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ŽFollowing a recent paper of S. Liu and H. Neudecker J. Math. Anal. Appl. 197,
. Ž .1996, 23]26 , we present sufficient and necessary conditions SNECs under which

equalities occur in those corresponding matrix Kantorovich-type inequalities. We
also present several relevant inequalities. Q 1997 Academic Press

1. INTRODUCTION

w xMarshall and Olkin 10 first presented a matrix version of the Kan-
torovich inequality involving a positive definite matrix. Baksalary and

w xPuntanen 1 extended it to cover the case of one positive semidefinite
w xmatrix, while Mond and Pecaric 11, 12 gave several Kantorovich-typeˇ ´

inequalities for the case of one positive definite matrix or for Fan’s cases
Ž w x. w xof sums of matrices see also Fan 2 . Liu 5 gave a related inequality in a

w xspecial case. More recently, Liu and Neudecker 7 presented further
Kantorovich-type inequalities involving one positive semidefinite matrix or
sums of such matrices. In this paper all matrices and numbers considered

w xare real. We refer to Magnus and Neudecker 9 for mathematical basics.
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w xFollowing Liu and Neudecker 7 , we shall further study sufficient and
necessary conditions for known and new Kantorovich-type inequalities to
become equalities. We shall also present several relevant inequalities.

2. BASIC RESULTS

Ž .Let A be an n = n positive semidefinite matrix with rank p p F n and
with nonzero eigenvalues M G . . . G m ) 0. Let V be an n = r matrix

Ž . Ž . Ž . Ž .with rank q such that R V ; R A , where q F min r, p , and R ?
denotes the column space of the matrix. Let q indicate the Moore-Penrose
inverse. For symmetric matrices B and C, B F C means C y B is positive
semidefinite.

In the following, from three lemmas we shall derive three basic proposi-
tions.

LEMMA 2.1. If D ) 0 is a p = p matrix with eigen¨alues M G . . . G
m ) 0, then

M q m 1
y1D F I y D , 1Ž .pMm Mm

and

D2 F M q m D y MmI . 2Ž . Ž .p

w x w xSee, e. g., Marshall and Olkin 10 and Liu and Neudecker 7 .
2 2 Ž 2 . Ž 2 .LEMMA 2.2. If B G 0, C G 0, B G C , then R C ; R B .

w x w xSee, e.g., Liski and Puntanen 4 or Wang and Chow 17 .

LEMMA 2.3. If E ) 0, F G 0, E2 G F 2, then E G F holds.

w xSee, e.g., Theorem 2.5.5 in Wang and Chow 17 .

PROPOSITION 2.1. If A G 0, V is an n = r matrix with rank q, and
Ž . Ž .R V ; R A , we ha¨e

M q m 1
q q q q q qVV A VV F VV y VV AVV ; 3Ž .

Mm Mm

VVqA2VVqF M q m VVqAVVqy MmVVq. 4Ž . Ž .

Ž . Ž . qProof. As A G 0 and R V ; R A , we have A s TDT 9, AA s TT 9,
q Ž .and AA V s V, where D ) 0, T 9T s I , p s rank A , matrices D and Tp
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Ž . Ž .are of order p = p and n = p, respectively. From 1 and 2 we get

M q m 1
q qA F AA y A; 5Ž .

Mm Mm

A2 F M q m A y MmAAq, 6Ž . Ž .

Ž . Ž .for A G 0. And then we obtain 3 and 4 .

Ž . Ž . Ž .Remark 2.1. Note that 5 and 6 are equivalent. Also 4 can be
extended as for any n = n symmetric matrix C with eigenvalues c suchj
that M G c G m, j s 1, . . . , n,j

C 2 F M q m C y MmCCq, 7Ž . Ž .

Ž .Žwhere M and m are not necessary positive scalars because M y c m yj
.c F 0 is always true.j

PROPOSITION 2.2. If A G 0, V is and n = r matrix with rank q, and
Ž . Ž .R V ; R A , then the following fï e identities hold,

q qqVV AVV s V V 9 AV V 9; 8Ž . Ž . Ž .
q1r2 1r2q q q q qVV AVV VV AVV s VV ; 9Ž . Ž . Ž .

1r4 q1r2 1r4q q q q q q qVV AVV VV AVV VV AVV s VV ; 10Ž . Ž . Ž . Ž .
1r2 1r2q q q q qVV AVV VV s VV AVV ; 11Ž . Ž . Ž .
1r2 1r2q 2 q q q 2 qVV A VV VV s VV A VV . 12Ž . Ž . Ž .

Proof. Write V s SGQ9 and VVqs SS9, where G ) 0, S9S s I ,q
Ž .Q9Q s I , q s rank V , matrices G, S, and Q are of order q = q,n = q,q

and r = q, respectively. Noting that S9 AS ) 0 we have

q q y1q qVV AVV s SS9 ASS9 s S S9 AS S9,Ž . Ž . Ž .

and

q q y1V V 9 AV V 9 s SGQ9 QGS9 ASGQ9 QGS9 s S S9 AS S9,Ž . Ž . Ž .

Ž .then 8 holds.
From the following

q1r2 y1r2q qVV AVV s S S9 AS S9; 13Ž . Ž . Ž .
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a aq qVV AVV s S S9 AS S9, 14Ž . Ž . Ž .

a s 1r2, or 1r4;

1r2 1r2q 2 q 2VV A VV s S S9 A S S9, 15Ž . Ž . Ž .

Ž . Ž .we get 9 through 12 .

Ž . q qRemark 2.2. In 14 , a can be any number. Note that VV AVV G 0
but S9 AS ) 0. If a - 0, then ya ) 0 and therefore a for the left-hand-

Ž .side term has to be replaced with q ya , where this q indicates the
Ž Ž . .Moore-Penrose inverse see also 13 above as an example . If a s 0, then

Ž q q.0 q Ž . Ž .VV AVV s SS9 s VV . Also 15 and then 12 still holds when A is
Ž . Ž .just a symmetric matrix such that R V ; R A .

PROPOSITION 2.3. If B G 0, C G 0, and B2 G C 2, then B G C holds.

Ž . Ž .Proof. Using Lemma 2.2 gives R C ; R B . Write B s RER9 and
Ž .C s RFR9, where E ) 0, F G 0, and R9R s I with b s rank B . Thenb

RE2R9 s B2 G C 2 s RF 2R9, hence E2 G F 2. Applying Lemma 2.3 leads
to E G F, and therefore B G C.

Remark 2.3. Based on Lemma 2.3 another proof of Proposition 2.3 is,
due to Professor A.M. Fink’s idea, as follows. For any e ) 0, we have
Ž .2 2 2 2B q e I s B q 2eB q e I G C , then B q e I G C, i.e., B G C.

2. EQUALITY CONDITIONS

We now use Propositions 2.1 and 2.2 to derive sufficient and necessary
Ž .conditions SNECs for several Kantorovich-type inequalities to become

equalities.

Ž . Ž . Ž .PROPOSITION 3.1. The SNECs for 16 are 17 or 18 :

2M q mŽ . qq q qV A V9 F V 9 AV , 16Ž . Ž .
4Mm

M q m M q m
qV 9 AV s V 9V , V 9 A V s V 9V ; 17Ž .

2 2 Mn

V s 0, 18Ž .

Ž . Ž .where A G 0 and R V ; R A .
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Ž . Ž . Ž q q.q1r2Proof. By using 3 and 9 , and noting that VV AVV G 0 and
Ž q q.1r2VV AVV G 0 are symmetric, we have

M q m 1
q q q q q qVV A VV F VV y VV AVV

Mm Mm
2M q mŽ . qq qs VV AVVŽ .

4Mm
2M q m 1q1r2 1r2q q q qy VV AVV y VV AVVŽ . Ž .' '2 Mm Mm

2M q mŽ . qq qF VV AVV . 19Ž . Ž .
4Mm

Ž . q Ž .q q Ž .q Ž .Using 8 and noting that V V V 9 AV V 9V 9 s V 9 AV we see 19 is
Ž . Ž .equivalent to 16 . From 19 we find that the SNECs are

M q m 1q1r2 1r2q q q qi VV AVV y VV AVV s 0 20Ž . Ž . Ž . Ž .' '2 Mm Mm

and

2M q mŽ . qq q q q qVV A VV s VV AVV , 21Ž . Ž .
4Mm

or

2M q mŽ . qq q q q qii VV A VV s VV AVV s 0. 22Ž . Ž . Ž .
4Mm

Ž . q q Ž . Ž . Ž .Using 10 , V 9VV s V 9, and VV V s V, we get 17 from 20 and 21 .
Ž . q q q q qClearly 22 means that V 9 V 9 A VV s V 9 V 9 AVV s 0. Simply AV s 0,

Ž . Ž .or V s 0. This is because R V ; R A , i.e., V s AL, for some matrix L,
and then V 9V s L9 AV.

Ž . Ž . w xFor 16 , compare the result 1 in Liu and Neudecker 6 .

Remark 3.1. Consider an illustrative example in a simple case for
Ž .equality conditions. Define the 5 = 5 diagonal matrix A s diag 3, 3, 2, 1, 1 ,

Ž .and the 5 = 2 matrix V s x, y with the 5 = 1 vector x s
' ' ' 'Ž . Ž .1r 2 , 0, 0, 0, 1r 2 9 and the 5 = 1 vector y s 0, 1r 2 , 0, 1r 2 , 0 9. In

this case A ) 0 and V 9V s I . A straightforward calculation shows that2
Ž .17 holds.
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Ž . Ž .Assume that A G 0 and R V ; R A , then a matrix version of the
Cauchy]Schwartz inequality is

q q q qV 9 AV F V A V9 , 23Ž . Ž .

Ž . Ž .with equality if and only if R V s R AV .
It can be obtained, by pre- and post-multiplying Vq and V 9q, respec-

tively, from
q qV V 9 AV V 9 F A , 24Ž . Ž .

Ž . Ž .for A G 0 and R V ; R A .
Ž . Ž . Ž .For 24 with its equality condition R V s R A , see, e.g., Pukelsheim

w x Ž .and Styan 14 . Also 24 can be derived as follows. Given E and F are two
symmetric and idempotent matrices, then EF s F implies E G F; see Liu

w x q 1r2 Ž .q 1r2and Polasek 8 . Using E s AA and F s A V V 9 AV V 9 A , where
Ž .EF s F, we get 24 .

Ž . Ž . Ž . Ž .PROPOSITION 3.2. The SNECs for 25 are 26 or 27 or 28 ,

2q qq q q ' 'V AV9 y V 9 A V F M y m V 9V , 25Ž . Ž . Ž .Ž .
1

q'V 9 AV s M q m y Mm V 9V , V 9 A V s V 9V ; 26Ž .Ž . 'Mm

V s 0; 27Ž .
M s m , 28Ž .

Ž . Ž .where A G 0 and R V ; R A .

Ž . Ž .Proof. Using 3 and 9 , we have

qq q q q qVV AVV y VV A VVŽ .
qq q q q q q qF M q m VV q MmVV A VV y VV A VVŽ . Ž .

2 q' 's M y m VVŽ .
21r2 q1r2q q q q q q'y Mm VV A VV y VV A VVŽ . Ž .

2 q' 'F M y m VV . 29Ž .Ž .
Ž . Ž . Ž .Then 26 follows from using 29 and 10 . Also it can be verified that

q q q q q q q 2 q' 'Ž . Ž . Ž .VV A VV y VV A VV s M y m VV s 0 is equivalent to 27
Ž .or 28 .

Ž . w xFor 25 , see also Liu and Neudecker 7 .
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Remark 3.2. Note that Aq has the nonzero eigenvalues 1rm G . . . G
1rM ) 0, and a representation of Proposition 3.2 can then be given. The

Ž . Ž . Ž . Ž .SNECs for 30 are 31 or 27 or 28 ,
2' 'M y mŽ .q qq q qV A V9 y V 9 AV F V 9V , 30Ž . Ž . Ž .

Mm

'M q m y Mm
q'V 9 AV s Mm V 9V , V 9 A V s V 9V , 31Ž .

Mm

Ž .where A G 0 has nonzero eigenvalues M G . . . G m ) 0, and R V ;
Ž .R A .

Ž . Ž . Ž .PROPOSITION 3.3. The SNECs for 32 are 33 or 34 ,
2M q mŽ .

2 qV 9 A V F V 9 AVV AV , 32Ž .
4Mm

2 Mm
2V 9 AV s V 9V , V 9 A V s MmV9V ; 33Ž .

M q m

V s 0, 34Ž .
Ž . Ž .where A G 0 and R V ; R A .

Ž . q q q q qProof. By using 4 and VV AVV VV s VV AVV , we have

VVqA2VVqF M q m VVqAVVqy MmVVqŽ .
2M q mŽ . 2q qs VV AVVŽ .

4Mm
2M q m

q q q'y VV AVV y Mm VV'2 Mm

2M q mŽ . 2q qF VV AVV . 35Ž . Ž .
4Mm

Ž . Ž . Ž .Then 32 , 33 , and 34 follow.

Remark 3.3. Note that from VVqF I, we get for any symmetric ma-
trix C

V 9CVVqCV F V 9C 2V ,
and equivalently

2q q q 2 qVV CVV F VV C VV , 36Ž . Ž .
both with equalities if and only if VVqCV s CV.
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Ž . Ž . Ž . Ž .PROPOSITION 3.4. The SNECs for 37 are 38 or 39 or 40 ,

1 22 qV 9 A V y V 9 AVV AV F M y m V 9V , 37Ž . Ž .
4

M q m M 2 q m2
2V 9 AV s V 9V , V 9 A V s V 9V ; 38Ž .

2 2

V s 0; 39Ž .
M s m , 40Ž .

Ž . Ž .where A G 0 and R V ; R A .

Ž . q q q q qProof. Using 4 and VV AVV VV s VV AVV , we have

2q 2 q q qVV A VV y VV AVVŽ .
2q q q q qF M q m VV AVV y MmVV y VV AVVŽ . Ž .

21 M q m2 q q q qs M y m VV y VV AVV y VVŽ .
4 2

1 2 qF M y m VV . 41Ž . Ž .
4

Ž . Ž .Then 37 through 40 follow.
Ž . w xFor 37 and other equivalent inequalities, see Liu and Neudecker 7 .

Ž . Ž .Remark 3.4. Based on 7 in Remark 2.1, we see from 41 that we can
relax A to be a symmetric matrix. For another method to relax A to be

w xsymmetric, see Styan 16 .

Ž . Ž . Ž .PROPOSITION 3.5. The SNECs for 42 are 43 or 44 ,

M q m1r2q 2 q q qVV A VV F VV AVV , 42Ž . Ž .'2 Mm

2 Mm
2V 9 AV s V 9V , V 9 A V s MmV9V ; 43Ž .

M q m

V s 0, 44Ž .

Ž . Ž .where A G 0 and R V ; R A .
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Ž . Ž .Proof. By 4 and 12 , we have
VVqAVVq

1 Mm
q 2 q qG VV A VV q VV

M q m M q m
'2 Mm 1r2q 2 qs VV A VVŽ .

M q m
2'1 Mm1r2q 2 q qq VV A VV y VVŽ .' 'M q m M q m

'2 Mm 12q 2 qG VV A VV 45Ž . Ž .
M q m

Ž . Ž . Ž .Then 42 , 43 , and 44 hold.
Ž . w xFor 42 , see Liu and Neudecker 7 .

Ž . Ž . Ž . Ž .PROPOSITION 3.6. The SNECs for 46 are 47 or 48 or 49 ,
2M y mŽ .1r2q 2 q q q qVV A VV y VV AVV F VV , 46Ž . Ž .

4 M q mŽ .
22 2M q m q 6Mm M q mŽ .

2V 9 AV s V 9V , V 9 A V s V 9V ; 47Ž .
4 M q m 4Ž .

V s 0; 48Ž .
M s m , 49Ž .

Ž . Ž .where A G 0 and R V ; R A .

Ž . Ž .Proof. By 4 and 12 , we have
1r2q 2 q q qVV A VV y VV AVVŽ .

1 Mm1r2q 2 q q 2 q qF VV A VV y VV A VV y VVŽ .
M q m M q m

2M y mŽ . qs VV
4 M q mŽ .

2'1 M q m1r2q 2 q qy VV A VV y VVŽ .' 2M q m

2M y mŽ . qF VV . 50Ž .
4 M q mŽ .

Ž . Ž .Then 46 through 49 hold.
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Ž . w xFor 46 , see Liu and Neudecker 7 .

Ž . Ž . Ž . Ž .Remark 3.5. From 7 , 12 , and 50 we see that 46 can be extended
as

1r2q 2 q q qM q m VV C VV y VV CVVŽ . Ž .
2M y mŽ . qF VV , 51Ž .

4

Ž . Ž .for any symmetric matrix C such that R V ; R C and M q m G 0.

4. RELEVANT INEQUALITIES

Applying Proposition 2.3, we can derive some further results.
Ž . Ž .First from 16 and 19 , we get

M q m1r2 q1r2q q qV A V9 F V 9 AV 52Ž . Ž . Ž .'2 Mm

and

M q m1r2 q1r2q q q q qVV A VV F VV AVV , 53Ž . Ž . Ž .'2 Mm

Ž . Ž . Ž .both with equalities if and only if 17 or 18 holds. Using 23 and its
equivalent version, we have

q1r2 1r2q q qV 9 AV F V A V 9 , 54Ž . Ž . Ž .
and

q1r2 1r2q q q q qVV AVV F VV A VV , 55Ž . Ž . Ž .

Ž . Ž .where A G 0 and R V ; R A . The two equalities occur if and only if
Ž . Ž .R V s R AV .

Ž .Using 35 and the following matrix version of the Cauchy]Schwarz
inequality

2q q q 2 qVV AVV F VV A VV , 56Ž . Ž .

we also get respectively Proposition 3.5 and the inequality

1r2q q q 2 qVV AVV F VV A VV , 57Ž . Ž .
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q Ž . Ž .with equality if and only if VV AV s AV. Note that A in 56 and 57 can
Ž .be relaxed to be any symmetric matrix; see also Remark 3.3 and 36 there.

Now, we present the combined matrix inequalities for the
w xBaksalary]Puntanen 1 condition, i.e., for A and V such that A G 0 and

V 9 AAqV is idempotent,

M q mq1r2 1r2 q1r2q qV 9 A V F V 9 AV F V 9 A V . 58Ž . Ž . Ž . Ž .'2 Mm

Ž . Ž . Ž .Here 58 can be derived from 2.4 and 3.4 in Baksalary and Puntanen
w x1 . In particular, if A ) 0 and V 9V is idempotent, which is also a special

Ž . Ž .case of A G 0 and R V ; R A , we have

M q m1r22V 9 AV F V 9 A V F V 9 AV . 59Ž . Ž .'2 Mm

Ž . Ž .The first part of 59 follows from 36 . The second part is derived from
Ž . q32 , and V s V 9 which is equivalent to the idempotency of V 9V.

Ž .Keep in mind that in equality conditions remain unchanged when we
apply Proposition 2.3.

5. CONCLUDING COMMENTS

Ž .i By using the results of Section 3, we can examine the special
Ž w x.cases for the Hadamard product see, e.g., Horn 3 , and for the upper-left

Ž w x. w xsubmatrices see, e.g. Liu 5 studied in Liu and Neudecker 7 .
Ž . w xii Applying the block-method used by Liu 5 and Liu and

w xNeudecker 7 , plenty of results for several cases of sums of matrices
including Kantorovich and Cauchy]Schwarz inequalities can be easily
derived from the results presented in this paper, and for Fan’s cases, a

w xspecial type of the cases of sums of matrices, see Fan 2 , Mond and
w x w xPecaric 12 , and Liu and Neudecker 7 . Also, it is not difficult to giveˇ ´

parallel versions of SNECs of equalities for Kantorovich-type inequalities
in the cases of sums of matrices.

Ž . Ž .iii Only the case which involves one positive semi- definite matrix
is considered in Section 3, while the case which involves two such matrices

w x w xstudied in Wang and Shao 18 and Liu and Neudecker 6 can also be
treated to give further results.

Ž .iv A short comment on equality conditions for the matrix version
w xof the Kantorovich inequality can be found in Marshall and Olkin 10 .

Studies for a different type of conditions under which Kantorovich inequal-
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w xities become equalities can be found in Baksalary and Puntanen 1 and
w xPecaric, Puntanen, and Styan 13 . For considerations in matrix-trace andˇ ´

w xother relevant cases, see, e.g. Rao 15 and references thereafter.
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3. R. A. Horn, The Hadamard product, in ‘‘Proc. Sympos. Appl. Math.,’’ Vol. 40, pp.

87]169, Amer. Math. Soc. Providence, 1990.
4. E. P. Liski and S. Puntanen, A further note on a theorem on the difference of the

generalized inverses of two nonnegative definite matrices, Comm. Statist. Theory Methods
Ž .16, 1989 , 77]79.

Ž .5. S. Liu, An inequality involving submatrices, Econometric Theory 11, 1995 , 191.
6. S. Liu and H. Neudecker, ‘‘Kantorovich Inequalities and Efficiency comparisons for

Several Classes of Estimators in Linear Models,’’ AE Report 17, University of Amster-
Ž .dam, The Netherlands, 1994 forthcoming in Statist. Neerlandica .

7. S. Liu and H. Neudecker, Several matrix Kantorovich-type inequalities, J. Math. Anal.
Ž .Appl. 197 1996 , 23]26.

8. S. Liu and W. Polasek, An equivalence relation for two symmetric idempotent matrices,
Ž .Econometric Theory 11, 1995 , 638.

9. J. R. Magnus and H. Neudecker, ‘‘Matrix Differential Calculus with Applications in
Statistics and Econometrics,’’ Wiley, Chichester, 1991.

10. A. W. Marshall and I. Olkin, Matrix versions of the Cauchy and Kantorovich inequalities,
Ž .Aequationes Math. 40, 1990 , 89]93.

11. B. Mond and J. E. Pecaric, Matrix versions of some means inequalities, Austral. Math.ˇ ´
Ž .Soc. Gaz. 20, 1993 , 117]120.

12. B. Mond and J. E. Pecaric, A matrix version of the Ky Fan generalization of theˇ ´
Ž .Kantorovich inequality, Linear and Multilinear Algebra 36, 1994 , 217]221.

13. J. E. Pecaric, S. Puntanen, and G. P. H. Styan, Some further matrix extensions of theˇ ´
Cauchy]Schwarz and Kantorovich inequalities, with some statistical applications Linear

Ž .Algebra Appl. 237rrrrr238 1996 , 455]476.
14. F. Pukelsheim and G. P. H. Styan, Convexity and monotonicity of dispersion matrices of

Ž .estimators in linear models, Scand. J. Statist. 10, 1983 , 145]149.
15. C. R. Rao, The inefficiency of least squares: Extensions of the Kantorovich inequality,

Ž .Linear Algebra Appl. 70, 1985 , 249]255.
16. G. P. H. Styan, On some inequalities associated with ordinary least squares and the
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