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1. Introduction and preliminary results

In the developing Stein’s method for Variance-Gamma distributions, Gaunt [5] required simple bounds, 
in terms of modified Bessel functions, for the integrals

x∫
0

eβttνIν(t) dt and
∞∫
x

eβttνKν(t) dt,

where x > 0, ν > −1/2 and −1 < β < 1. Closed form expressions for these integrals, in terms of modified 
Bessel functions and the modified Struve function Lν(x), do in fact exist for the case β = 0. For z ∈ C

and ν ∈ C, let Lν(z) denote Iν(z), eνπiKν(z) or any linear combination of these functions, in which the 
coefficients are independent of ν and z. From formula 10.43.2 of Olver et al. [13] we have, for ν �= −1/2,

∫
zνLν(z) dz =

√
π2ν−1Γ (ν + 1/2)z

(
Lν(z)Lν−1(z) − Lν−1(z)Lν(z)

)
. (1.1)

Whilst formula (1.1) holds for complex-valued z and ν, throughout this paper we shall restrict our attention 
to the case of real-valued z and ν. There are no closed form expressions in terms of modified Bessel and 
Struve functions in the literature for the integrals for the case β �= 0. Moreover, even in the case β = 0 the 
expression on the right-hand side of formula (1.1) is a complicated expression involving the modified Struve 
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function Lν(x). This provides the motivation for establishing simple bounds, in terms of modified Bessel 
functions, for the integrals defined in the first display.

In this paper we establish, through the use of elementary properties of modified Bessel functions and 
straightforward calculations, simple bounds, that involve modified Bessel functions, for the integrals given 
in the first display. Our bounds prove to be very useful when applied to calculations that arise in the study 
of Stein’s method for Variance-Gamma distributions. We also obtain a monotonicity result and bound for 
the modified Bessel function of the second kind Kν(x), as well as a simple but remarkably tight lower 
bound for K0(x). These bounds are, again, motivated by the need for such bounds in the study of Stein’s 
method for Variance-Gamma distributions. However, the bounds obtained in this paper may also prove to 
be useful in other problems related to modified Bessel functions; see, for example, Baricz and Sun [4] in 
which inequalities for modified Bessel functions of the first kind were used to obtain lower and upper bounds 
for integrals of involving modified Bessel functions of the first kind. Throughout this paper we make use of 
some elementary properties of modified Bessel functions and these are stated in Appendix A.

2. Inequalities for integrals involving modified Bessel functions

Before presenting our first result concerning inequalities for integrals of modified Bessel functions, we 
introduce some notation for the repeated integral of the function eβxxνIν(x), which will be used in the 
following theorem. We define

I(ν,β,0)(x) = eβxxνIν(x), I(ν,β,n+1)(x) =
x∫

0

I(ν,β,n)(y) dy, n = 0, 1, 2, 3, . . . . (2.1)

With this notation we have:

Theorem 2.1. Let 0 ≤ γ < 1, then the following inequalities hold for all x > 0

x∫
0

tνIν(t) dt > xνIν+1(x), ν > −1, (2.2)

x∫
0

tνIν(t) dt < xνIν(x), ν ≥ 1/2, (2.3)

I(ν,0,n+1)(x) < I(ν,0,n)(x), ν ≥ 1/2, (2.4)

I(ν,−γ,n)(x) ≤ 1
(1 − γ)n e−γxI(ν,0,n)(x), ν ≥ 1/2, n = 0, 1, 2, . . . , (2.5)

x∫
0

tνIν+n(t) dt < 2(ν + n + 1)
2ν + n + 1 xνIν+n+1(x), ν > −1/2, n ≥ 0, (2.6)

I(ν,0,n)(x) <
{

n∏
k=1

2ν + 2k
2ν + k

}
xνIν+n(x), ν ≥ 0, n = 1, 2, 3, . . . , (2.7)

I(ν,−γ,n)(x) < 1
(1 − γ)n

{
n∏

k=1

2ν + 2k
2ν + k

}
e−γxxνIν+n(x), ν ≥ 1/2, n = 1, 2, 3, . . . .
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Proof. (i) From the differentiation formula (A.12) we have that

x∫
0

tνIν(t) dt =
x∫

0

1
t
tν+1Iν(t) dt > 1

x

x∫
0

tν+1Iν(t) dt = xνIν+1(x),

since by (A.2) we have limx↓0 x
ν+1Iν+1(x) = 0 for ν > −1.

(ii) Using inequality (A.7) and then applying (A.12) we get

x∫
0

tνIν(t) dt <
x∫

0

tνIν−1(t) dt = xνIν(x).

(iii) From inequality (2.3), we have

I(ν,0,1)(x) < I(ν,0,0)(x).

Integrating both sides of the above display n times with respect to x yields the desired inequality.
(iv) We prove the result by induction on n. The result is trivially true for n = 0. Suppose the result is 

true for n = k. From the inductive hypothesis we have

I(ν,−γ,k+1)(x) =
x∫

0

I(ν,−γ,k)(t) dt ≤ 1
(1 − γ)k

x∫
0

e−γtI(ν,0,k)(t) dt. (2.8)

Integration by parts and inequality (2.4) gives

x∫
0

e−γtI(ν,0,k)(t) dt = e−γxI(ν,0,k+1)(x) + γ

x∫
0

e−γtI(ν,0,k+1)(t) dt

< e−γxI(ν,0,k+1)(x) + γ

x∫
0

e−γtI(ν,0,k)(t) dt.

Rearranging we obtain

x∫
0

e−γtI(ν,0,k)(t) dt < 1
1 − γ

e−γxI(ν,0,k+1)(x),

and substituting into (2.8) gives

I(ν,−γ,k+1)(x) < 1
(1 − γ)k+1 e−γxI(ν,0,k+1)(x).

Hence the result has been proved by induction.
(v) From the differentiation formula (A.12) and identity (A.10) we get that

d
dt

(
tνIν+n+1(t)

)
= d

dt
(
t−(n+1) · tν+n+1Iν+n+1(t)

)
= tνIν+n(t) − (n + 1)tν−1Iν+n+1(t)
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= tνIν+n(t) − n + 1
2(ν + n + 1) t

νIν+n(t) + n + 1
2(ν + n + 1) t

νIν+n+2(t)

= 2ν + n + 1
2(ν + n + 1)

tνIν+n(t) + n + 1
2(ν + n + 1)

tνIν+n+2(t).

Integrating both sides over (0, x), applying the fundamental theorem of calculus and rearranging give

x∫
0

tνIν+n(t) dt = 2(ν + n + 1)
2ν + n + 1 xνIν+n+1(x) − n + 1

2ν + n + 1

x∫
0

tνIν+n+2(t) dt.

The result now follows from the fact that Iν(x) > 0 for x > 0 and by the positivity of the integral.
(vi) From inequality (2.6) we have

I(ν,0,1)(x) =
x∫

0

tνIν(t) dt < 2(ν + 1)
2ν + 1 xνIν+1(x),

and

I(ν,0,2)(x) =
x∫

0

I(ν,0,1)(t) dt

<
2(ν + 1)
2ν + 1

x∫
0

tνIν+1(t) dt

<
2(ν + 1)
2ν + 1

2(ν + 2)
2ν + 2 xνIν+2(x).

Iterating gives the result.
(vii) This follows from inequalities (2.5) and (2.7). �
We now state a simple lemma (which is a special case of Lemma 2.4 of Ismail and Muldoon [9]), that 

gives a monotonicity result for the ratio Kν−1(x)
Kν(x) . The lemma has an immediate corollary, which we will 

make use of in the proof of our next theorem.

Lemma 2.2. Suppose x > 0, then the function Kν−1(x)
Kν(x) is strictly monotone increasing for ν > 1/2, is 

constant for ν = 1/2, and is strictly monotone decreasing for ν < 1/2.

Corollary 2.3. For ν > 1/2 and α > 1 the equation Kν(x) = αKν−1(x) has one root in the region x > 0.

Proof. From the asymptotic formulas (A.3) and (A.5), it follows that for ν > 1/2,

lim
x↓0

Kν−1(x)
Kν(x) = 0, and lim

x→∞
Kν−1(x)
Kν(x) = 1.

Since Kν−1(x)
Kν(x) is strictly monotone increasing on (0, ∞), it follows that for α > 1 the equation Kν(x) =

αKν−1(x) (i.e. Kν−1(x)
Kν(x) = 1

α ) has one root in the region x > 0. �
As an aside, we note that Lemma 2.3 allows us to easily establish an inequality for the Turánian Δν(x) =

K2
ν (x) −Kν−1(x)Kν+1(x) (for more details on the Turánian Δν(x) see Baricz [1]).
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Proposition 2.4. Suppose x > 0, then Δν(x) < Δν−1(x) for ν > 1/2, Δ1/2(x) = Δ−1/2(x), and Δν(x) >
Δν−1(x) for ν < 1/2.

Proof. By the quotient rule and differentiation formula (A.14), we have

d
dx

(
Kν−1(x)
Kν(x)

)
= − (Kν(x) + Kν−2(x))Kν(x) − (Kν+1(x) + Kν−1(x))Kν−1(x)

2K2
ν (x)

=
K2

ν−1(x) −Kν−2(x)Kν(x) − (K2
ν (x) −Kν−1(x)Kν+1(x))

2K2
ν (x)

= Δν−1(x) − Δν(x)
2K2

ν (x) .

Since, by Lemma 2.3, the function Kν−1(x)
Kν(x) is strictly monotone increasing for ν > 1/2, is constant for 

ν = 1/2, and is strictly monotone decreasing for ν < 1/2, the result follows. �
With the aid of Corollary 2.3 and standard properties of the modified Bessel function Kν(x), we can 

prove at the following theorem.

Theorem 2.5. Let −1 < β < 1, then for all x > 0 the following inequalities hold

∞∫
x

tνKν(t) dt < xνKν+1(x), ν ∈ R,

∞∫
x

tνKν(t) dt < xνKν(x), ν < 1/2, (2.9)

∞∫
x

eβttνKν(t) dt < 1
1 − |β|e

βxxνKν(x), ν < 1/2, (2.10)

∞∫
x

tνKν(t) dt ≤
√
πΓ (ν + 1/2)

Γ (ν) xνKν(x), ν ≥ 1/2, (2.11)

∞∫
x

eβttνKν(t) dt ≤ 2
√
πΓ (ν + 1/2)

(1 − β2)ν+1/2Γ (ν)
eβxxνKν(x), ν ≥ 1/2.

Proof. (i) From the differentiation formula (A.13) we have that

∞∫
x

tνKν(t) dt =
∞∫
x

1
t
tν+1Kν(t) dt < 1

x

∞∫
x

tν+1Kν(t) dt = xνKν+1(x),

since, by the asymptotic formula (A.5), limx→∞ xν+1Kν+1(x) = 0.
(ii) Using inequality (A.8) and then applying the differentiation formula (A.13) we have

∞∫
tνKν(t) dt <

∞∫
tνKν−1(t) dt = xνKν(x).
x x
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(iii) Now suppose that ν < 1/2 and β > 0. Using integration by parts and the differentiation formula 
(A.13) gives

∞∫
x

eβttνKν(t) dt = − 1
β

eβxxνKν(x) + 1
β

∞∫
x

eβttνKν−1(t) dt. (2.12)

Applying the inequality (A.8) and rearranging gives

(
1
β
− 1

) ∞∫
x

eβttνKν(t) dt < 1
β

eβxxνKν(x).

Inequality (2.10) for β > 0 now follows on rearranging.
The case β ≤ 0 is simple. Since eβt is a non-increasing function of t when β ≤ 0 we have

∞∫
x

eβttνKν(t) dt ≤ eβx
∞∫
x

tνKν(t) dt < eβxxνKν(x) ≤ 1
1 − |β|e

βxxνKν(x),

where we used inequality (2.9) to obtain the second inequality. Hence inequality (2.10) has been proved.
(iv) The case ν = 1/2 is simple. Using (A.1) we may easily integrate t1/2K1/2(t):

∞∫
x

t1/2K1/2(t) dt =
∞∫
x

√
π

2 e−t dt =
√

π

2 e−x = x1/2K1/2(x).

It therefore follows that inequality (2.11) holds for ν = 1/2 because we have
√
πΓ (1)

Γ (1/2) = 1,

where we used the facts that Γ (1) = 1 and Γ (1/2) =
√
π.

Now suppose ν > 1/2. We begin by defining the function u(x) to be

u(x) = MxνKν(x) −
∞∫
x

tνKν(t) dt,

where

M =
√
πΓ (ν + 1/2)

Γ (ν) .

We now show that u(x) ≥ 0 for all x ≥ 0, which will prove the result. We begin by noting that 
limx→0+ u(x) = 0 and limx→∞ u(x) = 0, which are verified by the following calculations, where we make 
use of the asymptotic formula (A.3) and the definite integral formula (A.17).

u(0) = lim
x→0+

√
πΓ (ν + 1/2)

Γ (ν) xνKν(x) −
∞∫
0

tνKν(t) dt

=
√
πΓ (ν + 1/2)2ν−1 −

√
πΓ (ν + 1/2)2ν−1

= 0,
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and

lim
x→∞

u(x) = lim
x→∞

MxνKν(x) − lim
x→∞

∞∫
x

tνKν(t) dt = 0,

where we used the asymptotic formula (A.5) to obtain the above equality. We may obtain an expression for 
the first derivative of u(x) by the use of the differentiation formula (A.13) as follows

u′(x) = xν
[
Kν(x) −MKν−1(x)

]
. (2.13)

In the limit x → 0+ we have, by the asymptotic formula (A.3), that

u′(x) ∼
{
xν{2ν−1Γ (ν) 1

xν −M2|ν−1|−1Γ (|ν − 1|) 1
x|ν−1| }, ν �= 1,

xν{2ν−1Γ (ν) 1
xν + M log x}, ν = 1.

Since ν > |ν − 1| for ν > 1/2 and limx→0+ xa log x = 0, where a > 0, we have

u′(x) ∼ 2ν−1Γ (ν), as x → 0+, for ν > 1/2.

Therefore u(x) is initially an increasing function of x. In the limit x → ∞ we have, by (A.5),

u′(x) ∼
(

1 −
√
πΓ (ν + 1/2)

Γ (ν)

)√
π

2x
ν−1/2e−x < 0, for ν > 1/2.

We therefore see that u(x) is a decreasing function of x for large, positive x. From the formula (2.13) we 
see that x∗ is a turning point of u(x) if and only if

Kν

(
x∗) =

√
πΓ (ν + 1/2)

Γ (ν) Kν−1
(
x∗). (2.14)

From Corollary 2.3, it follows that Eq. (2.14) has one root for ν > 1/2 (for which 
√
πΓ (ν+1/2)

Γ (ν) > 1).
Putting these results together, we see that u(x) is non-negative at the origin and initially increases until it 

reaches it maximum value at x∗, it then decreases and tends to 0 as x → ∞. Therefore u(x) is non-negative 
for all x ≥ 0 when ν > 1/2.

(v) The proof for β ≤ 0 is easy and follows immediately from part (iv), since 1 < 2
(1−β2)ν+1/2 for ν ≥ 1/2. 

So we suppose β > 0. Again, because K1/2(x) =
√

π
2xe−x, the case ν = 1/2 is straightforward, so we also 

suppose ν > 1/2. We make use of a similar argument to the one used in the proof of part (iv). We define 
the function v(x) to be

v(x) = NeβxxνKν(x) −
∞∫
x

eβttνKν(t) dt,

where

N = 2
√
πΓ (ν + 1/2)

(1 − β2)ν+1/2Γ (ν)
.

We now show that v(x) ≥ 0 for all x ≥ 0, which will prove the result. We begin by noting that 
limx→0+ v(x) > 0 and limx→∞ v(x) = 0, which are verified by the following calculations, where we make 
use of the asymptotic formula (A.3) and the definite integral formula (A.17).



380 R.E. Gaunt / J. Math. Anal. Appl. 420 (2014) 373–386
v(0) = lim
x→0+

2
√
πΓ (ν + 1/2)

(1 − β2)ν+1/2Γ (ν)
xνKν(x) −

∞∫
0

eβttνKν(t) dt

= 2
√
πΓ (ν + 1/2)

(1 − β2)ν+1/2Γ (ν)
· 2ν−1Γ (ν) −

∞∫
0

eβttνKν(t) dt

>
2
√
πΓ (ν + 1/2)

(1 − β2)ν+1/2Γ (ν)
· 2ν−1Γ (ν) −

∞∫
−∞

eβt|t|νKν

(
|t|
)
dt

=
√
πΓ (ν + 1/2)2ν

(1 − β2)ν+1/2 −
√
πΓ (ν + 1/2)2ν

(1 − β2)ν+1/2

= 0,

and

lim
x→∞

v(x) = lim
x→∞

NeβxxνKν(x) − lim
x→∞

∞∫
x

eβttνKν(t) dt = 0,

where we used the asymptotic formula (A.5) to obtain the above equality. We may obtain an expression for 
the first derivative of v(x) by the use of the differentiation formula (A.13) as follows

v′(x) = eβxxν
[
(1 + Nβ)Kν(x) −NKν−1(x)

]
. (2.15)

In the limit x → 0+ we have, by the asymptotic formula (A.3), that

v′(x) ∼
{

eβxxν{2ν−1Γ (ν)(1 + Nβ) 1
xν −N · 2|ν−1|−1Γ (|ν − 1|) 1

x|ν−1| }, ν �= 1,
eβxxν{2ν−1Γ (ν)(1 + Nβ) 1

xν + N log x}, ν = 1.

As in part (iv), we see that v(x) is initially an increasing function of x. In the limit x → ∞ we have

v′(x) ∼
(
1 −N(1 − β)

)√π

2x
ν−1/2e(β−1)x, for ν > 1/2.

Now, for ν > 1/2 and 0 < β < 1 we have, by (A.5),

N(1 − β) = 2
√
πΓ (ν + 1/2)
Γ (ν) · 1

(1 − β2)ν−1/2 · 1
1 + β

> 2 · 1 · 1
2 = 1. (2.16)

Hence, v(x) is a decreasing function of x for large, positive x. From formula (2.15) we see that x∗ is a 
turning point of v(x) if and only if

(1 + Nβ)Kν

(
x∗) = NKν−1

(
x∗). (2.17)

Inequality (2.16) shows that N > 1 + Nβ for all ν > 1/2 and 0 < β < 1. From Corollary 2.3, it follows 
that Eq. (2.17) has one root for positive x and therefore v(x) has one maximum which occurs at positive x. 
Putting these results together we see that v(x) is positive at the origin and initially increases until it reaches 
it maximum value at x∗, it then decreases and tends to 0 as x → ∞. Therefore v(x) is non-negative for all 
x ≥ 0 when ν > 1/2, which completes the proof. �

Combining the inequalities of Theorems 2.1 and 2.5 and the indefinite integral formula (1.1) we may 
obtain lower and upper bounds for the quantity Lν(x)Lν−1(x) − Lν−1(x)Lν(x). Here is an example:
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Corollary 2.6. Suppose ν > −1/2, then for all x > 0 we have

xν−1Iν+1(x)√
π2ν−1Γ (ν + 1/2)

< Iν(x)Lν−1(x) − Iν−1(x)Lν(x) < (ν + 1)xν−1Iν+1(x)√
π2ν−1Γ (ν + 3/2)

.

Proof. From the asymptotic formulas (A.2) and (A.6) for Iν(x) and L(x), respectively, we have that

lim
x↓0

(
x
(
Iν(x)Lν−1(x) − Iν−1(x)Lν(x)

))
= 0, for ν > −1/2.

Therefore, applying the indefinite integral formula (1.1) gives, for ν > −1/2,

x∫
0

tνIν(t) dt =
√
π2ν−1Γ (ν + 1/2)x

(
Iν(x)Lν−1(x) − Iν−1(x)Lν(x)

)
. (2.18)

From inequalities (2.2) and (2.6) of Theorem 2.1, we have

xνIν+1(x) <
x∫

0

tνIν(t) dt < 2(ν + 1)
2ν + 1 xνIν+1(x).

Substituting this inequality into (2.18) gives

xνIν+1(x) <
√
π2ν−1Γ (ν + 1/2)x

(
Iν(x)Lν−1(x) − Iν−1(x)Lν(x)

)
<

2(ν + 1)
2ν + 1 xνIν+1(x).

The desired inequality now follows from rearranging terms and an application of the standard formula 
xΓ (x) = Γ (x + 1). �
Remark 2.7. The lower and upper bounds for Iν(x)Lν−1(x) − Iν−1(x)Lν(x) that are given in Corollary 2.6
are simple, but very tight for large ν.

3. Inequalities for the modified Bessel function of the second kind

We now present some simple inequalities for the modified Bessel function of the second kind Kν(x). The 
following theorem establishes an inequality for the modified Bessel function Kν(x) that is useful in the study 
of Stein’s method for Variance-Gamma distributions (see Gaunt [5]).

Theorem 3.1. Let ν > 0 and x ≥ 0, then

1
x2 − xν−2Kν(x)

2ν−1Γ (ν) (3.1)

is a monotone decreasing function of x on (0, ∞) and satisfies the following inequality

0 <
1
x2 − xν−2Kν(x)

2ν−1Γ (ν) ≤ 1
4(ν − 1) , for x ≥ 0, ν > 1. (3.2)

The lower bound is also valid for all ν > 0.
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Proof. Applying the differentiation formula (A.14) gives

d
dx

(
1
x2 − xν−2Kν(x)

2ν−1Γ (ν)

)

= − 2
x3 −

(ν − 2)xν−3Kν(x) − 1
2 (Kν−1(x) + Kν+1(x))xν−2

2ν−1Γ (ν) . (3.3)

Using (A.11) we may simplify the numerator as follows

(ν − 2)Kν(x) − 1
2x

(
Kν−1(x) + Kν+1(x)

)
= (ν − 2)Kν(x) − 1

2x
(

2Kν−1(x) + 2ν
x
Kν(x)

)
= −xKν−1(x) − 2Kν(x).

Hence, (3.3) simplifies to

d
dx

(
1
x2 − xν−2Kν(x)

2ν−1Γ (ν)

)
= −2νΓ (ν) + xν+1Kν−1(x) + 2xνKν(x)

2ν−1Γ (ν)x3 .

Thus, proving that (3.1) is monotone decreasing reduces to proving that, for x > 0,

xν+1Kν−1(x) + 2xνKν(x) < 2νΓ (ν). (3.4)

From (A.13) we get that

d
dx

(
xν+1Kν−1(x) + 2xνKν(x)

)
= d

dx
(
x2 · xν−1Kν−1(x) + 2xνKν(x)

)
= 2xνKν−1(x) − xν+1Kν−2(x) − 2xνKν−1(x)

= −xν+1Kν−2(x)

< 0.

So xν+1Kν−1(x) +2xνKν(x) is a monotone decreasing function of x and from the asymptotic formula (A.3)
we see that its limit as x → 0+ is limx→0+(xν+1Kν−1(x) + 2xνKν(x)) = 2 · 2ν−1Γ (ν) = 2νΓ (ν). Therefore 
(3.4) is proved, and so (3.1) is monotone decreasing on (0, ∞). It is therefore bounded above and below its 
values in the limits x → ∞ and x → 0. These are calculated using the asymptotic formulas (A.5) and (A.4)
and are given below:

lim
x→∞

(
1
x2 − xν−2Kν(x)

2ν−1Γ (ν)

)
= 0,

lim
x→0+

(
1
x2 − xν−2Kν(x)

2ν−1Γ (ν)

)
= 2ν−3Γ (ν − 1)

2ν−1Γ (ν) = 1
4(ν − 1) ,

where the first limit holds for all ν > 0 and the second limit is valid for all ν > 1. This completes the 
proof. �
Remark 3.2. Inequality (3.2) of Theorem 3.1 is closely related to some inequalities given by Ismail [8] and 
Baricz et al. [3]. Ismail proved that xνKν(x)ex > 2ν−1Γ (ν) for x > 0, ν > 1/2, and Baricz et al. proved 
that xν−1Kν(x) ≥ 2ν−1Γ (ν)K1(x) for x > 0, ν ≥ 1, which improves on the bound of Ismail for all ν ≥ 1. 
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From inequality (3.2) we can obtain lower and upper bounds for the quantity xνKν(x). The upper bound 
is xνKν(x) < 2ν−1Γ (ν) for x > 0, ν > 0, and therefore, for x > 0,

2ν−1Γ (ν)e−x < xνKν(x) < 2ν−1Γ (ν), ν > 0,

which can be improved as follows when ν ≥ 1:

2ν−1Γ (ν)e−x < 2ν−1Γ (ν)xK1(x) ≤ xνKν(x) < 2ν−1Γ (ν).

Finally, we establish a simple, but surprisingly tight, lower bound for the modified Bessel function K0(x).

Theorem 3.3. Let x > 0, then

Γ (x + 1/2)
Γ (x + 1) <

√
2
π

exK0(x). (3.5)

Proof. Formula 10.32.8 of Olver et al. [13] gives the following integral representation of K0(x):

K0(x) =
∞∫
1

e−xt

√
t2 − 1

dt, x > 0.

Setting t = 2u + 1 gives

K0(x) = e−x

∞∫
0

e−2xu
√
u2 + u

du.

For u > 0 we have e2u − 1 =
∑∞

k=1
(2u)k
k! > 2u + 2u2, and so

exK0(x) >
√

2
∞∫
0

e−2xu
√

e2u − 1
du =

√
2

∞∫
0

e−(2x+1)u
√

1 − e−2u
du, for x > 0.

Making the change of variables y = e−2u gives

√
2

∞∫
0

e−(2x+1)u
√

1 − e−2u
du = 1√

2

1∫
0

(1 − y)−1/2yx−1/2 dy

= 1√
2
B(1/2, x + 1/2)

= Γ (1/2)Γ (x + 1/2)√
2Γ (x + 1)

=
√
πΓ (x + 1/2)√
2Γ (x + 1)

,

where B(a, b) is the beta function, and we used the standard formula B(a, b) = Γ (a)Γ (b)
Γ (a+b) to obtain the third 

equality. This completes the proof. �
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Corollary 3.4. Let x > 0, then

1√
x + 1/2

<

√
2
π

exK0(x) < 1√
x
.

Proof. The upper bound follows because K0(x) < K1/2(x) =
√

π
2xe−x. The lower bound follows since 

Γ (x+1/2)
Γ (x+1) > 1√

x+1/2 , which we now prove. Examining the proof of Theorem 3.3 we see that

Γ (x + 1/2)
Γ (x + 1) = 2√

π

∞∫
0

e−(2x+1)u
√

1 − e−2u
du.

Now, for u > 0 we have 1 − e−2u =
∑∞

k=1(−1)k+1 (2u)k
k! < 2u, and so

Γ (x + 1/2)
Γ (x + 1) >

2√
π

∞∫
0

e−(2x+1)u
√

2u
du = 2

√
2√
π

∞∫
0

e−(2x+1)v2
dv = 1√

x + 1/2
,

as required. �
Remark 3.5. Luke [11] obtained the following bounds for K0(x):

8
√
x

8x + 1 <

√
2
π

exK0(x) < 16x + 7
(16x + 9)

√
x
.

Numerical experiments show that the bounds of Luke and our lower bound of Corollary 3.3 are remarkably 
accurate for all but very small x, for which the logarithmic singularity of K0(x) blows up. The lower bound 
8
√
x

8x+1 outperforms our bound lower bound of Γ (x+1/2)
Γ (x+1) for x > 0.394 (3 d.p.), whilst our bound outperforms 

for x < 0.394 (3 d.p.), and performs considerably better for very small x.
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Appendix A. Elementary of properties of modified Bessel functions

Here we list standard properties of modified Bessel functions that are used throughout this paper. All 
these formulas can be found in Olver et al. [13], except for the inequalities and the integration formula 
(A.17), which can be found in Gradshetyn and Ryzhik [6].

A.1. Basic properties

The modified Bessel functions Iν(x) and Kν(x) are both regular functions of x. They satisfy the following 
simple inequalities

Iν(x) > 0 for all x > 0, for ν > −1,

Kν(x) > 0 for all x > 0, for all ν ∈ R.
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A.2. Spherical Bessel functions

K1/2(x) = K−1/2(x) =
√

π

2xe−x. (A.1)

A.3. Asymptotic expansions

Iν(x) ∼ 1
Γ (ν + 1)

(
x

2

)ν

, x ↓ 0, ν > −1, (A.2)

Kν(x) ∼
{

2|ν|−1Γ (|ν|)x−|ν|, x ↓ 0, ν �= 0,
− log x, x ↓ 0, ν = 0,

(A.3)

Kν(x) ∼ 2ν−1Γ (ν)x−ν − 2ν−3Γ (ν − 1)x−ν+2, x ↓ 0, ν > 1, (A.4)

Kν(x) ∼
√

π

2xe−x, x → ∞, (A.5)

Lν(x) ∼ 2√
πΓ (ν + 3/2)

(
x

2

)ν+1

, x ↓ 0, ν > −1/2. (A.6)

A.4. Inequalities

Let x > 0, then the following inequalities hold

Iν(x) < Iν−1(x), ν ≥ 1/2, (A.7)

Kν(x) < Kν−1(x), ν < 1/2, (A.8)

Kν(x) ≥ Kν−1(x), ν ≥ 1/2. (A.9)

We have equality in (A.9) if and only if ν = 1/2. The inequalities for Kν(x) can be found in Ifantis and 
Siafarikas [7], whilst the inequality for Iν(x) can be found in Jones [10] and Nåsell [12]. A survey of related 
inequalities for modified Bessel functions is given by Baricz [2], and lower and upper bounds for the ratios 
Iν(x)

Iν−1(x) and Kν(x)
Kν−1(x) which improve on inequalities (A.7)–(A.9) are also given in Ifantis and Siafarikas [7]

and Segura [14].

A.5. Identities

Iν+1(x) = Iν−1(x) − 2ν
x
Iν(x), (A.10)

Kν+1(x) = Kν−1(x) + 2ν
x
Kν(x). (A.11)

A.6. Differentiation

d
dx

(
xνIν(x)

)
= xνIν−1(x), (A.12)

d
dx

(
xνKν(x)

)
= −xνKν−1(x), (A.13)

d (
Kν(x)

)
= −1(

Kν+1(x) + Kν−1(x)
)
, (A.14)
dx 2
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d
dx

(
Kν(x)

)
= −Kν−1(x) − ν

x
Kν(x), (A.15)

d
dx

(
Kν(x)

)
= −Kν+1(x) + ν

x
Kν(x). (A.16)

A.7. Integration

∞∫
−∞

eβt|t|νKν

(
|t|
)
dt =

√
πΓ (ν + 1/2)2ν

(1 − β2)ν+1/2 , ν > −1/2, −1 < β < 1. (A.17)
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