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It is well known that the vacuum in the Einstein gravity, which is linear in the Riemann curvature, is
trivial in the critical (2 + 1 = 3) dimension because vacuum solution is flat. It turns out that this is true
in general for any odd critical d = 2n + 1 dimension where n is the degree of homogeneous polynomial
in Riemann defining its higher order analogue whose trace is the nth order Lovelock polynomial. This
is the “curvature” for nth order pure Lovelock gravity as the trace of its Bianchi derivative gives the
corresponding analogue of the Einstein tensor as defined by Dadhich (2010) [1]. Thus the vacuum in
the pure Lovelock gravity is always trivial in the odd critical (2n + 1) dimension which means it is pure
Lovelock flat but it is not Riemann flat unless n = 1 and then it describes a field of a global monopole.
Further by adding Λ we obtain the Lovelock analogue of the BTZ black hole.

© 2012 Published by Elsevier B.V. Open access under CC BY license.
Since gravity is universal as it links to everything that physically
exists including zero mass particles, hence it can only be described
by the curvature of spacetime and its dynamics is then entirely
determined by the Riemann curvature. The Einstein–Hilbert action
which is the trace of the Riemann curvature tensor gives on vari-
ation the second rank symmetric Einstein tensor with vanishing
divergence. The Einstein tensor provides the second order differ-
ential operator, the analogue of ∇2φ, in the equation of motion.
There is however an alternative purely geometric way to get to
the Einstein tensor by taking the trace of the Bianchi identity sat-
isfied by the Riemann curvature. Inclusion of higher order terms
in curvature in the action becomes pertinent to take into account
the high energy effects. That is we have to go beyond the linear
Einstein–Hilbert term to a polynomial in Riemann and the require-
ment of the second order quasi-linear equation uniquely identi-
fies the polynomial to the Lovelock polynomial. On the alternative
geometric side we have to find an analogue of the Riemann ten-
sor which is a polynomial in Riemann. The Riemann satisfies the
Bianchi identity which means vanishing of its Bianchi derivative
and the trace of the identity leads to the divergence free Einstein
tensor. Now the higher order analogue of Riemann as identified
by Dadhich in [1] has non-zero Bianchi derivative and hence does
not satisfy the Bianchi identity which is the defining property of
Riemann tensor. However the trace of the Bianchi derivative does
indeed vanish and that is what is required to get to the divergence
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free analogue of the Einstein tensor. The trace of the higher order
Riemann analogue is indeed the Lovelock polynomial but for the
numerical multiplying factor.

It is well known that for the linear in Riemann Einstein grav-
ity, vacuum is trivial in 3 spacetime dimension as Rab = 0 implies
Rabcd = 0. There exists no non-trivial vacuum solution to incorpo-
rate dynamics. The vacuum solution is non-trivial only in dimen-
sion � 4. To universalize this feature, we should ask whether it is
true in general for higher order gravity as well? That is, is vacuum
solution trivial in general for the critical d = 2n + 1 dimension rel-
ative to the higher order Riemann analogue where n is the degree
of the polynomial? If we denote nth order Riemann analogue by
R(n)

abcd , then R(n)

ab = 0 implies R(n)

abcd = 0 for d = 2n + 1 and the nth
order pure Lovelock vacuum will be non-trivial only in d � 2(n+1)

dimension. Even when spacetime is Lovelock flat, it will not be Rie-
mann flat unless n = 1.

Our main purpose in this Letter is to establish this univer-
sal feature of gravitational field. This means spacetime dimension
and the degree of the curvature polynomial, R(n)

abcd , are intimately
related and d = 2n + 1 is the critical dimension for which the cor-
responding vacuum is trivial. For the linear and quadratic orders
n = 1,2, it is the Einstein and Gauss–Bonnet gravity with critical
dimensions d = 3,5 respectively. And vacuum is universally triv-
ial in the critical dimensions. The Lovelock flat is not Riemann flat
unless n = 1, and the static spacetime in the critical dimension is
characterized by gtt = −1/grr = const. Then gtt could be squared
out by redefining the time coordinate as constant Newtonian po-
tential is trivial while grr is the Einstein effect which cannot be
absorbed by coordinate transformation and it represents a solid
angle deficit for d > 3 and has non-zero Riemann curvature [2].
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The Einstein stress tensor so generated is known asymptotically
to approximate to that of a global monopole in 4-dimension [3,
4]. It is remarkable that this is true in general for all dimensions
> 3. We shall in particular show that the Gauss–Bonnet trivial vac-
uum spacetime in the critical 5-dimension indeed produces Ein-
stein stresses that describe a 5-dimensional global monopole. Thus
Lovelock flat spacetime in the critical dimension (2n + 1) will de-
scribe a global monopole in the Einstein gravity.

Following Dadhich [1] with a slight change in notation we de-
fine the Lovelock curvature polynomial

R(n)

abcd = F (n)

abcd − n − 1

n(d − 1)(d − 2)
F (n)(gac gbd − gad gbc),

F (n)

abcd = Q ab
mn Rcdmn, (1)

where

Q ab
cd = δ

aba1b1...anbn
cdc1d1...cndn

Ra1b1
c1d1 . . . Ran−1bn−1

cn−1dn−1 ,

Q abcd;d = 0. (2)

The analogue of nth order Einstein tensor is given by

G(n)

ab = n

(
R(n)

ab − 1

2
R(n)gab

)
(3)

and

R(n) = d − 2n

n(d − 2)
F (n). (4)

Note that R(n) = R(n)

ab gab = 0 in 2n dimension for arbitrary metric

gab . Since R(n)

ab is a function of the metric and its first and second
derivatives which are all arbitrary, it must vanish in d = 2n. That
is, R(n)

ab = 0 identically in 2n dimension. On the other hand for the
general Lovelock case, the Lagrangian is non-zero for d = 2n but
its variation vanishes identically. Here it is much more direct and
transparent. Further it turns out that

R(n)

abcd = Λ(gac gbd − gad gbc) (5)

implies

F (n)

abcd = n(d − 2)

d − 2n
Λ(gac gbd − gad gbc), (6)

and vice versa. Not only that the corresponding Weyl curvature is
also the same for the two. That is

W (n)

abcd

(
R(n)

abcd

) = R(n)

abcd − 1

(d − 2)

× (
R(n)

ac gbd + R(n)

bd gac − R(n)

ad gbc − R(n)

bc gad
)

+ 1

(d − 1)(d − 2)
R(n)(gac gbd − gad gbc)

= W (n)

abcd

(
F (n)

abcd

)
. (7)

The two tensors differ from each other only through their trace.
We shall now explicitly demonstrate for the static spacetime

that pure Lovelock vacuum, G(n)

ab = 0, solution is in fact Lovelock

flat, R(n)

abcd = 0. We write for the static spherically symmetric space-
time,

ds2 = B dt2 − A dr2 − r2 dΩ2
(d−2) (8)

where AB = const. = 1 due to the null energy condition,
G(n)

ab kakb = 0, kaka = 0. Then the vacuum solution with Λ, G(n)

ab =
Λgab , is given by [5],
B = 1/A = 1 −
(

Λr2n + M

rd−2n−1

)1/n

. (9)

In the critical dimension d = 2n + 1, the pure Lovelock vacuum
solution with Λ = 0 will have B = 1/A = 1 − K = const. which
could however be transformed away in gtt but not in grr for d > 3
and hence is Riemann non-flat. However it will have R(n)

abcd = 0 for
any n. It is trivially true for n = 1 because it only causes the angle
deficit which produces no Riemann curvature and we have veri-
fied it for the Gauss–Bonnet case, n = 2. This shows that the pure
Gauss–Bonnet vacuum is trivial; i.e. G(n)

ab = 0 implies R(n)

abcd = 0 in
the critical dimension, d = 2n + 1 which is 5 in this case. Simi-
larly it could be verified for any n.1 It is remarkable that in critical
dimension spacetime is characterized by the vanishing of the cor-
responding nth order curvature. Thus for the critical d = 2n + 1
dimension, pure Lovelock vacuum is always Lovelock flat but it
would not be Riemann flat unless n = 1. We now show that it
would describe a global monopole in the Einstein gravity.

Since the Lovelock flat spacetime in the critical dimension is
not Riemann flat, hence it will generate the Einstein stresses in
the equation,

Gab = −κTab. (10)

For the critical 5-dimensional Gauss–Bonnet vacuum we have B =
1/A = 1 − K = const. which gives rise to Einstein stresses,

Gt
t = Gr

r = 3Gθ
θ = −3

K

r2
, Gθ

θ = Gφ
φ = Gψ

ψ. (11)

To felicitate comparison with the 4-dimensional global monopole
solution we have used the same notation as that of Barriola and
Vilenkin [3] and write the Lagrangian as,

L = 1

2
∂μφa∂μφa − 1

4
λ
(
φaφa − η2)2

, (12)

where φa is a quadruplet of scalar fields (a = 1,2,3,4). The field
configuration describing monopole is

φa = η f (r)
xa

r
(13)

where xa are cartesian coordinates with the usual relation to
spherical coordinates, and xaxa = r2. The energy momentum ten-
sor of monopole then takes the form

T t
t = 1

2A2
η2 f ′2 + 3

2

η2 f 2

r2
+ λ

4
η4( f 2 − 1

)2
,

T r
r = − 1

2A2
η2 f ′2 + 3

2

η2 f 2

r2
+ λ

4
η4( f 2 − 1

)2
,

T θ
θ = 1

2A2
η2 f ′2 + 1

2

η2 f 2

r2
+ λ

4
η4( f 2 − 1

)2
(14)

and due to spherical symmetry T θ
θ = T φ

φ = T ψ
ψ . The equation of

motion for the field φa reduces to the following equation for f (r),

f ′′

A
+

[
3

r A
+ 1

2B

(
B

A

)′]
f ′ − 3 f

r2
− λη2 f

(
f 2 − 1

) = 0. (15)

As is clear from the above discussion, the critical dimension
vacuum spacetime can harbor no core mass for global monopole,
and asymptotically f ≈ 1 and then we have

T t
t = T r

r = 3T θ
θ = 3η2

2r2
. (16)

1 Since the appearance of the first version on the arXiv, there appeared a paper
[6] the very next day establishing this result in general for any n. Thus vacuum for
the critical dimension d = 2n + 1 is always Lovelock flat.
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We can now integrate the Einstein equation to write the metric
coefficient in the exterior as given by

B = 1/A = 1 − 8πG5

r

∫
T t

t r2 dr = 1 − 12πG5η
2. (17)

The size of the monopole core could be estimated in flat space
as δ ≈ λ−1/2η−1. This approximation is believed to hold good as
gravity is not expected to substantially alter the structure of the
monopole. Our aim is to show that the stresses generated by B =
1/A = const. has the same structure as that of the global monopole
and the constant K = 12πG5η

2.
We had set out to establish the two remarkable universal fea-

tures: (a) the universality of vacuum in the critical d = 2n + 1
dimension in which spacetime is free of the corresponding cur-
vature R(n)

abcd; i.e. “vacuum is flat” and (b) this spacetime always
describes a global monopole in the Einstein gravity. That’s what
we have shown. The critical dimension vacuum spacetime could
be viewed as due to constant Newtonian potential which geomet-
rically corresponds to solid angle deficit. The remarkable point is
that it produces stress structure which agrees with that of a global
monopole not only in 4-dimension [3] but also in any dimension
d � 4. This is very interesting, why should the stresses always
match? It is though understandable that the stresses go as 1/r2

because that is what the solid angle deficit could do and so does
the prescription of the field φa . However what is not so obvious is
the fact that in 4-dimension all the angular stresses vanish but not
in 5-dimension yet the stresses exactly match for the left and right
of the equation. What is interesting here is the fact that a global
monopole in the critical dimension (2n + 1) in the Einstein gravity
is in fact a trivial vacuum solution relative to the Lovelock grav-
ity with vanishing corresponding curvature, R(n)

abcd . Alternatively we
can also view it as a constant potential spacetime which is Love-
lock flat in the critical dimension.

If we do not set Λ = 0 in the solution (9), it would describe the
analogue of BTZ black hole [7] in the critical d = 2n + 1 dimen-
sion. Note that the BTZ black hole is the solution of G(n)

ab = Λgab
in the critical dimension, d = 2n + 1 and hence it exists only in
the critical dimension. Thus BTZ black hole with all its peculiar
and remarkable properties exists in all critical dimensions with the
corresponding “curvature” R(n)

abcd being constant. Though BTZ black
hole is well known but what is not so well known is the property
that it occurs not only in 3-dimension but in all odd critical di-
mensions and its spacetime is indeed of constant curvature, R(n)

abcd .
This we believe is a new feature that has got uncovered through
our higher order curvature analysis.

The main motivation for this investigation was to explore the
universal features of gravity in higher dimensions. Starting from
the universality of gravity inside uniform density sphere [8] fol-
lowed by the thermodynamical universality of pure Lovelock black
hole [9], this is yet another new interesting universal feature we
have added. The Lovelock gravity is always trivial in the critical
dimension d = 2n + 1 with the corresponding curvature R(n)

abcd van-
ishing, however it always represents a global monopole for the
Einstein gravity. What it means in general is that the Lovelock
degree n does not matter for gravity in the critical dimension. In
the critical dimension gravity is always universal including the BTZ
black hole as well as its global monopole description in the Ein-
stein sector. This is indeed a very remarkable general result.
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