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SUMMARY

Perivascular mesenchymal stem and progenitor cells
(MSPCs) are critical for forming a healthy hematopoi-
etic stem cell (HSC) niche. However, the interactions
and influence of acute myelogenous leukemia (AML)
stem cells with the microenvironment remain largely
unexplored. We have unexpectedly found that neu-
ropathy of the sympathetic nervous system (SNS)
promotes leukemic bone marrow infiltration in an
MLL-AF9 AML model. Development of AML disrupts
SNS nerves and the quiescence of Nestin+ niche
cells, leading to an expansion of phenotypic MSPCs
primed for osteoblastic differentiation at the expense
of HSC-maintaining NG2+ periarteriolar niche cells.
Adrenergic signaling promoting leukemogenesis is
transduced by the b2, but not b3, adrenergic recep-
tor expressed on stromal cells of leukemic bone
marrow. These results indicate that sympathetic
neuropathy may represent a mechanism for the
malignancy in order to co-opt the microenvironment
and suggest separate mesenchymal niche activities
for malignant and healthy hematopoietic stem cells
in the bone marrow.

INTRODUCTION

Understanding the mechanisms by which the hematopoietic

stem cell (HSC) niche regulates leukemia-initiating cells, also

referred to as leukemia stem cells (LSCs), in acute myelogenous

leukemia (AML) is crucial to improving treatment outcome and

eradicating the disease. Expansion of the leukemic clone is

associated with the impairment of normal hematopoiesis, result-

ing in severe anemia, thrombocytopenia, and immunodefi-

ciency, which can lead to severemorbidity in affected individuals

(reviewed in Ferrara and Schiffer, 2013). Additionally, a high

relapse rate in AML suggests that quiescent LSCs are not tar-
Cell S
geted by currently used treatment protocols (Byrd et al., 2002;

Ishikawa et al., 2007). However, little is known about the under-

lying mechanisms that cause the severe hematopoietic failure in

AML and how LSCs alter the bone marrow microenvironment.

Recent studies have demonstrated that healthy HSCs reside

in specific perivascular bone marrow niches, which tightly

regulate their function (reviewed in Frenette et al., 2013). Several

candidate niche cells have been suggested, including CXCL12-

abundant reticular cells (Sugiyama et al., 2006), Nestin+ (Nes+)

cells (Méndez-Ferrer et al., 2010), and Leptin receptor (LepR)+

cells (Ding et al., 2012), that exhibit significant overlap among

each other (Pinho et al., 2013). Vascular structures were recently

found to form distinct niches where arterioles marked by Nes-

GFPbright NG2+ pericytes were associated with dormant HSCs,

whereas reticular-shaped sinusoidal Nes-GFPdim cells were

associated with less-quiescent HSCs (Kunisaki et al., 2013).

Arterioles of the bone marrow are highly innervated by neural

fibers of the sympathetic nervous system (SNS) that regulate

HSC migration (Katayama et al., 2006; Méndez-Ferrer et al.,

2008). Input from SNS nerves is also critical for bone marrow

regeneration after genotoxic insults where SNS neuropathy

can impair HSC recovery after irradiation or 5-fluorouracil-

induced damage (Lucas et al., 2013).

To what extent LSCs share properties with healthy HSCs re-

mains unclear. Furthermore, the heterogeneity among acute

leukemias suggests the potential for differential requirements

by the bone marrow microenvironment. In keeping with this

idea, expression of different cytokines in the bone marrow can

direct human MLL-AF9 leukemia into either AML or B cell acute

lymphogenous leukemia (ALL) fate (Wei et al., 2008). MLL-AF9

AML cells have been suggested to home further away from the

bone in comparison to healthy HSCs and do not rely on niche-

derived Wnt signals (Lane et al., 2011). In a xenograft model of

ALL, infiltration of leukemic cells altered the homing sites of

healthy CD34+ progenitors (Colmone et al., 2008). BCR-ABL-

driven chronic myelogenous leukemia (CML) was reported to

alter the microenvironment and reduce the capacity to support

normal hematopoiesis (Schepers et al., 2013; Zhang et al.,

2012). Conversely, patient-derived mesenchymal stem and pro-

genitor cells (MSPCs) were shown in order to propagate the
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expansion of human myelodysplastic cells in xenografts (Me-

dyouf et al., 2014). However, the nature of the LSC niche remains

unclear.

Given the rapid and extensive remodeling imposed by AML

infiltration of the bone marrow, we anticipated that the mecha-

nisms of bone marrow regeneration might overlap with the

requirements ofAMLdevelopment. The importanceof SNSnerve

function in hematopoietic regeneration (Lucas et al., 2013) com-

bined with the requirement of SNS nerves for the development of

xenografted prostate cancer (Magnon et al., 2013), suggested

that the inhibition of adrenergic signals might curb AML develop-

ment. Unexpectedly, we report herein that MLL-AF9 AML

co-opts SNS fibers in the bone marrow and spleen and that

sympathetic neuropathy or adrenergic blockade promotes AML

through an expanded, but severely altered, stem cell niche.

RESULTS

Adrenergic Signals Regulate AML
We transduced Lin�c-Kit+Sca-1+ (LSK) cells with the MLL-AF9

oncogene and clonally propagated transduced LSK cells in

methylcellulose as preleukemic cells (Krivtsov et al., 2006).

Transplantation of transduced cells rapidly induced the disease

with massive bone marrow and spleen infiltration of monomor-

phic undifferentiated cells uniformly expressing myeloid cell

markers, without myelofibrosis (data not shown). Serial trans-

plantations enriched for stem cell activity and robust engraft-

ment could be reproducibly achieved with leukemic bone

marrow cells from tertiary recipients without the need for precon-

ditioning and avoiding the potential of irradiation-induced

changes in the microenvironment.

To assess the functional role of the SNS in AML, we ablated

adrenergic nerves of recipient mice with 6-hydroxydopamine

(6OHDA), which specifically disrupts catecholaminergic neurons

without directly affecting hematopoietic cells (Katayama et al.,

2006; Méndez-Ferrer et al., 2008). Surprisingly, we found that

mice with denervated bone marrow exhibited greater infiltration

by phenotypic LSCs, defined as IL-7R�Lin�GFP+c-KithiCD34lo

FcgRII/IIIhi granulocyte-macrophage progenitors (L-GMPs) (Fig-

ures 1A and 1B), and significantly higher egress of L-GMPs to

peripheral blood and spleen than control animals (Figure 1C).

This was associated with a significant reduction in the survival

of denervated leukemic mice after transplantation of either pre-

leukemic or leukemic MLL-AF9 cells (Figures 1D; Figure S1A
Figure 1. Sympathetic Neuropathy Promotes Leukemogenesis
(A) Gating strategy for flow cytometry analysis of LSC/L-GMPs.

(B) Absolute number of L-GMPs per femur in control and denervated leukemic m

(C) Absolute number of L-GMPs per ml blood (left) and spleen (right) in contro

control, n = 4–5).

(D) Survival curve of control and denervated leukemic mice (n = 5).

(E) Left, flow cytometry gating strategy for bone marrow analysis of human hemat

myeloid hCD33+ cells and excluding hCD3+ and hCD19+ expression (data not s

(BMT = bone marrow transplantation). Right, human myeloid bone marrow engra

denervated NSG mice (data are normalized to paired controls, n = 4 human AML

(F) Top, z stack confocal images from bone marrow, spleen, and cremaster mus

represents 10 mm. Bottom, assessment of the TH+ fiber density per arteriole by

responding arteriole (bone marrow: n = 33–49 arterioles from six to eight mice per

n = 16–17 arterioles from six mice per group). *p < 0.05, **p < 0.01 determined b

See also Figure S1.
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available online). These significant differences in leukemia devel-

opment were due to neither a potential effect of denervation on

the homing of leukemic cells to bone marrow and spleen (Fig-

ure S1B) nor a direct effect on MLL-AF9 leukemia cells (Fig-

ure S1C). Furthermore, sympathetic denervation performed after

the leukemic cell injection significantly accelerated the course of

disease, indicating that adrenergic regulation of AML acted

beyond the engraftment period (Figure S1D). We did not observe

any difference between the two groups in cell cycle or apoptosis

of LSCs after transplantation (Figures S1E and S1F). Thus, bone

marrow infiltration by AML is increased when sympathetic inner-

vation is compromised.

To assess the relevance of adrenergic signals in human AML,

we transplanted primary human AML cells into denervated and

control NOD-scid IL2Rg�/� mice. We observed a significantly

higher bone marrow infiltration with human myeloid cells in

denervated mice (Figure 1E), even when samples were derived

from myeloblastic or myelomonocytic leukemia (French-Amer-

ican-British classification AML M1 or M4), suggesting that the

SNS may affect AML outside the MLL-AF9+ monocytic subtype.

To get more insight into the effect of AML infiltration on the

HSC niche, we injected MLL-AF9 leukemic cells into Nes-Gfp+

mice in which GFP expression by perivascular cells marks

HSC niches (Méndez-Ferrer et al., 2010). After 3 weeks, we eval-

uated the bone marrow by immunofluorescence imaging of thick

sections in order to assess the vascular structures (Kunisaki

et al., 2013). Leukemic bonemarrow exhibitedmarked increases

in sinusoidal densities with a disorganized appearance (Fig-

ure 2F). Additionally, tyrosine hydroxylase (TH) staining, which

specifically labels catecholaminergic fibers, revealed a signifi-

cant reduction of arterioles covered by TH+ fibers in AML bone

marrow in comparison to healthy controls (data not shown).

Strikingly, the arterioles that remained innervated exhibited sig-

nificant reductions in the density of ensheathing TH+ fibers (Fig-

ure 1F, left). Sympathetic neuropathy was not confined to the

bone marrow but also occurred in the spleen, and this correlated

with reduced noradrenaline levels in these tissues (Figures 1F,

middle, and S1G). In contrast, adrenergic innervation of the

skeletal muscle, a site which is not primarily infiltrated by

leukemic cells, did not exhibit any significant change (Figure 1F,

right). These results indicate that leukemia development induces

sympathetic neuropathy at infiltrated sites, resulting in a locally

reduced sympathetic tone which in turn may reinforce the

leukemic disease.
ice 20 days after transplantation (normalized to control, n = 19–20).

l and denervated leukemic mice 23 days after transplantation (normalized to

opoietic engraftment by gating on human (h) CD45+ cells detecting exclusively

hown). Representative flow cytometry plots from each experimental condition

ftment 4 weeks after transplantation of primary human AML cells in control or

samples).

cle stained for PECAM1+ endothelial cells and TH+ nerve fibers. The scale bar

quantifying the total length of all TH+ branches divided by the area of the cor-

group; spleen n = 21–29 arterioles from five mice per group; cremaster muscle:

y Student’s t test. Data are shown as mean ± SEM.
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Because our recent studies have revealed that the denerva-

tion of healthy bone marrow can lead to increased numbers

of Nes-GFP+ cells (Lucas et al., 2013), we determined the con-

tent of stromal and endothelial cells with fluorescence-

activated cell sorting (FACS). We found a �3.8-fold expansion

of Nes-GFP+ bone marrow stromal (CD45�CD11b�Ter119�

CD31�) MSPCs in leukemic mice (Figures 2A). Leukemic

bone marrow Nes-GFP+ cells retained their phenotypic charac-

teristics with similar proportion of LepR+, PDGFRa+, and CD51+

cells than healthy control mice (Figures 2B). The increased

numbers of PDGFRa+CD51+ MSPCs (Pinho et al., 2013)

confirmed that the higher proportion of Nes-GFP+ cells was

not due to an effect of the leukemia on the Nes promoter activ-

ity (Figure 2C). MSPCs exhibited a significant loss of quies-

cence, suggesting that their increased numbers were most

likely due to proliferation (Gronthos et al., 2003; Kunisaki

et al., 2013) (Figure 2D).

The loss of quiescence resulted in a higher vulnerability to gen-

otoxic insult. In control mice, sublethal irradiation can induce

adipogenesis in the bone marrow (Bryon et al., 1979), through

differentiation from MSPCs (Mizoguchi et al., 2014). However,

in leukemic mice, the number of MSPCs was significantly

reduced after irradiation, resulting in reduced numbers of

Perilipin+ adipocytes (Figure 2E). In line with increased vascular

densities (Figure 2F) (see also Aguayo et al., 2000; Hussong

et al., 2000; Padró et al., 2000), leukemic bonemarrow contained

increased numbers of endothelial cells as determined by flow

cytometry (Figure 2F) and cell-cycle analyses also revealed a

reduction of the quiescent fraction (Figures 2G). These results

indicate that leukemic bone marrow infiltration leads to MSPC

and endothelial cell expansion associated with SNS denervation.

Expanded Nes-GFP+ Cells Are Directed Toward the
Osteoblastic Lineage
We assessed the function of mesenchymal lineages in leukemic

bone marrow. Purified Nes-GFP+ cells from leukemic marrow

contained a 1.7-fold greater fibroblastic colony-forming unit

(CFU-F) capacity in comparison to healthy controls (Figure 3A)

but remained confined within the Nes-GFP+ stromal population

(data not shown). To assess the commitment of Nes-GFP+ cells

to differentiate to the osteoblastic lineage, we stimulated osteo-

blast differentiation and mineralization in isolated Nes-GFP+

bone marrow cells. We found a significant increase in the num-

ber of osteoblastic colony-forming units (CFU-OB) with larger
Figure 2. Bone Marrow MSPCs and Endothelial Cells Significantly Exp
(A) Left, representative flow cytometry plots, gated on stromal (CD45�Ter119�

leukemic mice. Middle and right, frequency and absolute numbers of Nes-GFP+

(B) Summary of mesenchymal surface marker screening expressed by stromal

controls (gray columns) as detected by flow cytometry analysis (n = 3–10).

(C) Representative flow cytometry plots and quantification of PDGFRa and CD51

(D) Cell-cycle analysis of PDGFRa and CD51 double-positive bone marrow stroma

and Hoechst 33342 staining (n = 3).

(E) Top, z stack confocal images of thick bone sections stained with anti-Perilipin

PDGFRa and CD51 double-positive bone marrow stromal cells (left, normalized t

growth plate (right) 6 days after sublethal irradiation (n = 4).

(F) Left, frequency of nonhematopoietic (CD45�Ter119�) CD31+ endothelial cells (
anti-PECAM1 and VE-cadherin antibodies. The magnified confocal images withi

(G) Cell-cycle analysis of endothelial cells quantified by flow cytometry with ant

determined by Student’s t test. Data are shown as mean ± SEM.
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mineralizing colonies, indicating that Nes-GFP+ cells in leukemic

bone marrow have an enhanced commitment toward osteo-

blastic differentiation (Figures 3B and 3C). A subset of leukemic

bone-marrow-derived Nes-GFP+ cells showed multilineage dif-

ferentiation capacity after >30 days in culture (Figure S2A). In

line with these data, the number of immature and mature osteo-

lineage cells from the compact bone, measured as CD51+/

Sca-1� stromal cells (Winkler et al., 2010), were significantly

increased in AML (Figure 3D). However, we found that tartrate-

resistant acid phosphatase (TRAP)+ osteoclast numbers in the

metaphysis of the tibiae of diseased leukemic mice were

reduced (Figure 3E). To morphologically characterize these

osteolineage cells, we transplanted Osterix (Osx)-creERT2/loxp-

tdTomato mice with MLL-AF9 leukemic cells. Consistent with

prior analyses, Cre-mediated recombination in 8-week-old

adults was restricted to osteolineage cells (Park et al., 2012).

Because of the rapid turnover of Osx-recombined preosteo-

blasts, we continuously administered tamoxifen via a chow

diet. Although healthy controls exhibited robust labeling of

cuboidal bone-lining cells, the number of mature cuboidal oste-

oblasts in leukemic mice were markedly decreased (Figures 3F

and S2B). In addition, we observed in the endosteal region of

leukemic mice a striking accumulation of reticular Osx-marked

cells with cellular extensions toward endothelial cells (Figure 3F)

similar to previously described osteoblast precursors in devel-

oping bone and in fracture healing (Maes et al., 2010). These

reticular Osx-labeled cells from leukemic marrow expressed

LepR, unlike mature osteoblast from healthy mice (Figures 3G,

3H, and S2C), but lacked osteocalcin expression (Figures 3I

and S2D). The decrease in mature osteoblasts in leukemic

mice was reflected by significant reduction of mineralized

trabecular bone volumes as determined by micro-CT analyses

(Figures 3J–3L). Altogether, these results suggest that AML

leads to increased bone remodeling with accumulation of osteo-

blast-primed MSPCs accompanied by reduced numbers of

mature bone-forming osteoblasts.

AML Impairs HSC Niche Function
AML often leads to pancytopenia and reductions of normal he-

matopoiesis, but themechanisms remain unclear. Next, we eval-

uated the impact of AML infiltration on HSC niche function of the

bonemarrow. Sorted stromal PDGFRa+CD51+ leukemicMSPCs

expressed lower levels of Vcam1, Cxcl12, Angpt1, and Scf tran-

scripts in comparison to those of healthy controls (Figure 4A). In
and in AML
CD11b�CD31�) bone marrow cells, showing Nes-GFP+ cells in control and

cells per femur (n = 9–10).

Nes-GFP+ bone marrow cells from leukemic mice (red columns) and healthy

double-positive bone marrow stromal cells (n = 9–15).

l cells; representative plots and quantification by flow cytometry with anti-Ki67

and Hoechst 33342. The scale bar represents 300 mm. Bottom, frequency of

o control) and quantification of Perilipin+ adipocytes in 0.5 mm2 area under the

n = 6). Right, z stack confocal images of thick bone sections stained in vivo with

n the area were defined by the rectangle. The scale bar represents 500 mm.

i-Ki67 and Hoechst 33342 staining (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001

tem Cell 15, 365–375, September 4, 2014 ª2014 Elsevier Inc. 369
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contrast, Opn expression was increased in bone marrow

MSPCs, which is in accordance with their propensity to differen-

tiate into the osteoblastic lineage. In addition, the number of rare

pericytic NG2+ cells associated with HSC quiescence and main-

tenance (Kunisaki et al., 2013) were significantly reduced in

leukemic mice (Figures 4B and S3A–S3C). Notably, the reduc-

tion of NG2+ cells was not likely due to increased differentiation

to the more abundant PDGFRa and CD51 double-positive

MSPC population, given that they were not fate mapped by

NG2-creERTM/loxp-tdTomato mice (Figures S3A and S3D).

Consistent with reduced numbers of periarteriolar NG2+ cells

and lower levels of HSC-regulating genes, phenotypic long-

term HSCs initially expanded, but were then significantly

reduced, in the bone marrow of leukemic mice (Figures 4C and

S3E). The reduction of functional HSCs and hematopoietic pro-

genitor cells in the bonemarrowwas confirmed by long-term cul-

ture-initiating cell (LTC-IC) assays (Figures 4D and 4E), CFU-Cs

and phenotypic progenitors (Figures 4G and S3G), and compet-

itive repopulation assays (Figure S3F). The reduced expression

of HSC maintenance and retention genes (Figure 4A) in Nes+

cells led to significant mobilization of phenotypic HSCs and

colony-forming progenitors to the circulation and the spleen

(Figures 4F, S3H, and S3I). In addition, whole-mount imaging

analyses revealed that bone marrow HSCs were displaced

away from arterioles (Figure 4H). Thus, these results strongly

suggest that AML severely alters the niche, leading to reduced

ability to maintain healthy HSC in the bone marrow.

Stromal b2 Adrenergic Receptors Regulate LSCs
Previous studies have shown that the SNS regulates bone for-

mation through b2 adrenergic receptors expressed on osteo-

blasts (Elefteriou et al., 2005; Takeda et al., 2002), whereas b3

adrenergic signaling appears to play a more prominent role in

regulating the healthy HSC niche (Méndez-Ferrer et al., 2008).

Consistent with the enhanced osteolineage differentiation of

MSPCs in AML, the expression of the Adrb3 in PDGFRa+CD51+

stromal cells was significantly reduced in comparison to healthy

mice, whereas the Adrb2 expression remained unchanged (Fig-

ure S4A). To get additional mechanistic insight into SNS regula-

tion of leukemia formation, we treated mice with specific Adrb2
Figure 3. Bone Marrow Nes-GFP+ MSPCs Have Differentiated Toward

(A and B) StromalNes-GFP+ cells were sorted from control and leukemic bonema

culture conditions. Frequency of CFU-F (n = 6–7, in duplicate and triplicate permo

GFP+ cells.

(C) Representative images of CFU-OB colonies from Nes-GFP+ bone marrow ce

hematoxylin. The scale bar represents 500 mm.

(D) Absolute numbers of stromal CD51+/Sca-1� osteolineage cells in the compa

(E) Quantification of TRAP+ osteoclasts in the metaphyseal area (500 mm unde

measured bone surface (n = 3).

(F) Z stack confocal images of thick bone sections ofOsterix-creERT2/loxp-tdToma

area defined by the rectangle. Arrowhead indicates osteoblast precursors. Anti-P

(G and H) Z stack confocal images of thick bone sections of Osterix-creERT2/lox

denote LepR-expressing Osx-Cre/Tomato+ cells). The scale bar represents 20 m

(I) Z stack confocal images of thick bone sections ofOsterix-creERT2/loxp-tdToma

scale bar represents 50 mm.

(J) Micro-CT analysis of femurs from control and leukemic mice (n = 3). Analysis of

as trabecular number (right).

(K and L) Representativemicro-CT images of cortical (K) and trabecular (L) bone fro

t test. Data are shown as mean ± SEM.

See also Figure S2.
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(ICI118,551) and Adrb3 (SR59230A) antagonists starting 3 days

prior to transplantation. We found that the inhibition of Adrb2,

but not Adrb3, significantly augmented the numbers of pheno-

typic LSCs in the bone marrow in comparison to control mice

(Figure 4I). Leukemic bonemarrow cells from ICI118,551-treated

mice exhibited significantly higher colony-forming capacity and

also formed significantly larger colonies, indicating greater prolif-

erative capacity (Figure S4B). Increased leukemic infiltration by

the blockade of Adrb2 was associated with significantly reduced

survival of leukemic mice (Figure 4J). Given that Adrb2 is also ex-

pressed on leukemic cells (data not shown), we sought to ascer-

tain whether sympathetic signals directly regulated AML cells or

whether the signals were mediated through the microenviron-

ment. To this end, we transplanted MLL-AF9 leukemic cells

(expressing the Adrb2) into Adrb2-deficient or -sufficient ani-

mals. We observed a significantly higher leukemic bone marrow

infiltration in Adrb2-deficient mice, suggesting a critical role

for Adrb2 expressed in the microenvironment (Figure 4K).

Conversely, the administration of an Adrb2 agonist (Clenbuterol

hydrochloride) led to a significant reduction of phenotypic LSCs

in bone marrow, spleen, and blood and tended to prolong sur-

vival (Figures 4L and S4C–S4E). However, Clenbuterol also

had a different cell-autonomous action, given that it enhanced

in vitro proliferation of MLL-AF9 cells (Figure S4F). Thus, these

results suggest that, although b2 agonist might rescue the

healthy niche to limit LSC expansion, it also has an opposite ac-

tion on leukemia cells that may mitigate its antileukemic effects.

DISCUSSION

Here, we show that MLL-AF9 AML rapidly transforms the HSC

niche, reducing the numbers of arteriole-associated NG2+ niche

cells and the density of their SNS nerve network, which is critical

for MSC quiescence. This leads to the expansion of Nes-GFP+

niche cells committed to differentiate toward the osteoblast line-

age with a block of differentiation to mature osteoblasts. The

high expression ofOpn by leukemic niche cells is also consistent

with osteoblastic commitment and may contribute to AML pro-

gression, as recently reported in an ALL model (Boyerinas

et al., 2013), and because the major Opn receptor, aVb3 integrin,
the Osteoblastic Lineage

rrow and plated at equal numbers at clonal densities under CFU-F andCFU-OB

use; A) and CFU-OB (n = 4–5, in triplicate per mouse; B) from bonemarrowNes-

lls stained with alkaline phosphatase and von Kossa and counterstained with

ct bone (normalized to control, n = 5–8).

r the growth plate area) of the tibia. Number of TRAP+ cells in relation to the

to control and leukemicmice. Middle, themagnified confocal images within the

ECAM1 and VE-cadherin antibodies in vivo. The scale bar represents 500 mm.

p-tdTomato control (G) and leukemic (H) mice stained with anti-LepR (arrows

m.

to control (left) and leukemic (right) mice stained with osteocalcin antibody. The

cortical (left) and trabecular (middle) bone volume/total volume (BV/TV) as well

m control and leukemicmice. *p < 0.05, **p < 0.01 determined by the Student’s
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is expressed by MLL-AF9 AML cells and was shown to be

required for leukemogenesis (Miller et al., 2013). Our results

suggest that sympathetic neuropathy represents a mechanism

by which AML co-opts the microenvironment to its own advan-

tage to deplete niche cells that maintain healthy HSCs and

expand leukemia-supportive, more differentiated, Nes+LepR+

Osx-creERT2-labeled mesenchymal progenitors. Finally, the

decreased sympathetic tone in bone marrow and spleen rein-

forces leukemia progression through an altered niche.

A recent study has suggested that the microenvironment of

leukemias can be differentially regulated wherein increased

osteoblastic function (by activation of the parathyroid hormone

receptor) is associated with progression of MLL-AF9 AML,

whereas BCR-ABL-driven disease was markedly attenuated

(Krause et al., 2013). It is notable that BCR-ABL CML blast

crisis—which resembles acute leukemia—led to significant re-

ductions of mature osteoblasts (Frisch et al., 2012), whereas in

a more chronic model of BCR-ABL CML, bone-forming mature

osteoblasts were reportedly increased (Schepers et al., 2013),

suggesting that AML andCMLmay have opposing effects on dif-

ferentiation to mature osteoblasts.

Our results shed light on the mechanisms by which MLL-AF9

AML cells remodel the bone marrow niche in order to create a

self-sustaining microenvironment at the expense of the mainte-

nance of healthy HSCs. Thus, manipulation of the adrenergic

system or other pathways that prevent mesenchymal differenti-

ation may provide a potentially powerful strategy for limiting LSC

development and preserving healthy HSCs.

EXPERIMENTAL PROCEDURES

Detailed procedures can be found in the Supplemental Experimental

Procedures.

Mouse Strains

All murine experiments were performed with adult 6- to 10-week-old animals.

All mice were housed in specific pathogen-free facilities at the Albert Einstein

College of Medicine animal facility, and all experimental procedures were

approved by the Animal Care and Use Committee of the Albert Einstein Col-
Figure 4. Leukemic Bone Marrow Niche Has Impaired HSC-Regulating

(A) Gene expression analysis of key HSC-regulatory genes (Vcam1,Cxcl12, Angpt

time PCR (n = 5–6).

(B) Frequency of stromal NG2DsRed+ cells in the bone marrow (normalized to co

(C) Frequency of phenotypic Lin�Sca-1+c-kit+Flt3�CD34� long-term HSCs in leu

marrow infiltration (late) in comparison to matched control mice (n = 10, 5, and 8

(D) Quantification of long-term reconstituting HSCs by LTC-IC assay on sorted GF

frequency is given. Dashed lines represent 95% confidence interval.

(E) LTC-IC numbers per femur calculated with the frequency of MLL-AF9 GFP�

(F) Absolute numbers of Lin�Sca-1+c-kit+Flt3� (LSKF) cells in peripheral blood (left

and matched control mice.

(G) Left, CFU-C from 53 104 sorted MLL-AF9 GFP� bone marrow (BM) cells. Rig

cells (n = 5–6).

(H) Representative whole-mount images and distribution of HSCs in the sternal bo

AML [late stage] group, respectively). Arrowheads denote HSCs. Two-sample K

(I) Absolute number of L-GMPs per femur in mice treated with the Adrb3-inhibito

after transplantation (normalized to control, n = 14–15).

(J) Survival curve of mice treated with ICI118,551 and control mice (n = 5).

(K) Frequency of leukemic cells per femur in Adrb2�/� and control mice (n = 5–7

(L) Absolute number of L-GMPs per femur in mice treated with the Adrb2 agoni

plantation (normalized to control, n = 7–8). *p < 0.05, **p < 0.01, ***p < 0.001, ****p

See also Figures S3 and S4.

Cell S
lege of Medicine. C57BL/6 mice were purchased from National Cancer Insti-

tute (Frederick Cancer Research Center). Cspg4-DsRed.T1 (NG2DsRed),

B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J (loxp-tdTomato), and B6.Cg-

Tg(Cspg4-cre/Esr1*)BAkik/J (NG2-creERTM) mice were purchased from the

Jackson Laboratory. Nes-Gfp transgenic mice (Mignone et al., 2004) and

NOD-scid Il2Rg�/� (NSG) mice were bred and used at the Albert Einstein

College ofMedicine.Osx-creERT2mice (Maes et al., 2010) were kindly provided

by Dr. Henry M. Kronenberg and backcrossed for five generations into

C57BL/6 background. Adrb2tm1Bkk were a gift from Dr. Gerard Karsenty.

In Vivo Treatments

For induction of Cre-mediated recombination in Osx-CreERT2 mice, chow

diet (Harlan Laboratories) containing tamoxifen (Sigma-Aldrich) at 750 mg/kg

with 5% sucrose was given. For induction of Cre-mediated recombination in

NG2-CreERTM mice, 1 mg tamoxifen (Sigma-Aldrich) was injected twice daily

for 5 consecutive days as previously described (Kunisaki et al., 2013). For

denervation experiments, 6OHDA was intraperitoneally (i.p.) given at 24 hr

(100 mg/kg) and 72 hr (250 mg/kg) after transplantation unless otherwise

stated. The b2-specific antagonist ICI 118,551 hydrochloride (1 mg/kg body

weight i.p.) and the b3-specific antagonist SR59230A (5 mg/kg body weight

i.p.) were given daily beginning 3 days prior to transplantation, and Clenbuterol

hydrochloride (2 mg/kg body weight s.c.) was given daily 3 days after trans-

plantation (all from Sigma-Aldrich).

Statistical Analyses

All data are shown as themean ± SEM. Unless otherwise indicated for compar-

isons between two groups, the Student’s t test was applied. Log-rank analyses

were used for Kaplan-Meier survival curves. Analyses were performed with

GraphPad Prism software. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.stem.2014.06.020.
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