (K?) (@ 1K |bF)2
L2 =Ll +1r+2) - (n — 1n)( 1+|K|n+>2<1+|¢’|r+1+><r+|¢'|n+>’
N=0_ o [a 11(bn)?(K?[a 1](n b) — (LT [K |n ") (a ™ |K|bT))2s51(K?)?
T2 r - 1rir+1r+2)---(n—1n) 1+|K|n+)4(1+|1}(|r + l+)(r+|K|n+) '

(3.15)

3.4. The one-mass boxes

For a one-mass box, adjacent massless legs must have opposite [idityyield a non-vanishing result upon
analytic continuation. Using parity we need only consider the case where the massive corner is mostly positive.
The case where exactly two of the massless legs have positive helicity is just the MHV case considered previously.

The remaining case where exactly two of the massless legs have negative helicity is a contribution to the NMHV
amplitudes. Specifically we have the one-mass scalar box:

1~ 2F

i 4+ 3-
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Using the quadruple cuts we can easily determine the coefficients in the three cases:

C./\/':4non-singlet= . (2t |K|i+>4
[12][23](45)---(ii+1)---(n — 1n)(1+|K|4+)(3+|K|n+)K2’
N=lchiral _; (K1) AT K1) BT IR
- [13]2(45) (il 4+ 1) (n— 1n)(1+|K|4+)(3+|K|n+)K2’
N=0_ o [12[23)(1F K [iT) (BT K i T) K = Kizs (3.16)

[1314(45) - (ii +1) - (n — In) (1 |K |4+)2 (3K [n+)2K 2
3.5. The two-mass-easy boxes

In the case of two mass easy boxes, there are no solutions to the kinematic constraints if the massless legs
have opposite parity, soV=0, ¢N=1chiral gng N'=4nonsinglet\anish for such configurations. As an example of
a non-vanishing two mass easy box we consider the box below, which has a single negative helicity leg at each
corner.

q g+17 k-~
.’I’l+
+
g—175
J7 oot 1=

Setting, Ko =kp +kz+---+kj+---+ky_r1andKg=kyy1+ -+ kg +--- +k,, we find

3 . i -
C/\/‘,4non-smglet:5(] |K2Kalk )4,

N=tchiral_ _ L (gt K2l ) (LT 1K 2l ) (AT K alk ™) (g T IK alk ™) (I KoK alkT)?

D [14]1? '
_ i (gT K212 AT 2152 (AT K alk )2 (g K alkH)?
N=0_ o1 laTIKz K2 . Ka Ka , (3.17)
D [1q]
where
D= K5K2(q K227 (1T K 2lg — 1) (1T K 4lg + 1) (g T 1K aln™)
X (23)(34---{qg—29g—L{qg+1g+2){qg+2g+3)---(n—1n). (3.18)

4. Twistor-related properties of box coefficients

The results for the twistor structure of the box-coefficients are relatively simple. We find that the box-coefficients
within the MHV amplitudes have collinear support in twistor space

FijkCN:4 MRV _ FijkCN=1 MHV _ FijkCN:O MHV _ 0, (4.1)

while box-coefficients within NMHV amplitudes have coplanar support

—ANMHV —1NMHV —ONMHV
KijucV =Kijjuc = Kijuc =0, 4.2)



84 S.J. Bidder et al. / Physics Letters B 612 (2005) 75-88

in twistor space. The coplanarity of the box-coefficients forhe- 4 amplitudes was shown in Ref44,38] It
was verified for theV' = 1 box coefficients if35].

In the generic NMHV case, where we have a three mass box, the legs will have support upon three intersecting
lines in twistor space, with the legs at each massive corner being collinear. The geometric picture of this is identical
to that of V' = 4 [15] and indeed this pattern is also inherited by gravity amplitf@8&k Since the three contribu-
tions in a supersymmetric decomposition obey the same twistor space conditions, it follows that these conditions
will apply to gluon scattering in many massless gauge theories.

5. Trianglesfrom triple cuts

To obtain the coefficients of triangle integral functions we consider triple[tdisThis corresponds to inserting
three(S(El.z) functions into the four-dimensional integrals. Specifically, we consider

/ d*1d% a3 8% (01 — £o — K1)8* (02 — €3 — K2)8(£2)8(¢3)5(¢€3)
x A1, k1, .. ke, €2) AV (=00, ki1, .. ke, €3) AV (—L3, k1, - Ky —E1). (5.1)

Both triangle functions and box functions contribute to this triple cut. As a strategy, one can first determine the box-
coefficients from quadruple cuts and then subtract these from the triple cut to obtain the triangle coefficients. Unlike
the quadruple cuts case, the thﬁeéiz) functions do not freeze the integral, so we must carry out manipulations
within the cut integral to recognise the coefficient.

As an example application of triple cuts, consider the amplitude

AN=Y(17, 27,37, 4% 57 ). (5.2)

This amplitude is particularly amenable in that it contains no box integral functions. This can be seen by examining
the integrals in a two-particle c{89] or, fairly obviously, by observing that there are no solutions to the quadruple
cuts.

Consider the following triple cut:

1-
P nt
r+ 1t

with the momenta on the two massive legs befhg k, 1+ -+ k, + k1 andQ = k3 + ka + - - - + k. Within the
cut integral, where the cut legs are scalars, the product of the three tree amplitudes is

(Le1)?(1¢,)? (3€2)%(3¢,)? (2¢1)(2¢2)
(r+1lr4+2)---(n1){(1L1) (€1 L)L+ 1) B4 ---(r —=1r)(r €, )£, £2)(£23) (€1£2)

To obtain the contribution from th&” = 1 multiplet we must multiply this b)o/\/:l within the integral. Using

1 _ [eaty] 1 _ [£24] 1 [¢, 2] [£, 2]

(5.3)

(5.4)

(ert;) P2 (b)) Q7 rl) ree2 @FpIrT)
this product can be rearranged to give

’

FleipN=

@2+ Prt)2F[PIr+17)(34) - (r —1r)(r +1r +2)--- (n 1) P2Q2(¢1 £2) (55)
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where much of the denominator can now be taken outside the cut integral and
FI6i] = (1£2)(16,)7(3€2)(3€,)(21) (2£2)[£2 £, 101 £,1[2¢, 1. (5.6)
When combining the different particles’ contributions we have

(161) 262) 8&:) thatoV=1 = ({1€1)(2£2)(3¢) — (1£,)(2£1)(3£2))?

= , 5.7
(1¢,) (2¢1) (3£2) (1€1)(1€,)(2£2)(2£1)(3¢,)(3¢2) 1)
Thus the loop momentum dependent part of the integrand is
FIG1pN=t (16,)(36,)[026,11€16,1[20,12((101) (2£2)(30,) — (1£,)(2€1)(3£2))?
— . (5.8)
(€1£2) (€182)
To evaluate this we use the identity
1€
(101)(262)(34,) — (1£,)(2¢1)(3¢) = (37| QP|17) <[216 2]>, (5.9)

which is valid due to the momentum constraints. The part of the integrand which still depends on the loop momen-
tum can be rearranged

(1€,)(3L,)[L26,1[€1 €, 1(€1b2) = (1€,)[€r L1](L1£2)[L24,](L 3)
= (17 frfaf2fr|37) = (17 1Pf2f20137). (5.10)
usingf, = {1+ P, {» = {2 — @. Finally we can reduce this to a linear function by usjag= {2 + ¥»,

1
E(Tllb(kzﬂz — {1k2)Q13"), (5.11)

where we chose to perform the algebra in such a way as to reflect the symmetry of the diagram: this facilitates the
identification of the triangle coefficients. To solve this triangle we first Feynman parameterise and make a shift of
momenta

O — O —kyaz— (ko + Q)" arp1, Uy — €] —khaz— (ko + Q) a,11 — kb, (5.12)
leading to

1

Eﬂ?l”(%z@ — Qk2)Q13%)a,41. (5.13)
Finally, the Feynman parameter integféd, . 1] can be expressed in terms of thgfunctions

Lol P?/ Q%]

Ilar+1] = — 0z (5.14)

where we use the integral functions
In(r) 1
Lolr] = 1 +0() and Ky(s)=(—In(—s)+2+ < + O(e). (5.15)

From the triple cut we can now identify the coefficient of thettiangle function:

((371QPI1TH2(37|(Q(2P — P2)P)|17)
2F|PIrHY 2T Plr +17(348 - (r —1r)r+1r+2)--- (n1) P2Q2"

(5.16)
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Similarly, we can determine all the triangle functions present in the amplitude using triplet cuts, obtaining the
expression for the full amplitude

tree . Lol [V—Z]/t[r—ll]
ANTH17. 27,3747, 5% ) = o (Kolsan) +Ko(ssa) — 5 Zdn rﬁ
r 4 2
. n—2 [r—1] . n—2 [ —-2] —1]
Lol#; /t2 i ~ Lolrg /t ]
- _Z 8n,r r - Ezh’”—[r 1 s (517)
r=4 3
which can be depicted in the following way:

AN=H17 27,37, 4% 5%, nT)

1 z SRS >

— —plree o + —plree g
2 2
n—1% nt 5t 4t
2= r+ 1t r+1t
n—1 n—2 n—2
F T v el et S o\ et S e fo e
r=4 nt 4t r=4 3= nt r=4 4+ 1-
r+1t rt 2- 1- 3~ 2-
where

s (371K, 3K, 311")*(37|K, 3(k2K, 3 — K, 3ka) K, 3)|1")

n,r — s

(2F| K, —alrt) (24 |Ko—alr + 17)(34) - (r = 1r)(r +1r +2)--- (n 1)K? ;K? 4

3 i B B > > , .
; :’Z<3 |K; Ki|17)2(37|Ki K, (ky 41K, —3 — Kr—3kr 1) |17) (i + 3i + 4)
(21K li +3T)(2F K 1i +41)(34(45) - - (n 1) KPK?

3

i=1
B = &nn—r+21(123.n)— (321n...4), (5.18)

with K; = k3 + k4 + --- + ki3 andK; = ko + k3 + - - - + k; 3. We have checked that this expression satisfies the
correct collinear and soft limits thus confirming the normalisation.

6. Conclusion

Perturbative amplitudes in quantum field theories are complex objects which contain a great deal of informa-
tion, some of which is rather well understood and some less so. The recently proposed relationships between
perturbative gauge theories and twistor strings provide a fascinating insight into gauge theories and may be very
useful in perturbative calculations. It also remains an open question as to whether a string theory can be completely
reconstructed from its states and its on-shell tree amplitudes using unitarity and other techniques.

Although relations with twistor string theories have been observed/fer 4 super-Yang-Mills, it is an open
guestion as to what degree theories with less or no supersymmetry are related to a twistor strirg®hednyil
a direct connection is uncovered it is reasonable to gather evidence by studying the properties of amplitudes. The
box-coefficients are a physically meaningful subset of an amplitude being the coefficients of distinct functions of
the class lis) In(s”). By computing some special examples, we have observed that even for non-supersymmetric
theories (but still massless) box-coefficients satisfy the same collinearity and coplanarity constraint§-agtin
theories. These constraints can be seen as a consequence of the construction of box coefficients using unitarity bu
may be a hint of the underlying string structure.
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For V' = 4 theories the amplitudes are completely determined from the box-coefficients. For theories with
less supersymmetry the amplitudes contain additional, and important, functional information. As an example of
using unitarity constraints, we have presented the full structure of the simplest NMHYV configuratioglfans
in /' = 1 super-Yang-Mills. This amplitude is entirely expressed in terms of (specific) triangle functions. The
coefficients of these functions were determined by carrying out triple cuts of the amplitude. These coefficients do
not have an obvious twistor property such as coplanarity.

Theories without supersymmetry are the most interesting phenomenologically and, arguably, formally. Unitarity
techniques, generalised sufficiently, may in principle determine such perturbative amgditiidid but practical
computations are extremely sparse at this point. It remains a challenge to develop techniques and perform calcula-
tions for theories without any supersymmetry.
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