CORRECTION TO "ON APPELGATE-ONISHI'S LEMMA"¹

Andrzej NOWICKI

Institute of Mathematics, N. Copernicus University, 87-100 Toruń, Poland

Yoshikazu NAKAI

Department of Applied Mathematics, Okayama University of Science, 1–1 Ridai-cho, Okayama 700, Japan

Communicated by C.A. Weibel Received 6 September 1988

- (1) We add Lemma 1.6 after Lemma 1.5.
- (2) The proof of Proposition 2.1 should be replaced by the one given here.

We thank Nagata for pointing out an error in our proof of Proposition 2.1; we also owe the present device to him.

Lemma 1.6. Let f^* and g^* be non-constant (p,q)-forms of (p,q)-degrees m and n respectively and assume that $[f^*, g^*] = 0$. Then m = 0 (this implies necessarily $pq \le 0$) implies n = 0 and vice versa.

Proof. Assume that m = 0. Let $f^* = \sum a_{ij} x^i y^j$ and $g^* = \sum b_{kl} x^k y^l$. Let $x^i y^j$ and $x^k y^l$ be the highest degree terms in f^* and g^* respectively with non-zero coefficients respectively. Then $[f^*, g^*] = 0$ implies il - kj = 0. Since pi + qj = m = 0 and pk + ql = n we get ni = nj = 0. By our assumption f^* is not zero. Hence one of i and j is not zero. This implies n = 0. \Box

Proof of Proposition 2.1. It suffices to prove $t_x(f) > 0$. Assume that $t_x(f) = 0$. Since deg f > 1 there is a direction (p, q) such that (i) at least one point in S_f lies on the line pX + qY = 0, (ii) p > 0 and q < 0 and (iii) S_f lies in the area $pX + qY \le 0$. Lemma 1.3 shows that $(1, 0) \in S_g$. Let f^* and g^* be the leading (p, q)-forms of f and g respectively. By our choice of (p, q) we have $d_{p,q}(f^*) = 0$ and $d_{p,q}(g^*) \ge p > p + q$. Then by Lemma 1.2 we have $[f^*, g^*] = 0$. Since p > 0 we get a contradiction to Lemma 1.6. \Box

¹A. Nowicki and Y. Nakai, On Appelgate-Onishi's lemma, J. Pure Appl. Algebra 51 (1988) 305-310.