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Interpolation schemes which assume prescribed values on the boundary of a 
triangle are presented. The development of these interpolants is based upon 
univariate interpolation along line segments joining a vertex and a side. Initially, 
methods which only interpolate to function values on the boundary are described. 
This is followed by the application of several techniques which extend these 
methods so as to include interpolation to first order derivatives on the boundary. 

1. INTRODUCTION 

The purpose of this report is to present some new methods for inter- 
polating to function values and derivatives given on the boundary of a 
triangle. Interpolation methods of this type have utility in such areas as 
finite element analysis and computer aided geometric design. 

The first methods of this type were presented by Barnhill, Birkhoff and 
Gordon [3]. Their methods are based upon the combination of interpolation 
operators consisting of univariate interpolation along lines parallel to the 
sides of the triangle. The fundamental operators of this paper consist of 
univariate interpolation along lines joining a vertex and its opposing side. 

In Section 2, we define the basic side-vertex method, which interpolates 
only to position values on the boundary and describe some improved 
versions of it. In Section 3, we consider interpolation to both position and 
slope on the boundary. Two general approaches are utilized. The first is 
based upon the combination of operators consisting of Hermite inter- 
polation along lines joining a vertex and a side. Following this, a general 
technique for extending methods which interpolate to position only, to 
methods which interpolate to both position and slope is described and 
utilized. 
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044-443. 
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INTERPOLATION IN TRIANGLES 319 

2. INTERPOLATION TO POSITION DATA ONLY 

The original development of the side-vertex method is based upon the 
Boolean sum of three operators consisting of linear interpolation along lines 
joining a vertex and its opposing side. For the standard triangle T, with 
vertices (0, 0), (0, 1) and (1,O); the linear interpolants have the form 

(2.1) 

&W(P, 4) = (P + d F (fi 3 &) + (1 - P - d WA 0) 

and 

AiS 0 A,S[Fj = A,3 0 A,8 0 &VI = (1 - p - q)F(o, 0) +pzv, 0) + qF(0, l), 
i,j = 1,2,3; i # .i. 

Therefore, the Boolean sum 

A,S @ A,8 @I A,* = A,S + A,S + AaS - A,8 ‘2 A,6 

- AIs 0 A,” - A,8 0 ASS + AlS 0 A,” o A,S 

yields the interpolation operator 

A”[Fl(p,d =tl -P)F(O,&)+(~ -dF(&A) 

- PW, 0) - @(O, 1) - (1 - P - d F(o, 0). (2.2) 

This operator has been discussed by Marshall [8], Marshall and Mitchell 
[9] and Barnhill [l]. 

For an arbitrary triangle T with vertices Vi = (xi , y,), i = 1,2, 3 an 
analogous operator can be defined by the use of an affine map 

x = X(P, 4) 

Y = Y(P> 9) 

which maps T, to T. For F defined on T, we define 

-W-l(x~ v> = A’[fll(~(x, Y),@, VN (2.3) 
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(l,O) 

P 
FIGURE 2.1 

where 

P(P, 4) = WP, 41, Y(P, 4)) 

and p = p(x, u), q = q(x, u) represents the inverse of the afIine map. 
There are, of course, a total of six transformations depending upon the 

association of the vertices of T, and T. In general, it is possible that an inter- 
polation scheme defined on the standard triangle could lead to six different 
schemes for an arbitrary triangle. These schemes are said to be afine equivalent 
to each other and any method for which all the affine equivalents are identical 
is termed an afine invariant method. Each of these affine transformations may 
be represented by 

-$p, 4) = xip + xjq + xkr 

Y(P, 4) = YiP + Yd + Y7cy 
(2.4) 

where r = 1 - p - q and (i, j, k) is one of the six permutations of (1,2,3). 
The associated inverse mapping is given by 

x - Xk xj - XT& 

PkY) = ;.rck “:.I: z 
Yi - Yk Y: - YI 

1 x - xi xi - xk 1 

4GGY) = 
1 Y  - Yi Yi - Yk 1 

x,-x 
3 k xi - xk 

Yi - Yk Yi - Yk 

1 X - Xj Xi - Xj 1 

a, Y> = 
1 Y - Yj Yi - Yj 1 
Xk - Xj Xi - Xi I . 

(2.5) 

1 yk - yj yi - yj / 
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Applying equation (2.3) for each transformation, we obtain the following 
interpolant for F defined on T 

AxJFl(x, Y> = (1 - P(X, Y>) F ( xl--x;;(x,y;) 2 ‘,-‘;-$; ) 

+ (1 - dx, Y>> F ( “I :x;;Fy;) 3 Y - Y&Y Y> 
i 

1 - 4(X> Y) ’ 

Y - Ykr(X? Y> 
1 - r(x, Y> 1 

- Ax, Y> %G , yi> - dx, Y) Wj , vj> - 6 Y) F(xk , vk>. 

(2.6) 

From equation (2.4), and (2.5), it is clear that each permutation leads to the 
same formula and consequently this method is affine invariant. We will find 
it convenient to utilize the barycentric coordinates bi , i = 1,2,3 defined by 

and 

x = b,x, + b,x, + b8xxQ 

Y = 0, + b,y, + bsya 

1 = bl + b, + b, 

(2.7) 

x - xj x - Xk 

bi = bi(x, y) = y  - yd y  - Yk I 
1 xi - xj xi - Xk 1 ’ 

i=l,2,3; i#j#k#i. 

1 yi - yj yi - yk 1 

We will denote the point opposite the vertex Vi by 

si = Si(X, y) = ( xl-Mx;;i , Y - y&a 
1 l-bi ’ 

i = 1,2,3. cw 

This notation is further illustrated in Figure 2.2. 
Incorporating this notation, the basic side-vertex method takes the rather 

simple form 

A[F] = i [(l - bi) F(Si) - biF( Vi)]. 
i=l 

(2.9) 

Using the properties 

I 

bj 
bi(Si) = 1 - bi i#.i 

0 i=j 
(2.10) 

i=j 

i f .i, 
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the line 

\ “k 

we can easily compute 

= i [(I 
i-1 
i#i 

= bj . 

Since the linear span{ 1, x, y) is equivalent to (bl , b, , b&, we can conclude 
that A has algebraic precision of degree at least one. A has no higher degree 
of precision, because 

Concerning the continuity of A[Fj we can note that the only potential 
discontinuity is in the term (I - bJ F(&) at (x, y) = Vs . Since 

it follows that 

l$ (1 - bi) F(S,) = 0 
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and so A[Fj E C(T) for FE C(T). But this is the extent of the smoothness of 
A[Fj. In general, A[I;l will have singularities in its first (and higher) order 
derivatives at the vertices, regardless of the smoothness of F. Equation (2.11) 
provides an example of this. If we compute 

abj % 
a 

-[ 
bib 

I 

bk2 ax + bt ax 

ax bj + bk = (bj + bd2 

and let (x, u) approach Vi along the line orb, = j?b, we find that 

a 
[ 

b&z II 
j32 2 + a2 A$ 

ax bj + bk yi = (a + 8)” ’ 

which is dependent upon the direction of approach. 
We now proceed to improve upon the operator A. It is interesting to note 

that if 01 is any continuous function defined on [O, l] with the property 
a(O) = 0, or(l) = 1, then the following generalization of A will be an inter- 
polation operator for F E C(T): 

A”[F] = f [ol(l - bi) F(S,) - a(bi) F(V,)]. 
i=l 

(2.12) 

Of particular interest is the case a(t) = t2 which leads to 

A*[F] = i [(l - b,)“F(S,) - b,“F(V,)] 
i=l 

(2.13) 

which defines an operator with algebraic precision of degree two with the 
property that A*[FJ E Cl(T) for FE Cl(T). This operator has been developed 
by Thomas [lo] as the Boolean sum of the operators 

A)[F] = (1 - bJ2 F(S,), i = 1,2, 3. 

In order to verify that A*[F] E C1( T) for FE C?(T) we need only concern 
ourselves with the term (1 - bi)2 F(SJ at the vertex Vi . Performing the 
differentiation, we find that 

a[(1 - ;T F(si)l = (1 - bJ F&) + [(x - xi) F&S,) 

Using the fact that F, F,, Fg E C(T), it is easy to see that a[(1 - bJ2 F(SJ]/ax 
is continuous and that 
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In general, the second derivatives of A*[F] exhibit a similar behavior to the 
first derivatives of A[F] in that the values at the vertices depend upon the 
direction of approach. 

Concerning the algebraic precision of A*, we first note that 
(1, x, Y, x2, xy, y2> = <b, , b, , b3, h2, b22, b3> = <b, , b, , b3, b,b, , b&3, b&3). 
Using equation (2.10) we find that 

A*[bJ = ‘f (1 - b# b&3<) - bipbj(Vi) 
i=l 

= gl [(I - &I2 &] - bi 

i#j 

and 

= bi(l + bj) - bj 

Yzz bj 

A*[b,b,] = 2 (1 - bi)2bj(Sf) b,(Si) - b,“bj(Vi) bk(Vc) 
i-l 

and so A* has precision of degree at least two. 
The operator A* has no higher algebraic precision since 

bi4 - bi2bibk 
A*[bi3] = (1 - b,)(l - b,) ’ i#j#k#i 

and 

A*[b,“bj] = a ) 
z 3 

i#I#k#i. 

In fact, it is true in general that an interpolation operator which utilizes only 
values of F on aT (and not derivatives) cannot be exact for all third degree 
polynomials. This is due to the fact that blb2b3 is a cubic which is identically 
zero on aT. 

3. INTERPOLATION TO BOTH POSITION AND SLOPE 

In this section, we extend the methods of the previous section to include 
interpolation to first order derivatives on the boundary of T. Two general 
approaches are used and several methods are obtained. The first approach is 
based upon operators similar to Ai, i = 1, 2, 3; in that they consist of 
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univariate interpolation along line segments joining a vertex and its opposing 
edge. Rather than linear interpolation, we use the general Hermite operator 

ml(t) = WI g(l) + w> g’(l) + 41 - f) g(O) - it1 - t> g’@), (3.1) 

where h(1) = h’(1) = 1, h’(1) = h(0) = h’(O) = h(l) = h(O) = h’(O) = 0. 
Applying this operator to 

Ri(f) = F(f& + (1 - t) V,), i = 1,2,3 (3.2) 

and letting t = t(x, y) = 1 - bi , we define 

D,[r’l = h(1 - bi) F(&) + fi(l - bJ R:(l) + h(b,) F( Vi) - h(b,) R:(O), 

(3.3) 
where 

R;(l) = (x - 4 Fz(&) + (Y - Vi) F,(W 
1 - bi 9 

R;(()) = (x - Xi> Fz( Vi) + (v - Vi> Ft!( Vi) 
1 - bi 

(3.4) 

"i 

FIGURE 3.1 

While we are primarily interested in the case of cubic Hermite inter- 
polation, where h(t) = P(3 - 2t) and h(t) = t2(t - I), many of our results 
hold in the more general situation without much additional complication. 
However, we do require that h, fi E C2[0, I]. In order to simplify some later 
equations, we introduce the notation 

h(t) = W) t(tj 9 
g (Vi) = (Xk - Xi) F,Vi) + (Y, - Yi) F*Wi), (3.5) 

3 

-$ (si) = (Xk - Xi) Fdsi) + (Yk - Vi) Fg(si) 
3 
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and write 

where 

Di = Bi + Pi (3.6) 

Bi[F] = h(l - bJ F(Si) - b&(1 - bi) [bj 2 (SJ + bk g (si)] 3 

P,[F] = h(bi) F(vJ + b&bJ [ bi 2 (vi) + bk E (V,)] 3 (3.7) 

i = 1,2, 3; i#j#k#i. 

V. 
7 

FIGURE 3.2 

We are ultimately interested in approximations which are contained in 
Cl(T). Since the first order derivatives of D#‘l on T involve second order 
derivatives of F on ei , we require these derivatives to be continuous. Conse- 
quently, we define 

CT2 = F:F&(T);f$$j E C(ei), n + m = 2; i = 1,2, 3 . 
ei I 

Note that Crz admits functions which are not C2-compatible at the vertices 
but requires Ckompatibility. The only potential P-discontinuity of Di[Fl 
is at the vertex Vi , but since D#“J interpolates to first order derivatives of Vi , 
it is clear that D,[FJ E Cl(T) for FE C, 2 In general, this is the extent of the . 
smoothness of D#‘l regardless of the smoothness of F, h and h. As an 
example, when Di = Dci is based upon cubic Hermite interpolation, we have 

i=f, t#n#m#L 

i#t, t#n#m#tf (3.8) 
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and these functions have second order derivatives whose value at Vi is 
dependent upon the direction of approach. 

Our first method is based upon a technique due to Brown and Little [l]. 

THEOREM 3.1. Let FE CT2, then 

DIFl = bz2bS2D,[F] + b12b22D2[Fl + h2b2”QPl 
b22b,2 + b12bS2 + b12bs2 (3.9) 

is contained in Cl(T) and interpolates to F and itsJirst order derivatives on aT. 
Also, D[p] = p for allfunctionsp such that DJp] = p, i = 1,2,3. 

Proof. The weight functions 

b .2bk2 
wi = b22b,2 + b12b,Z + b,2b22 ’ 

i = 1,2, 3; i#j#k#i, 

have the properties: 

aw, lei = 0; 

where a represents any first order differentiation. 
This operator, for the case of cubic Hermite interpolation, was first 

considered by Barnhill, Herron and Little [2]. In this case, D is exact for all 
polynomials in the ten dimensional space of cubic polynomials 

C = <bi , bibj , bibjbk ; i, j, k = 1,2, 3). (3.10) 

In order to develop an interpolant based upon the Boolean sum of these 
operators, we require the composition Di 0 Dj . By inspection, we can see 
that Di o D#J will involve the limit along ej of second order derivatives of F. 
For example, in the case of cubic interpolation, 

Dci 0 D,,EFl = ; Pcn[Fl + M2b2 
724 

ifjfkfi; 

(3.11) 
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where the argument V, 0 ej is used to indicate the value obtained at P’k as a 
limit along the edge ej . For these operators to commute, so that the Boolean 
sum will interpolate on both e, and ej , it would be necessary to assume 
C2-compatible data at the vertices. Rather than make this assumption, we 
consider the more general operators 

& = Di + Di - 
biDi 0 Di $ bjDi 0 Dj 

bi + bj ’ 
k-1,2,3; i#j#kfi; 

(3.12) 

which reduce to the normal Boolean sum in the case of compatible data. 
It is easy to verify that B, interpolates to F and its first order derivatives on ei 
and ej , and that 4, is Hermite interpolation on ek . Using a technique 
originally due to Gregory [7], we obtain our next interpolant. 

THEOREM 3.2. If F E CT2, then 

a[Fl = W,&F’l + W,&F’l + W,&[Fl (3.13) 

where 

Wi = b;(3 - 2b, + 6bibe), i#j#kfi, (3.14) 

is contained in Cl[T] and interpolates to F and itsfirst order derivatives on aT. 
Furthermore, D[p] = p for allfunctionsp such that DJp] = p, i = 1,2, 3. 

Proof. As Gregory has shown, the weight functions have the properties: 

wi IPi = 0, 
awi iei = 0, 

where a represents any first order differentiation. 
While the weight functions given by equation (3.14) are the simplest 

polynomials with the required properties, there are many other functions 
which will also satisfy these conditions. For example 

bi 
wi = b," + b,2 + b,2 ' 

Wi = bi [ 
3bk + bi 36, + b, 
bi + bl, + bj + b, - 11’ i#j#k#i 

or even 

Wi = +{(l - bJ[ 1 - coS(rbi)] + bi[cos(rbi) + cos(nbJ]}, i # j # k # i. 
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THEOREM 3.3. Let FE C,” and define 

D’ = D, _ 9 D, 0 (Dz + DJ + D, - 9 & 0 (4 + 4) 

+D,+ 4 0 (4 + &I (3.15) 

where A = b,b, + b,b, + b,b, . Then D’[Fj E Cl(T) and interpolates to F, 
F, andF, on aT. The precision consists of allfunctionsp such that Di[ p] = p, 
i= 1,2,3. 

Proof. On ei , where bi = 0, 

D’FI lei = F Iei + Q[Fl /ei + &PI Iei - Di 0 Pj + D,Wl Ie, = F/e< , 
i#j#k#i. 

Let a represent any first order differentiation, then 

aD’ = aD, - 9 a[D, 0 (Dz + Ds)] - D, 0 (D, + 03 8 [“$1 

+ a4 - 9 a[D, o (0, + OS)] - Do 0 (oI + DJ a [F] 

+ aD, - A b,b, a[D, 0 (Dl + D,)] - D3 0 (DI + DJ a [+I. 

Again on the edge e, , and using the fact that Di 0 Di[Fj is Hermite inter- 
polation, H, on any edge, we obtain 

aDIF Ied = aF Iei + aDi[Fl I+ + a&F1 /ei - WA 0 (Dj + D,)[Fl /ei 

_ H a 

[ 

bib, + bib, + b&s 

A II = aF!,<, 
ei 

The precision claimed follows immediately by direct substitution. 
As an application of this theorem, we choose cubic Hermite interpolation 

and use equation (3.11) to obtain 

where 

DWI = ; VUFI - f’,,Fl - CXFII 
i=l 

(3.16) 

C;[FJ = 

i fj # k # i. (3.17) 
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We now return to more discussion on Boolean sums. While it is not the 
case that Di and Dj commute, we do know that Di @ Di , i = 1,2, 3; will 
have the interpolator-y properties of Di in that it will interpolate to F and its 
first order derivatives on ej and ek . Since i$[FJ and any D, 0 D,[fl, n # m 
reduce to Hermite interpolation on ei , we also know that Di @ Di will 
interpolate to F (but not necessarily its first order derivatives) on ei . This 
leads to the following theorem. 

THEOREM 3.4. Let FE Crz and define 

D* = i bi[Di @ Di], 
i=l 

(3.18) 

Then D*[F] E Cl(T) and interpolates to F, F, and F, on aT. The precision set is 
the intersection of precision sets of Di , i = 1, 2,3. 

Proof. Because of the interpolator-y properties of Di @ Di stated above, 
it is clear that D*[F] interpolates to F on aT. Since 

aD*[F’J = bl a[& 0 Dl] + [a, 0 Dl] ab, 

+ b, a[& 63 41+ [a, 0 &I ab, 
+ b, a[& 0 &I + [a, 0 &lab, 

where a represents any first order differentiation, it is also clear that the 
first order derivatives of D*[F] coincide with those of Fon aT. Again precision 
is just a matter of direct substitution. 

As an example, we choose Di = Dci , i = 1,2,3. We expand equation 
(3.18) to obtain 

0; = DOI - b&41 + bd 
b, + b&3 

D 
cl 0 C&z + DcJ 

+ D c2 _ b1b3(1 + bz) D,, o (D 
b, + & 

Cl + D ) c3 (3.19) 

+ D 
c3 

- blbz(l + b3) DC3 o (D 
b, + b,b, 

Cl + D c2 ) 

and use equation (3.11) to obtain 

D,*[F] = t [B,,[Fl - P,,[Fl - C:[Fll 
i=l (3.20) 
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+ b;btbk(l + bk) PF 
bk + b&j 

- (Vi 0 ej) 
&?j ae, 

+ btbk2bi(l + bj) a2F 
bj f b&k: 

- (Vi 0 4, aej ae, 
i # j # k # i. (3.21) 

It is interesting to note the similarity of equation (3.19) and equation (3.15). 

THEOREM 3.5. Let @[I;] E CT2 satisfy thejfteen conditions: 

(3.22) F(Vj) = $(Vj)p i = 1,2, 3, i fj; 
z z 

&(V,O~~), i,j,k=l,2,3, i#j#k#i. 
z 3 

Then 

D[F] = 2 [Bd[F] - Bi 0 @If11 + @[Cl (3.23) 
i=l 

is contained in Cl(T) and interpolates to F, F, and F, on aT. Furthermore, 
fi has the precision of @. 

Proof. Consider the subspace 

Cr2(@) = {fJ : P = F - @[I;), F E C,“>. 

On this subspace, Di[8’] = B,[P], i = 1,2, 3. Since Di o D#], i # j only 
involves the values of P and its derivatives at the vertices, Di 0 Dj[p] = 
Dj 0 Di[fl] = 0. Therefore, the triple Boolean sum over CT2(@) reduces to 

4 0 D, 0 D@l = @I + B2Cfll + B,[pl. 

Consequently, 

jl BdF - WY 

will interpolate to F - @[I;] on aT. This implies that d[F] will interpolate 
to F. The statement about precision is obvious. 
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As a source of interpolants with the properties of Qi, we can use the 
following. 

LEMMA 3.6. The interpolant 

(3.24) 

satisjies thejifteen conditions of equation (3.22). 

Proof. Since Di 0 Dj[F], i # j is Hermite interpolation on aT, it is clear 
that the first nine conditions are satisfied. For the remaining six conditions, 
weletPij=DioDj-PI-PP,-PP,,i#j,andwirte 

c&F] = P,[F] + P,[F] + P,[Fl + i$ bi [ ““k’;; : ;:,“F1 1. (3*25) 
i+j+k#i 

Let us consider one of the conditions of equations (3.22), say i = 1, j = 2, 
k = 3. Applying this to one of the last six terms of equation (3.25), we find 
that 

a2 &P,,Fl 
[ bj + b,c 1 

( V3 0 e2> = PdFI( v3) 
a2 bj + b, 1 bibj 

I 
ae, ae, ae, ae, (V3 0 e2) 

+ 
a bi + 6, [ 

bibi 
I aPM1 

ael 
(v ) 

3 ,,z(V3) 

bibj 
+ aPdF1 a bj i- bk [ 

7+&-(v3) ae 
I 

w3> 
2 

+ [ bjb;_ba, II 

The fact that Pi,[Fj = 0 on aT implies that 

a2 b&d’jJFl 
[ bj + brc 1 bibj 

ae, ae, (V30e2) = [ bj + b/c 
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Leti#j#k#iand/#n,then 

Therefore, 

gB(v,oe2) =gg(V,.e,)+ ““l;,Dda-pl t v3 o e2) 2 12 

where P = PI + P, + P, . Since it can be shown that 

a22ep aD,Iw ( V, 0 e2) = & ( V3 0 e2) 

the argument is complete. 
As an example of the use of this lemma, we apply it to the case of cubic 

Hermite interpolation and obtain 

&[F] = i 
i=l 

bi2 [ (3 - 2b, + 6bgb,J F(Vi) 

i+jfkfi 

+ bk(l + 2bj) g ( Vi) + b,(l + 2bJ $ (Vi) 
3 k 

(3.26) 

bjbk2 SF 
+---- bj + bk aei ae, 

(Vi 0 ej) + bkbj2 ~~(v~“ek)]. 
bk f b, aej i?e, . 

It is interesting to note that this interpolant is the unique element of the 
Birkhoff and Mansfield [6] space @r5 determined by the conditions of 
equation (3.22). In the case of C2-compatibility, this interpolant is BirkhotT’s 
tricubic interpolation [4]. 

We now illustrate the use of Theorem 3.5. We choose Di = Dqi = 
Bgi + Pqi to be based upon 

h(t) = t3(4 - 3t), h(t) = tyt - I), 

and @ = 6, of equation (3.26). As it turns out, 

gl Bd~cl = &c + iI [PDF+ Qi[Ell (3.27) 

where 

Qi[Fl = bi2bjbk 6F( Vi) + g (Vi) + $ (Vi) [ 3 k 

bj 

’ bj + b, aej ae, ~(vioei)+~&(~ioek)], 
3 

i#j#k#i. 

(3.28) 
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Therefore, Theorem 3.5 yields the following interpolation operator 

D)a = ; [B,i - Pgi - Qi]. 
i=l 

(3.29) 

This approximation has the interesting property that in the case of C2- 
compatibility, all of the weight functions are polynomials. 

Our second approach is based on the following technique: We assume that 
G is any interpolation operator that utilizes only position information and w  
is a function which is zero on all of aT. We then consider interpolants of the 
form 

Wl(x, Y> = Wl(x, v) + 4~ Y) 4~ v> 

where h is yet to be determined. Imposing conditions that require P[F] 
to interpolate to first order derivatives on aT will impose only interpolation 
to position data on h. For example, say T = T, and we impose interpolation 
to the normal derivative along the edge p = 0. This requires that 

which implies that 

40,4) = 
$ (0, 4) - %y (09 4) 

$$-4 9) . 

After obtaining these values for all three edges, we define 

0, VI = fmlk Y) 

where His also an interpolation operator which only requires position values 
on aT. In other words, we are considering interpolants of the form 

P[Fj = G[F]+wH[~-~~[‘]. (3.30) 

We now proceed to apply this technique on the on the triangular domain 
T=T, with G=A*, as defined by equation (2.13), and w( p, q) = 
pq( 1 - p - q). While it is not necessary for the application of this technique, 
we assume for this example, C2-compatibility on F. Performing the necessary 
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calculations, we find that H will be operating upon a function with the 
boundary values 

MP, 0) = p(l !- 4) 1% (A 0) 

-P [g (LO) - $ (I, 0) + $ (P, 0) + ml, O)] 

- (1 - P) [T 6-40) + WO, ‘31 + WP, 0)) 

NP, 1 -P) = p(p l- *) 1% (p, 1 -p) 

-I’ [- (LO) - 2F(L O)] - 2F(p, 1 - p) - (1 -p) 

x [$ (P, 1 -P) - $ (P, 1 -P) + $ ((41) - 2F(O, l)]j 

w, 4) = q(1 !- q) g (0, q) 

- 4 [$ (0, 1) - z (0, 1) + 5 (0, q) + 2F(O, l)] 

- (1 - 4) [$ (0, 0) + 2F(O, O)] + 2F(O, q)/ . 

We now note that this data is not Co-compatible at the vertices. In fact, 

640) - $ (0, 1) + g (0, 1) + $ (0,O) + $ (0,O) 

+ 2F(O, 0) - 2F(O, 1) 
and 

$p(P, 0) = g (07 0) - g (LO) + $ (1,O) + $ (0,O) + g (0,O) 

+ 2F(O, 0) - 2F(l, 0). 

Similar conditions hold for the other two vertices. In order to continue this 
process, we use for H the following generalized version of A* which can 
accomodate this type of incompatible data. 

4Fl = i 0 - h12 WJ + 
i=l 

z$l & 
z 

i#j#k#i 
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Performing all of the required calculations and mapping to the triangle T 
we obtain 

i=l i=l 
i+i#k& 

(3.32) 
where Bi is Bi of equation (3.7) based upon 

h(t) = t2(1 + 2t2 - 3P), ii(t) = tyt - 1) 

and 

ds, t) = 
sV(1 - s - t) 

l-s - t(1 - s - t)(l - t)” - st(l - s - t). 

Since P is of the form given by equation (3.30), the precision of P will 
include the precision set of A * along with w  = blbzb3 and w  . p for p in the 
precision set of A. Thus, we have that P is exact for 

(bi , bjb, , bibjbk , bi2bjb, , bibj2bk2, i, j, k = 1, 2, 3; i # j # k # i). 
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