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Following a recent paper of S. Liu and H. Neudecker (J. Math. Anal. Appl. 197,
1996, 23-26), we present sufficient and necessary conditions (SNECs) under which
equalities occur in those corresponding matrix Kantorovich-type inequalities. We
also present several relevant inequalities.  © 1997 Academic Press

1. INTRODUCTION

Marshall and Olkin [10] first presented a matrix version of the Kan-
torovich inequality involving a positive definite matrix. Baksalary and
Puntanen [1] extended it to cover the case of one positive semidefinite
matrix, while Mond and Petari¢ [11, 12] gave several Kantorovich-type
inequalities for the case of one positive definite matrix or for Fan’s cases
of sums of matrices (see also Fan [2]). Liu [5] gave a related inequality in a
special case. More recently, Liu and Neudecker [7] presented further
Kantorovich-type inequalities involving one positive semidefinite matrix or
sums of such matrices. In this paper all matrices and numbers considered
are real. We refer to Magnus and Neudecker [9] for mathematical basics.
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Following Liu and Neudecker [7], we shall further study sufficient and
necessary conditions for known and new Kantorovich-type inequalities to
become equalities. We shall also present several relevant inequalities.

2. BASIC RESULTS

Let 4 be an n X n positive semidefinite matrix with rank p(p < n) and
with nonzero eigenvalues M > ... >m > 0. Let IV be an n X r matrix
with rank ¢ such that (V) c R(A), where g < min(r, p), and R(-)
denotes the column space of the matrix. Let + indicate the Moore-Penrose
inverse. For symmetric matrices B and C, B < C means C — B is positive
semidefinite.

In the following, from three lemmas we shall derive three basic proposi-
tions.

Lemma 2.1. If D > 0 is a p X p matrix with eigenvalues M > ... >
m > 0, then

M+ m 1
D' < I - D, (1)
Mm 7  Mm
and
D* < (M + m)D — Mml,. (2)

See, e.g., Marshall and Olkin [10] and Liu and Neudecker [7].
LEMMA 22. IfB>0,C =0, B> > C?, then R(C?) c N(B?).
See, e.g., Liski and Puntanen [4] or Wang and Chow [17].
LEMMA 2.3. IfE >0, F >0, E*> > F?, then E > F holds.
See, e.g., Theorem 2.5.5 in Wang and Chow [17].

ProposiTION 2.1. If A =0, V is an n X r matrix with rank q, and
RTV) € R(A), we have

M+ m 1
VVTAT VYV < Vvt — VVYAVY™, (3)
Mm Mm
VVTA? VYT < (M + m)VV*AVV*— MmVV*, (4)

Proof. As A > 0and R(V) c R(A), we have A = TDT', AA"=TT’,
and AA"V =V, where D >0, T'T = I,, p = rank(A4), matrices D and T
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are of order p X p and n X p, respectively. From (1) and (2) we get

M+ m 1

At < AAT— —A; (5)
Mm Mm

A* < (M +m)A — MmAA™, (6)

for A > 0. And then we obtain (3) and (4).

Remark 2.1. Note that (5) and (6) are equivalent. Also (4) can be
extended as for any n X n symmetric matrix C with eigenvalues c; such
that M>c;>m,j=1,....n,

C? < (M + m)C — MmCC™, (7)

where M and m are not necessary positive scalars because (M — ¢, )(m —
¢;) < 0 is always true.

PropPosITION 2.2. If A >0, V is and n X r matrix with rank q, and
NT) € R(A), then the following five identities hold,

(WA =v(vAav) v, (8)
(VV+AVV+)+1/2(VV+AVV+)1/2 — (9)

(W AW v vy TPt avy )Y = vt (10)
(WA vt = (it (11)
(WA vt = (v Avr )2 (12)

Proof. Write V' =SGQ' and VV"=SS', where G>0, §'S=1,
Q0=1,q9= rank(}), matrices G, S, and Q are of order ¢ X g,n X ¢,
and r X ¢, respectively. Noting that S’ A4S > 0 we have

(WrAVVH) " = (8S'ASS") " = S(S'AS)7 s,
and
V(V'AV) V' = SGQ'(QGS' ASGQ') " OGS’ = S(S'AS) 'S,

then (8) holds.
From the following

(WWrAVY) 2 = 5(548) Vs (13)
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(WVrAVV ) = S(S'48)°S’, (14)
a=1/2 0r1l/4;
(W A2V = s(51428)Y s, (15)

we get (9) through (12).

Remark 2.2. In (14), « can be any number. Note that V"t AV > 0
but S'AS > 0. If a <0, then —a > 0 and therefore a for the left-hand-
side term has to be replaced with +(—a), where this + indicates the
Moore-Penrose inverse (see also (13) above as an example). If « = 0, then
(VVTAVY*T)® = §S" = V', Also (15) and then (12) still holds when A is
just a symmetric matrix such that M (V) c RN(A).

PrROPOSITION 2.3. IfB >0, C > 0, and B?> > C?, then B > C holds.

Proof. Using Lemma 2.2 gives R(C) c R(B). Write B = RER' and
C = RFR’, where E >0, F >0, and R'R =1, with b = rank(B). Then
RE’R' = B*> > C? = RF°R’, hence E? > F?. Applying Lemma 2.3 leads
to E > F, and therefore B > C.

Remark 2.3. Based on Lemma 2.3 another proof of Proposition 2.3 is,
due to Professor A.M. Fink’s idea, as follows. For any € > 0, we have
(B+€l)>=B*+2eB+€’l>C?then B+el>C,ie,Bx>C.

2. EQUALITY CONDITIONS

We now use Propositions 2.1 and 2.2 to derive sufficient and necessary
conditions (SNECs) for several Kantorovich-type inequalities to become
equalities.

ProposITION 3.1. The SNECs for (16) are (17) or (18):

(M + m)® .
VATV ' < ————(V'AV) (16)
4Mm
M+ m m
V'AV = V'V VATV = V'V, (17)
2Mn
V=0, (18)

where A > 0 and R(V) C R(A).
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Proof. By using (3) and (9), and noting that (VW/*AVV*)™/2 > 0 and
(VV*TAVV*)Y2 > 0 are symmetric, we have

M+ m 1
WAtV < W= —— VAV
Mm Mm
M + m)*
_MEm) Y ) (rAavv+)”©
m
M+m 1 2
| 577 (VV*AVV*)“/Z——M (VW AvY )2
vivim vivim
(M +m)* .
< T(W+AW+) . (19)
m

Using (8) and noting that * V(' AV)*V'V' = (V' AV)* we see (19) is
equivalent to (16). From (19) we find that the SNECs are

(i) M+ m(VV*AVV*)“/2 ot (WA HYE =0 (20)
2VMm VvMm
and
+ A+t (M+m)2 + +3 T
VVAVV=T(VVAVV), (21)
m
or
M+ m 2
i) VATV = (Mt m) WAy = 0. 22
4M;
m

Using (10), V'VV* = V"', and VIV 1V = I, we get (17) from (20) and (21).
Clearly (22) means that V'* V' AT VYV = V' V' AVV* = 0. Simply AV = 0,
or V' = 0. This is because N(V) c N(A), i.e.,, V = AL, for some matrix L,
and then V'V = L' AV.

For (16), compare the result (1) in Liu and Neudecker [6].

Remark 3.1. Consider an illustrative example in a simple case for
equality conditions. Define the 5 X 5 diagonal matrix 4 = diag(3,3,2,1,1),
and the 5 X 2 matrix V = (x,y) with the 5 X 1 vector x =
(1/v2,0,0,0,1/v2) and the 5 x 1 vector y = (0,1/v2,0,1/v2,0)". In
this case A > 0 and V'V = I,. A straightforward calculation shows that
(17) holds.
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Assume that 4 > 0 and R() c R(A), then a matrix version of the
Cauchy-Schwartz inequality is

(V' Aav) <vratyt (23)

with equality if and only if R(V) = R(AV).
It can be obtained, by pre- and post-multiplying ’* and V' *, respec-
tively, from

v(r'av) v <At (24)

for A > 0and R(V) c R(A).

For (24) with its equality condition H(}) = R (A), see, e.g., Pukelsheim
and Styan [14]. Also (24) can be derived as follows. Given E and F are two
symmetric and idempotent matrices, then EF = F implies E > F; see Liu
and Polasek [8]. Using E = AA* and F = AY2V (V' AV)T V' A2, where
EF = F, we get (24).

PrRoPOSITION 3.2.  The SNECs for (25) are (26) or (27) or (28),

VAV — (V' ATV < (WM — Vm ) (v V)T, (25)
VAV = (M +m — VMm V'V, V' AV = %V’V; (26)
V=0; (27)

M=m, (28)

where A > 0 and R(V) € R(A).
Proof. Using (3) and (9), we have
VWAV — (VAT vrt)t
< (M + m)VV*+ MmVVE AV — (VA V)T
= (VM — Vm Y V¥*
—[VW(VV*A*VV*)“Z _ (VV*A*VV*)”/Z]z
< (VM = Vm )'vv+. (29)

Then (26) follows from using (29) and (10). Also it can be verified that
WAV =V AT VY)Y = UM — Vm )*VV = 0is equivalent to (27)
or (28).

For (25), see also Liu and Neudecker [7].
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Remark 3.2. Note that A* has the nonzero eigenvalues 1/m > ... >
1/M > 0, and a representation of Proposition 3.2 can then be given. The
SNEC:s for (30) are (31) or (27) or (28),

VM = m )’
VPATY' = (V' Av) T < Q(V'V)*, (30)
Mm
M+ m — VvMm
V'AV = \Mm V'V, V' A"V = 7 V', (31)
m

where A4 > 0 has nonzero eigenvalues M > ... >m >0, and R() C
N(A).

ProrosITION 3.3.  The SNECs for (32) are (33) or (34),

(M + m)°
VA < ——— V' AVV* AV, (32)
AMm
Mm
V'AV = V'V, V' A2V = MmV'V; (33)
M+ m
V=0, (34)

where A > 0 and N(V) € N(A).
Proof. By using (4) and VWV AVV* VY= VIV AVY™, we have
VAWV < (M + m)VVEAVYV — MmVV*
(M + m)’
= ————— (W AVV*)?
4Mm
M+ m

| 2vMm
(M + m)2
< —
AMm
Then (32), (33), and (34) follow.

Remark 3.3. Note that from V'VV* < I, we get for any symmetric ma-
trix C

2
VYV AWV — VMm VV*

(VW AVY ). (35)

V'CVVTCV < V'C?V,
and equivalently
(VVHevrh)? < vt ctvvt, (36)
both with equalities if and only if VV*CV = CV.
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PROPOSITION 3.4. The SNECs for (37) are (38) or (39) or (40),

1
V'A*V — V'AVVTAV < Z(M - m)zV’V, (37)
M+ m M? + m?
V'AV = V'V, V'A*V = TV’V: (38)
V=0; (39)
M=m, (40)

where A > 0 and R(V) C R(A).
Proof. Using (4) and VVTAVV* VY= VVTAVY™, we have

VWAV — (VW AVY )
< (M + m)VWWAVV — MmVV*— (VW AVY)?

+m 2

1 , M
T (M = m)" Vv = | WVAWV = ——

1 2
7 (M —m) . (41)

IA

Then (37) through (40) follow.
For (37) and other equivalent inequalities, see Liu and Neudecker [7].

Remark 3.4. Based on (7) in Remark 2.1, we see from (41) that we can
relax A to be a symmetric matrix. For another method to relax A to be
symmetric, see Styan [16].

PRoPOSITION 3.5. The SNECs for (42) are (43) or (44),

2y < T e gy 42

( V= i ’ 42
2Mm

VAV ==V V' AV = MmV'V: (43)
m

V=0, (44)

where A > 0 and R(V) C R(A).
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Proof. By (4) and (12), we have
VVTAVY*
Mm

VWA VYT +
M+ m M+ m
2VMm 1/2

- WAty
M+ m ( )

> | 478

2
1 1/2 vMm
+ | —r )" - ——w
VM + m ( ) M+ m
2VMm

M+ m

Then (42), (43), and (44) hold.
For (42), see Liu and Neudecker [7].

PRoPOSITION 3.6. The SNECs for (46) are (47) or (48) or (49),

> (Vv A vv)© (45)

12 (M — m)2
(WrA2WWH) " = VWV AW < ———— VY, (46)
4 M+ m)
M? + m? + 6Mm (M + m)?
VAV = VIV VA = ~———V'V; (47)
4(M + m) 4
V=0; (48)
M=m, (49)
where A > 0 and R(V) € R(A).
Proof. By (4) and (12), we have
(VWA — vt Avy
1/2 Mm
< (WrA2W*y' " — VWA VYT — |48
M+ m M+ m
2
_ (M —m) )
4(M + m)
_ ;(WJrAZVVJr)l/Z _ MWJr 2
VM +m 2
M —m)?
< g +, (50)
4(M + m)

Then (46) through (49) hold.
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For (46), see Liu and Neudecker [7].

Remark 3.5. From (7), (12), and (50) we see that (46) can be extended
as

1/2

(M +m)| (e - v cvvt]

< MVW, (51)

for any symmetric matrix C such that (V) c H(C) and M + m > 0.

4. RELEVANT INEQUALITIES

Applying Proposition 2.3, we can derive some further results.
First from (16) and (19), we get

M+ m
(Vraty Vi < m(V'AV)”/2 (52)
and
M+ m
(WAt vyh)Y? < W(W*AVV*)“”, (53)
m

both with equalities if and only if (17) or (18) holds. Using (23) and its
equivalent version, we have

(V,AV)+1/2 < (V+A+Vr+)1/2, (54)
and
(VV+AVV+)+1/2S (VV+A+VV+)1/2, (55)

where A > 0 and N(V) € R(A). The two equalities occur if and only if
RW) = RAV).
Using (35) and the following matrix version of the Cauchy-Schwarz
inequality
(WWHAVV)E < YV A2VVE, (56)
we also get respectively Proposition 3.5 and the inequality

VVEAVYE < (VW arvv)Y? (57)
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with equality if and only if V" AV = AV. Note that A4 in (56) and (57) can
be relaxed to be any symmetric matrix; see also Remark 3.3 and (36) there.

Now, we present the combined matrix inequalities for the
Baksalary—Puntanen [1] condition, i.e., for 4 and V" such that 4 > 0 and
V'AA*V is idempotent,

(VA V)+1/2<(VAV)1/2 +1/2 (58)

J__(VA V)

Here (58) can be derived from (2.4) and (3.4) in Baksalary and Puntanen
[1]. In particular, if A > 0 and V'V is idempotent, which is also a special
case of 4 > 0 and (V) c N(A), we have

M+ m V'AV 59
< "AV.
 2VMm (59)
The first part of (59) follows from (36). The second part is derived from
(32), and V*= V' which is equivalent to the idempotency of 'V

Keep in mind that (in) equality conditions remain unchanged when we
apply Proposition 2.3.

VAV < (V' A2V)Y?

5. CONCLUDING COMMENTS

(i) By using the results of Section 3, we can examine the special
cases for the Hadamard product (see, e.g., Horn [3]), and for the upper-left
submatrices (see, e.g. Liu [5]) studied in Liu and Neudecker [7].

(i) Applying the block-method used by Liu [5] and Liu and
Neudecker [7], plenty of results for several cases of sums of matrices
including Kantorovich and Cauchy—Schwarz inequalities can be easily
derived from the results presented in this paper, and for Fan’s cases, a
special type of the cases of sums of matrices, see Fan [2], Mond and
Pecarit [12], and Liu and Neudecker [7]. Also, it is not difficult to give
parallel versions of SNECs of equalities for Kantorovich-type inequalities
in the cases of sums of matrices.

(iii) Only the case which involves one positive (semi-)definite matrix
is considered in Section 3, while the case which involves two such matrices
studied in Wang and Shao [18] and Liu and Neudecker [6] can also be
treated to give further results.

(iv) A short comment on equality conditions for the matrix version
of the Kantorovich inequality can be found in Marshall and Olkin [10].
Studies for a different type of conditions under which Kantorovich inequal-
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iti

es become equalities can be found in Baksalary and Puntanen [1] and

Pecaric, Puntanen, and Styan [13]. For considerations in matrix-trace and
other relevant cases, see, e.g. Rao [15] and references thereafter.
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11.

12.

13.

14.

15.

16.

17.

18.
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