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Abstract

We define a natural quasimetric on the set of continuous valuations of a topological
space and investigate it in the spirit of quasimetric domain theory. It turns out
that the space of valuations of an (ordinary) algebraic domain D is an algebraic
quasimetric domain. Moreover, it is precisely the lower powerdomain of D, where D
is regarded as a quasimetric domain. The essential tool for proving these results
is a generalization of the Splitting Lemma which characterizes the quasimetric for
simple valuations and holds for valuations on arbitrary topological spaces.

1 Introduction

A continuous valuation [8,11] on a topological space (X, 7T), where 7 denotes
the collection of open subsets of X, is a function pu: 7 — [0, co] satisfying

o 1(0) =0 (strictness)
e n(OUO)+u(0ONO') = pu(0)+ u(0') (modularity)
* OCO = u(0) <u(o

@)

* w(Ujer Oi) = sup;e; 11(O;) for all directed (wrt C) families (O;);er of open
sets (continuity).

") (monotonicity)

Continuous valuations were introduced in [8] and, for a continuous lattice in
place of the topology 7, in [11].

Continuous valuations play an important role in denotational semantics,
where the set of all continuous valuations p with (X)) = 1, the probabilistic
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powerdomain of X, is used to model probabilistic nondeterminism [8,9]. They
are also the main ingredient in the domain-theoretic approach to measure
theory which was developed in [5] and lead to the definition of the generalized
Riemann integral [4].

The present paper investigates the set of continuous valuations as a quasi-
metric space. We define a natural quasimetric, the sup-distance for contin-
uous valuations. Although defined in terms of the masses of all open sets,
the distance can be characterized for simple valuations purely in terms of the
weights and points. This result, proved in Section 2.2, generalizes the well-
known Splitting Lemma [8], a combinatorial characterization of the order on
simple valuations which is an invaluable tool when working with valuations.

Then the space is investigated in the setting of quasimetric domain the-
ory [14,6,3], where notions from (ordinary) domain theory are generalized to
quasimetric spaces. In the present paper, we provide the necessary defini-
tions and results from quasimetric domain theory where needed, namely at
the beginning of Sections 3 and 4.

The space of valuations on an (ordinary) algebraic domain D turns out to
be an algebraic domain in the setting of quantitative domain theory. Moreover,
it is exactly the quasimetric powerdomain of D as defined in [15] when D is
regarded as a quasimetric domain.

1.1 Preliminaries and notations

The set of all continuous valuations on X is denoted by V(X). It is ordered
pointwise, i.e.
pCv <= puO)<v)forall OeT.
We write V1(X) = {p € V(X) | n(X) <1} for the probabilistic powerdo-
main of X and V_,(X) = {p € V(X) | p(X) =1} for the set of continuous
valuations with total mass exactly 1.
Continuous valuations may be added and multiplied by scalars from [0, oc].

Both operations are defined pointwise. The point valuations 6, for a € X are
defined by

laeO
0aé¢gO.

6a(0) =

Finite linear combinations of point valuations, i.e. valuations of the form
Y wea Tala are referred to as simple valuations. Imposing the additional con-
dition that all weights r, are non-zero ensures uniqueness of the points and
weights specifying a simple valuation [10].

Addition and multiplication on the set of extended nonnegative real num-
bers [0, 00] are defined by co +x = o + oo = oo for all € [0,00] and by
0-r=x-00=00forx#0and 0-o00 =0o0-0=0. Truncated subtraction
is given by x~y = (z — y) V 0 for x,y € [0,00) and co+y = oo for all y < oo
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and z=—o00 = 0 for all z € [0, c0].

A quasimetric on a set X is a function d: X x X — [0, 00] such that
(1) d(z,z) = 0, (2) if d(z,y) = 0 = d(y,x) then = = y, and (3) such that
the triangle inequality d(x,y) + d(y, z) > d(x, z) holds for all x,y,z € X. We
frequently refer to d as distance function. The order derived from d is defined
by @ Cy4 y iff d(z,y) = 0. A quasimetric space is a pair (X,d), where X is
a set and d a quasimetric. A function f: X — Y between quasimetric spaces
is nonexpansive if d(x,y) > d(f(x), f(y)) holds for all z,y € X. We denote
with B.(z) = {y € X | ¢ > d(x,y)} the open e-ball around =. These are the
basic neighbourhoods for the e-ball topology derived from d. The opposite
quasimetric space of (X, d) has distance d !(z,y) = d(y,x) and is denoted
by XL

2 A distance for valuations

2.1 The sup-distance

We want to supply V(X) with a quasimetric. A natural choice is the sup-
distance

d(p,v) = gtépr(u(O)*V(O)),

which is the distance of the infinite product [0,00]7 restricted to the set
of continuous valuations. It is immediate that this quasimetric induces the
pointwise order on V(X): we have p < v iff VO € 7. p(0O) < v(0) iff
VO € T. u(0O)=v(0) =0 iff d(i, v) = 0.

The probabilistic powerdomain is the closed 1-ball with respect to the
inverse quasimetric d ! around the constant-0 valuation:

Var(X) ={p e V(X) | d(1,0) < 1}.

The boundary of this ball is exactly the set V_; (X).

This distance function has very natural properties. Recall that the in-
formation order on the topological space (X,7) is defined by = Cr y iff
(reO0O=ye€0)forallOeT.

Proposition 2.1 The distance on V(X)) satisfies

(1) d(rsp,ro) =4 CETY
rrilry

(2) d(rég, sdy)=r=s

(3) d(p,v) > d(p +n,v +n)

(4)  md(p, v) > d(mp, mv)

forall x,y € X, r,s € [0,00] and p,v,n € V(X).
3
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Proof. Note that r6,(0)=r6,(O) equals r if x € O and y ¢ O and is zero
otherwise. Hence (1) follows as x [Z7 y iff there is O € 7 with the above
property. Equation (2) is trivial and (3) follows from the fact that (a+2z)—=(b+
x) < a=b holds for all a,b, x € [0, co]. Finally, we have m(a=b) > ma-mb for
all m,a,b € [0, o] which implies (4). O

Choosing for 7 the constant-oo valuation and m = oo reveals that equality
holds neither in (3) nor in (4).

2.2 The distance for simple valuations

For simple valuations, it is possible to define the distance only in terms of
the points and weights, without referring to open sets. In the sequel we will
define a distance d on the set of simple valuations and then prove it to coincide
with d. First, we need to define an auxiliary function dy. Proposition 2.1(1,2),
tells us how to start the definition.
OxCry
do(70s,10y) =
reliry
do(rby, $64) =15

for all x,y € X and r,s € [0, 00]. Inspired by (3) and (4) in Proposition 2.1,
we extend this function by setting

(5) do(rdy +m, 10, + 1) :=do(rdy, r6y)
(6) do(r6s + 1,56, + 1) :=do(rby, s6;)
for all simple valuations 1 and x, ¥y, r, s as before.

Let ~ be the domain of dy, i.e. write ;1 ~ v whenever dy(u, v) is defined by
one of the above cases. The distance function d on the set of simple valuations
is now defined as follows. For simple valuations p and v, we write [u, v] for
the set of all sequences o = (19, M1, ..., Mn) With 99 = p, 9, = v and 0, 1 ~ n;
forall i =1,...,n. For such a sequence a we set

w(a) = Z do(1i—1, M)

Now we define
d(p,v) = inf w(w).
a€(p,V]

Note that there is a path from the zero valuation to every simple valuation and
vice versa. Moreover, paths can be concatenated: if o = (no,...,n,) € [i, V]
and 3 = (n5,...,1m,) € [v,n] then af := (o, ..., N, 1, -+, 7,) € [1,1] and
w(af) =w(a)+w(F). As a consequence, we conclude that d is indeed defined
for all simple valuations and satisfies the triangle inequality.

We will see that d = d. For the case d = d = 0 this is a reformulation of
the Splitting Lemma [8,9]. The essential tool in the proof is the Max-Flow
Min-Cut Theorem from graph theory, see e.g. [2].

4
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Definition 2.2 Suppose G = (V, E) is a directed graph with capacity c: E —
[0, 00] and two distinct vertices L and T. A flow from L to T is a func-
tion f: E — [0,00] such that (1) f < ¢ (pointwise) and (2) for all z €
V\{L, T} the inflow at vertex x equals the outflow: > ., vep f(w,x) =

> yev, wyyer | (@ y). The value of the flow is given by >° o\ | ,yep f(L, 7).
A cut is aset C CV such that L € C'and T ¢ C. The value of the cut C'is

> Af(a,b) [aeC; beV\CE

Theorem 2.3 (Max-Flow Min-Cut Theorem) There ezxists a flow with
mazimum value. This value equals the minimum value of a cut.

Theorem 2.4 (Generalized Splitting Lemma) The sup-distance d coin-
cides for simple valuations with d.

Proof. If o € [p,v] then d(p,v) < w(a) by the triangle inequality in con-
junction with the definition of dy and Proposition 2.1. Thus it is clear that
d < d holds whenever the latter is defined. To prove the reverse inequality,

suppose
n= Zraéa and 7' = Z Sp0p

a€A beB

for certain finite sets A, B C X. Write r = > _, 7, and let d* = d(n,7) =
supoer(n(0)=n'(0)). If K C A then

(7) Yora< D std
aEK be BAK

as we can pick an open set O € 7 such that for all € AU B it is true that
r € Oholdsiffr € TK ={ye X |3k e K. kCy y}. Now we construct a
directed graph as follows. The first part is the graph from Jones’ proof of the
Splitting Lemma [8, Theorem 4.10]: we have nodes L and T and one node
for each a € A and b € B as well as edges from L to each a, from each b
to T and an edge (a,b) whenever a C b. Capacities are as before: the edges
(L, a) have capacity r,, the edges (a,b) have capacity r and finally s, for the
edges (b, T). Now we add one further node, *, with edges (x, T) and (a, ),
for all @ € A. All these edges have capacity d*. We claim that the minimal
value of a cut is r. If this is true then, by the Max-Flow Min-Cut Theorem,
there is a flow with value r. This flow may be described by numbers ¢, for
a C b (denoting the flow from « to b) and u, for a € A (denoting the flow
from a to *) such that inflow=outflow at all nodes. As the value of the flow
is r and ) ., 74 = 7, it must be true that the flow from L to a equals r, for
all a € A. Hence, the inflow=outflow condition for these nodes yields

(8) Te = Ug + Z ta,b
beBNta
for all « € A. Evaluating the condition at the vertices b € B gives
(9) Z tap < Sp
ac€AN}b
5
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for all b € B. Finally node x. We get
(10) D ug < d.

acA
We now define a path from n to n' as follows, writing ~5 and ~g to de-
note a finite number of ~-steps in the path involving only ~-relations due to
equation (5) or (6), respectively.

(11)77227“a5a = Z(ua+ Z ta,b)éa

acA acA betanB

(12) ~6 Z(0+ Z ta,b)éa
acA betanB

(13) =D D tabe
bEB acANlb

(14) ~5 D D tady
bEB acANlb

(15) =2 (X ta)a
beB acANlb

(16) ~6 Z sp0p = 1/
beB

Here the equality in (11) is valid by (8) whereas (13) and (15) are merely
rearrangements. The weight of this path is the sum of the dy-distances in the
~-steps. All the steps in (14) are of the form (u+ ¢6,) ~ (= ¢dp) with a C b,
so the distance is zero. Also, the steps in (16) yield dy = 0 as they are of the
form (u+ q165) ~ (10 + q20p), where ¢; < g2 by (9). Let us finally consider the
steps in (12). They are of the form (u + ua0,) ~ (1 + 06,) for a € A. Such a
step costs do(q04,0) = u,. Hence the weight of the path is ) _, u, which,
by (10), is at most d*. Thus d(n, ') < d* = d(n, 7).

It remains to prove the claim, i.e. that the minimum value of a cut is 7.
Observe that the cut {L} has value > _, 7, = 7, so we have to show that
there is no cut with smaller value. Let C' be a cut. If there are a € A and
b € B such that « C b and a € C but b ¢ C, then the value of the cut is
certainly at least r since this is the capacity of the edge (a,b). We have already
seen that the value is at least r if there is no a € AN C. We are left with the
case that A’ = ANC is not empty and that TA'N B C C. Observe that there
is at least one edge with weight d* leading out of the cut, either (x, T) or one
of the (a, ). Using (7), we see that the value of such a cut is at least

DR IRYED DR S

acA\A’! betA'NB a€A\A! acA’
So the cut’s value is at least r. This verifies the claim and finishes the proof
of the theorem. a

Corollary 2.5 If i and v are simple valuations then there is a path o € [, V]
with d(p,v) = d(pu,v) = w(a).
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As a consequence, we derive the usual Splitting Lemma in a formulation
using elementary steps, see [16, Lemma 2.10].

Corollary 2.6 If 1 and v are simple valuations then p T v if and only if
there is a chain jp =19 C g C --- C n, = v where for each i € {1,...,n} the
simple valuation n; 1s obtained from n;_1 by an elementary step of the form
Nic1=nN+10, Cn+1dy=mn witha ZTbormn_,=n+10, Cn+sd, =mn; with
r <s for somen,a,b,r,s.

3 V(X) as quasimetric domain

We are now going to investigate the quasimetric space (V(X), d) in the spirit
of quasimetric domain theory.

3.1 Basic notions of quasimetric domain theory

In this section, we briefly introduce the basic notions of quasimetric domain
theory as a special case of quantitative domain theory developed in [6]. This
theory goes back to ideas of Smyth [14] and Lawvere [12]. Rather than using
the approach via ideals as in [6], however, we take the approach using nets. Tt
was initiated in [14] and developed (with sequences in place of nets) in [13,3].
In Section 8 of [6] the two approaches are shown to be equivalent.

Quasimetric spaces may be interpreted as generalized partially ordered
sets. To do so, think of [0, 0] as the set of truth-values, of 0 as true, of +
as logical conjunction &, and as the relation p > ¢ as entailment p - ¢. The
values of the distance function d may be thought of as the “truth value” of the
assertion “x C y”. In this setting, the triangle inequality corresponds to the
law of transitivity, d(z,z) = 0 reveals reflexivity and the second assumption
is antisymmetry. This logical interpretation is studied in greater detail in [6].
A net (2;);er on X is forward Cauchy if, for all € > 0, there is ¢ € I such that
whenever ¢ < j < k we have ¢ > d(xj, ;). A point v € X is the directed limit
of the net, denoted by = = limZTeI vy, if d(w,y) = infiersup,s; d(z;, y) holds
for all y € X. A quasimetric space is directed complete, or a gmdcpo, if all
forward Cauchy nets have a directed limit.

A set O C X is Scott-open iff it is open with respect to the =-ball topology
and whenever lirnzT x; € O for a forward Cauchy net (x;);es, then thereisi € T
such that B.(x;) C O for all j > i; the collection of all these subsets is the
Scott topology. A function f: X — Y is Scott-continuous, if it is continuous
with respect to the Scott topologies on X and Y. A nonexpansive function
between qmdcpos is Scott-continuous iff it preserves directed limits of forward
Cauchy nets.

An element k in a qmdepo X is compact if d(k,lim! z;) = lim; d(k, z;)
holds for all forward Cauchy nets (x;);e;. A subset Y C X generates X if
every element of X is the directed limit of a forward Cauchy net in Y. A

7
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qmdcpo is algebraic, or an algebraic gm-domain, if it is generated by its set of
compact elements.

3.2 Duirected completeness

The first subject is directed completeness and we first look at infinite prod-
ucts in general. The product in the category of quasimetric spaces and non-
expansive maps may be constructed by taking the cartesian product with the
sup-distance d((z;)ier, (¥i)ier) = sup,e; d(z;, y;). This product is well-behaved
with respect to directed completeness (cf. Theorem 6.5 of [13]):

Proposition 3.1 If (X,d) is a gmdcpo, and Y is any set, then the infinite
product XY, endowed with the sup-distance, is a gqmdcpo. Limits of forward
Cauchy nets are calculated pointwise.

Proof. Let (f;);c; be a Cauchy net in XY. It is clear that the coordinate
nets (fi(y))icr are Cauchy for all y € Y. We have to check that the pointwise
limit f, defined by f(y) = lim;cs f;(y) is the limit of the original Cauchy net,
i.e. that for all ¢ € XY we have

(17) d(f,g) = infsupd(f;, g).
el §>i

The function f is the pointwise limit, hence

(18) d(f(y). 9(y)) = infsupd(f;(y). 9(y))
2 j>i

for all y € Y. But certainly d(f;(y),g(y)) < d(fj,9), so (18) implies that
d(f(y), g(y)) is smaller than or equal to the RHS in (17) for all y € Y. Thus <
in (17) holds. For > observe that infjc; sup;s; d(f;, g) < infie; sup,;(d(f;, f)+
d(f,g)) = d(f,g) + inficrsup;; d(fj, f), so it remains to show

(19) infsup d(f;, f) = 0.

el >4

Suppose £ > 0. As the net (f;);c; is Cauchy, there is i € I such that i < j <k
implies ¢ > d(f;, fr) for all j,k € I. For each y € Y, equation (19) holds
with d(f;(y), f(y)) in place of d(f;, f,) by pointwise convergence of the net.
So there is an index i, € I such that ¢ > sup;5; d(f;(v), f(y)). Fix j > i.
Then, for each y € Y, there is & € I larger than both j and ¢,. Hence

e+e = d(f;, fi) + d(fi(y), f(y)) = d(f;(y), f(y)) by construction. Thus
£+ >sup;s; d(f;, f) and equation (19) follows. O

This result enables us to see that the spaces of valuations are qmdcpos.

Theorem 3.2 The spaces (V(X),d), (V<1 (X),d) and (V=1(X),d) are gmdec-
POS.

Proof. We consider V(X) as a subset of the infinite product [0, co]” which
is directed complete by Proposition 3.1. By the same proposition, limits of
forward Cauchy nets are calculated pointwise, so it is a standard observation
that V(X)) is closed under their formation: Suppose (u;);cr is such a net with

8
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pointwise limit g and O,0" € T. Then u(OUO") + p(ONO') = lim;e (1 (OU
O") + (0N O") = lim;er(1;,(O) + 11;,(0")) = u(O) + p(O') and similarly for
the other equations and for continuity.

Directed completeness of the subspaces (V<1(X),d) and (V_,(X),d) is
shown in a similar fashion: if the equation p;(X) < 1 or p;(X) = 1, re-
spectively, holds for all i € I, where (11;);es is a forward Cauchy net in V(X),
then it also holds for the limit since this is calculated pointwise. O

3.8  Algebraic domains

Now let us turn our attention to the case when the topological space (X, 7T)
is an (ordinary) algebraic domain (D, C) in its Scott-topology or. See [1] for
domain-theoretic definitions and notations. Then the set of continuous valu-
ations V(D) is a continuous domain with the set of all simple valuations as
basis [8]. (In fact, the same is true for the case of the domain D being con-
tinuous.) Of our special interest are finite simple valuations based on compact
elements, by which we understand simple valuations ) ., 7,0, such that each
a € Ais acompact element of (D, C) and such that each r, is finite. We denote
the set of all finite simple valuations based on compact elements by V(D).
Recall that a € D is compact iff the principal filter Ta = {b € D | a C b} is
Scott-open.

Lemma 3.3 Suppose n = > . ,7aba € Vo(D). Then there is a finite set

F C oc such that

acA

d(n,p) = gtég(n(O)*u(O))

for all valuations .

Proof. Define F = {{B | B C A} then F C or as A is a finite set of compact
elements. Hence

d(n, p) = sup (n(O)=u(0))

OEUE
(20) > sup (n(0)=p(0))

OcF
But if O € o then certainly T(ANO) € F and 1(ANO) C O, thus p(T(AN
0)) < u(0). As n(0) = n(1(ANO)) this implies 7(0)=u(0) < n(T(AN
0))=u(T(ANO)). Therefore, equality holds in (20). O

Theorem 3.4 If (D,C) is an algebraic domain then (V(D),d), (V<1(D),d)
and (V=1(D),d) are algebraic gqm-domains. More specifically, all finite simple
valuations based on compact elements are compact and Vo(D) generates V(D).

Proof. Suppose that 7 is a finite simple valuation based on compact ele-
ments. Furthermore, let (11;);c; be a Cauchy net of valuations. We have to
verify d(n,lim;er p;) = lim;er d(n, 11;). By Proposition 3.1, the limit lim;es p;
is calculated pointwise. Employing the finite set 7 C o from Lemma 3.3 we
get
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lim (1, ) = lim sup (1(0) = 11:(0))

€l ocF
s i (10)-1(0)
:(s)gg(n(owgm(m)

=d(n, lz-ler? 1),

Where the limit and the supremum commute since the set F is finite and
continuity of the subtraction is ensured as 7(O) < oco. This proves that 7 is
compact.

Now every continuous valuation in V(D) is the directed supremum of el-
ements from Vy(D), so in particular the limit of a forward Cauchy net on
Vo(D). Hence (V(D), d) is algebraic. The same argument works for the other
two spaces where Vo (D)NVy(D) and V= (D)NV;y(D), respectively, are bases.O]

4 V(X) as quasimetric powerdomain

4.1  More quasimetric domain theory

In [15] a theory of powerspaces for quantitative domains was developed which
carried over the theme of replacing the 2-valued logic by a [0, oo]-valued logic
(for the case of quasimetric spaces) to the interpretation of the element re-
lation €. Consequently, powerdomains were defined to be modules. Let us
briefly give the relevant definitions for the case of quasimetric spaces. A
quasimetric space (X, d) is pointed by b: X — [0, 00] (the bottom-predicate)
if b(z) > d(z,y) for all x,y € X. A map f:(X,d,b) — (X', d', V') between
pointed quasimetric spaces is strict if b(x) > 0'(f(z)) holds for all x € X.

A algebraic [0, co]-module (X, d;+, -, 0) consists of an algebraic qm-domain
(X, d) with a Scott-continuous scalar multiplication - : [0,00] x X — X, a
Scott-continuous addition + : X x X — X, and a special element 0 € X
satisfying the usual algebraic axioms of modules, i.e. addition is commutative
and associative and has 0 as neutral element, m-0=0-z =0and 1-z =2
for all m € [0,00] and x € X, the distributivity laws (m+n)-z=m-z+n-z
and m-(r+y)=m-xz+m-yaswellas (mn) -z =m-(n-x) forallz,y € X
and m,n € [0, 00]. Moreover, for z,y,2 € X and m,n € [0, oo] the following
are required:

d(z,y) = d(x+zy+2)
md(z,y) > d(mx,my)
m < n=d(mx,nx) = 0.

A morphism of algebraic [0, 0c]-modules X and Y is a nonexpansive Scott-
continuous map f: X — Y such that f(z +y) = f(z) + f(y) and f(mz) =
m - f(x) hold for all z,y € X and m € [0, 00]. Every algebraic [0, co]-module
is implicitly pointed by the function b(x) = d(z,0). Morphisms of algebraic

10
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[0, oc]-modules are strict with respect to this bottom-predicate.

The powerdomain P(X) exists for pointed algebraic gm-domains X and is
characterized by the following universal property: the space X is embedded
into P(X) and whenever Y is an algebraic [0,00]-module and f: X — Y
is a strict nonexpansive Scott continuous function, then there is a unique
extension of f to P(X) which is a morphism of algebraic [0, cc]-modules.
The paper [15] does also give a construction of the powerdomain. We do not
give technical details here but instead just note that P(X) is constructed in
four stages. First, the free algebra in the purely algebraic sense of signature
of [0, 00)-modules (i.e. (0,2, (1)j0,00))) over Xy, the set of compact elements
of X is considered. Then, a pseudo-quasimetric is defined on this set (pseudo
refers to not requiring the Tp-axiom) in a way similar to the definition of d in
Section 2.2 of the present paper. This distance function factors through the
quotient which yields the free [0, co]-module Py(X) in the sense of universal
algebra. For the last step of the construction, we need to introduce some
further machinery.

An ideal on the quasimetric space X is a map ¢: X — [0, 00| such that
(1) d(z,y)+¢(y) > ¢(x) forall 2,y € X, (2) there is an x such that co > ¢(z)
and (3) whenever ¢, > p(z1), €2 > p(z2) and 6 > 0, there is an = such that
6> p(x), g > d(xy,x), and €3 > d(x2,x). The theory of quasimetric domains
can be developed using ideals instead of forward Cauchy nets as was done
in [6]. Ideals were independently introduced as flat modules in [17]. The ideal
completion of X is the set Idl(X) of all ideals on X supplied with the sup-
distance d(p, 1) = sup,.x d(¢(z), ¥(x)). The ideal completion is an algebraic
gm-domain and contains an isomorphic copy of X via the map that sends an
element x to the ideal tx () defined by tx(x)(y) = d(y,z) forall y € X. If X
is an algebraic qm-domain with X its set of compact elements and Y C X,
generates X then Idl(Y) and X are isometric.

The last step of the construction of the powerdomain of X is the definition
P(X) = 1dl(Py(Xy)). It is shown in [15] that the operations of modules lift to
the ideal completion and that this space has the desired properties.

4.2 Ordinary domains as quasimetric domains

The following proposition enables us to consider ordinary posets as quasimetric
spaces and ordinary domains as qmdcpos.

Proposition 4.1 Let (D,C) be a partially ordered set. Define
OxCy

lalZy.

Then (D, d) is a quasimetric space. It is a gmdcpo iff (D,C) is a depo. This
gmdcpo is algebraic iff (D, C) is. In particular, an element of (D, d) is compact
iff it is compact in the usual sense. Moreover, 1d1(D,d) is the usual ideal
completion of (D, C) with 0-1-valued distance as above.
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Proof. It is clear that the above d is a quasimetric. Suppose (z;);cr is a
Cauchy net on (D, d). Applying the Cauchy-condition for e = § yields an
index iy € I such that z; T x; holds for all j, &k € I with i < j < k. This
means that the net is directed from 7, onwards. Furthermore, a potential limit
point x € D may be characterized as follows:
r=limz; <= Yy € X. d(x,y) = infsup d(z;, y)
icl i€l j>;

— WyeX. (a;gy — HiEIVjZi.a:igy>

— T = \/T x;.
>4
So (D, d) is a qmdcpo iff the poset (D, C) is directed complete. In a similar
fashion, one concludes that compactness coincides with compactness in the
usual sense. Thus the claim on algebraicity follows.

Finally the ideal completion. We first prove that every ideal ¢: D — [0, 0]
only takes values in {0,1}. Fix # € D and assume first that o(z) < 1.
As ¢ is an ideal, for every 6 > 0 there is y € D with 1 > d(x,y) and
6 > ¢(y). But d(z,y) € {0,1}, so this implies d(x,y) = 0. Thus ¢ >
o(y) = d(x,y) + ¢(y) > ¢(x) in this case. From the arbitrary nature of 6
we conclude p(x) = 0. It remains to consider the case where ¢(x) > 1. For
every ideal ¢ and every ¢ > 0 there is a point y with § > ¢(y). In our case,
picking 6 = 1 yields y € D with ¢(y) = 0 from what we proved so far. This
implies 1 =1+ 0 > d(x,y) + ¢(y) > ¢(z). Thus we proved ¢(x) € {0,1} for
all x € D. Therefore, the ideals of (D, d) are via ¢ — {z € D | p(z) = 0}
in bijective correspondence to the ideals of (D,C). It is easy to see that
sup-distance on Idl(D, d) corresponds exactly to the 0-1-valued distance on
Idl(D, C) derived from subset inclusion. O

Theorem 4.2 Suppose that (D,C) is an (ordinary) algebraic domain. En-
dow D with the 0-1-valued distance from Proposition 4.1 and constant bottom-
predicate b(z) = 1 for all x € D. Then the quasimetric powerdomain of this
algebraic gqm-domain is given by the space of valuations (V (D), d).

Proof. We gave in Section 4.1 a sketch of the construction of the quasimet-
ric powerdomain P (D) from [15]. The (algebraically) free module Py(Dy)
constructed in the third step is in natural bijection to the set V5(D) of all
finite simple valuations based on compact elements: the bijection sends a
point valuation 4, to the generator of Py(Dy) corresponding to a € X,. The
distance on Py(Dy) coincides with d considered in Section 2.2 as both are
constructed in exactly the same way. By the Generalized Splitting Lemma,
(Vo(D), d) is isometric to (Vy(D),d). By Theorem 3.4, all finite simple valu-
ations based on compact elements are compact in (V(D), d), and, moreover,
they generate V(D). Thus (V(D),d) = Idl(Vy(D),d). Hence (V(D),d) =
1d1(Vy(D), d) = 1d1(Py(Dy),d) = (P(D),d). O

In [15], it was shown that the quantitative powerdomain coincides with

12
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the lower or Hoare powerdomain for the case of ordinary domains, i.e. with
two-valued logic. Thus, in a nutshell, Theorem 4.2 says that V(D) is the lower
powerdomain of D when the latter is regarded as a quasimetric domain.
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