
DISCRETE
APPLIED

ELSWIER Discrete Applied Mathematics 78 (I 997) I~-1 6
MATHEMATICS

Efficient computation of implicit representations
of sparse graphs *

Srinivasa R. Arikati a, Anil Maheshwari ‘.’ Christos D. Zaroliagis a.=

a .~4as-Planck-Institut fir Informatik, Im Stadttvald, D-66/23 Saarhriickm. Guman!,

hSc~hool of’ Computrr Science, Carleton Unirrrsity. Ottawa, Canada KIS SB6

Received 1 June 1995; revised 26 July 1996

Abstract

The problem of finding an implicit representation for a graph such that vertex adjacency can
be tested quickly is fundamental to all graph algorithms. In particular, it is possible to represent
sparse graphs on n vertices using O(n) space such that vertex adjacency is tested in 0(I) time.
We show here how to construct such a representation efficiently by providing simple and optimal
algorithms, both in a sequential and a parallel setting. Our sequential algorithm runs in O(n)
time. The parallel algorithm runs in O(log n) time using O(n/log n) CRCW PRAM processors,
or in O(log n log* n) time using O(n/ log II log* n) EREW PRAM processors. Previous results
for this problem are based on matroid partitioning and thus have a high complexity.

Kqword.~: Implicit representation; Sparse graphs; Arboricity; Graph algorithms; Parallel
computation

1. Introduction

A fundamental data structuring question in the design of efficient graph algorithms is

how to represent a graph in memory using as little space as possible, so that given any

two vertices we can test their adjacency quickly [I 2, 2 11. Following [12, 2 I], we say

that a class of graphs has an implicit representation if there exists a constant b such that

for every n-vertex, m-edge graph G in the class, there is a labeling of the vertices with

/3[log IZ~ -bits each that allows us to decide vertex adjacency in 0(1) time. Implicit

representation eliminates the need for an adjacency matrix. In the adjacency matrix

representation of G adjacency can be tested in 0(1) time, but n2 bits are required even

for the case where G is sparse (i.e. m = O(n)). On the other hand, a representation of

G using adjacency lists requires mrlognl bits, but the test for adjacency takes O(logn)

time.

‘> This work was partially supported by the EU ESPRIT Basic Research Action No. 7141 (ALCOM Ii)

* Corresponding author. E-mail: zaro@mpi-sb.mpg.de.

’ This research was done while the author was with the Max-Planck-lnstitut ftir Informatik.

0166-218X/971$17.00 0 1997 Elsevier Science B.V. All rights reserved
PII SO1 66-218X(97)00007-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82593566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S. R Arikati et al. IDiscrete Applied Mathematics 78 (1997) I-16

An alternative characterization of sparse graphs is given through a graph-parameter

called arboricity. The arboricity of a graph G is defined as maxJ { IE(J)I/(I V(J)1 - l)},

where J is any subgraph of G with 1 V(J)1 vertices and IE(J)I edges. Graphs of bounded

arboricity are called sparse. As observed in [12], an implicit representation can be

computed by partitioning the edges of G into edge-disjoint forests, or alternatively, by

coloring the edges of G with k colors such that there is no monochromatic cycle. If G

has this latter property, we say that it is k-forest colorable. It follows from a theorem

of Nash-Williams [16, 171 that if G has arboricity c, then G is c-forest colorable, and

consequently that G has an implicit representation of cn [lognl bits.’ In such a case,

G is said to have an optimal implicit representation.

In this paper, we are concerned with the efficient computation of optimal implicit

representations of sparse graphs. The known sequential and parallel algorithms [5, 151

for obtaining an optimal implicit representation are based on involved techniques such

as Edmonds’ results on matroid partitioning [l]. In [5], an efficient matroid partitioning

algorithm results in the computation of a c-forest coloring of a graph with arboricity c.

(For sparse graphs, the algorithm runs in 0(nr5 G) time.) Similarly, the algorithms

in [15] for matroid union and intersection result in a randomized parallel algorithm for

finding a c-forest coloring of graphs with arboricity c. (The algorithm runs in O(log3 n)

time using 0(n4,5) processors on a randomized CREW PRAM.) Planar graphs, an

important case of sparse graphs with c < 3, have received a considerable amount of

attention [4, 12, 191.

An alternative way to generate the implicit representation of a graph is proposed

in [21] (Theorem 1.8). If G has treewidth t, then it has an implicit representation of

tn [log n1 bits. Note that this approach is not efficient in general, since there exist sparse

graphs of small arboricity but of large treewidth. For example, planar graphs may have

treewidth O(fi).

The main contribution of this paper is twofold. First, we provide optimal sequential

and parallel algorithms for obtaining an almost optimal implicit representation of a

sparse graph, when its arboricity c is known. Our results and their comparison with

previous work are summarized in Table 1. Note that several important subclasses of

sparse graphs are of known arboricity, for example, planar graphs (c < 3), graphs of

genus o(n) (c d 4), graphs of bounded degree d (c < Ld/2] + 1) and graphs of bounded

treewidth t (c < t).

The second contribution is based on the observation that the results in Table 1 re-

quire a priori the knowledge of the arboricity of the input graph. However, the known

algorithms for computing the exact value of the arboricity (when nothing else is known

about the graph) are based on matroid theory: a sequential algorithm [5] and a ran-

domized parallel algorithm [151. We also present here simple and optimal algorithms,

including a deterministic parallel algorithm, to compute a 2-approximation for arboric-

ity (i.e. an approximation which can be at most twice the exact value). Moreover, this

*Note that other authors, see e.g. [12, 211, refer to this number of bits as (c+ l)n[lognl due to a slightly

different storage of the implicit representation they use.

S.R. Arikati et al. IDiscrete Applied Mathematics 78 (1997) I-16 3

Table I

Our results and their comparison with previous work. for sparse graphs of known arboricity c. The sequential

(resp. parallel) previous results for planar graphs are due to [19] (resp. [4]). The sequential (resp. parallel)

previous results for sparse graphs are due to [5] (resp. [15])

Implicit representation Previous results

for planar graphs

Previous results

for sparse graphs

Results of

this paper

Number of bits 3n [log fll cn [log ?I1 (c+2)n[lognl~

Sequential time O(n) O(n’ 5 6, O(n)

CRCW

PRAM

EREW

PRAM

Parallel

Time

Number of

Processors

Parallel

Time

Number of

Processors

O(log n log log ?I) O(log3 n)+ O(log n)

O(ni log n log log n) o(n”J)+ O(n:‘logn)

O(log2 n log log n) O(log4 n)t O(logn log* n)

O(n/ log n log log n) o(n4j)+ O(n”lognlog* n)

t These results are for randomized PRAMS

t For planar graphs c 6 3.

Table 2

Our results and their comparison with previous work, for sparse graphs of unknown arboricity r’. The

sequential (resp. parallel) previous results are due to [5] (resp. [151).

Implicit representation Sparse graphs of unknown arboricity c

Previous results This paper

Number of bits 0l [log nl (c + 2)n [log n1

Sequential time O(rQ.5 &Jr, O(n)

CRCW

PRAM

Parallel

time

Number of

Processors

O(log3 n)+ O(log2 n: log log n)

o(&)t O(n log log n/ log2 n)

EREW

PRAM

Parallel

time

Number of

processors

O(log4 n)’ O(log2 n)

O(ti-j)t O(n/ log2 n)

+ These results are for randomized PRAMS.

approximation leads to an implicit representation that needs the same amount of space

as required by the implicit representation computed using the exact value for arboricity.

Our results and their comparison with previous work are summarized on Table 2.

Our results are achieved by simple and rather intuitive techniques compared with

those used in [l, 4, 5, 15, 191 and moreover, our algorithms are easy to implement.

Also, our results extend to the k-forest coloring problem which is of independent

4 S. R Arikati et al. IDiscrete Applied Mathematics 78 (1997) I-16

interest since it is a fundamental problem in the design of fault-tolerant communica-

tion networks [lo], analysis of electric networks [9, 181 and the study of rigidity of

structures [131.

The paper is organized as follows. In Section 2 we show the reduction of the problem

of finding an implicit representation of a sparse graph G to that of finding a forest

coloring of G. The latter problem is solved in Section 3, under the assumption that

the arboricity of G is known. In Section 4 we show how a 2-approximation for the

arboricity of a graph can be found, when the exact value of its arboricity is not known,

and from that how a forest coloring can be computed. In Section 5, we present some

extensions of our work and conclude with final remarks.

2. Implicit representation and forest coloring

In this section, we show how an implicit representation of a sparse graph with

arboricity c is computed and adjacency queries are answered. We will first discuss

the case where a c-forest coloring of G is also given (such a forest coloring can

be computed from the algorithms in [5, 151). We will then show how a k-forest

coloring, for k = O(c), can be used to compute an almost optimal implicit rep-

resentation. The computation of such a k-forest coloring will be discussed in Sec-

tion 3 (if c is known) and in Section 4 (if c is not known). We begin with some

preliminaries.

2.1. Preliminaries

Our model of parallel computation is the well-known PRAM [111. A PRAM employs

a number of processors all of which operate synchronously and have access to a com-

mon memory. We shall use here two variants: the EREW PRAM (where simultaneous

access to the same memory location by more than one processor is not allowed) and

the CRCW PRAM (which allows concurrent access to the same memory location by

more than one processor; in the case of concurrent writing one such processor succeeds

arbitrarily).

Throughout the paper, G = (V,E), II’ = n,]E(= m, denotes a simple undirected

graph. The vertices of G are given distinct labels 1,2,. . . , n, and, unless stated otherwise,

ui refers to the vertex with label i. We assume that G is given in the standard form

of doubly-linked adjacency lists. This means that for each neighbor u of a vertex v,

there exists one entry for u in the adjacency list of v. (Remark: Only for our EREW

PRAM algorithms, we will further assume that the adjacency lists are provided with

the so-called cross-links: the entry for u in the adjacency list of vertex u is provided,

in addition to its identification, with a pointer to v’s entry in the adjacency list of u.

For details, see e.g. [7, 81.)

Many times throughout the paper, we will need to perform parallel prefix computa-

tions on adjacency lists. Note that performing a prefix computation on a list (instead

S.R. Arikati et al. IDiscrete Applied Mathematics 78 11997) I-16 5

of an array) does not cause a problem, since a list of size p can be converted into an

array in O(log p> time using O(p/ log p) EREW PRAM processors [I I]. Hence, we

shall assume from now on that every adjacency list L,, for t‘ E G, has been converted

into its associated array A(L,) and we shall not make any distinction between L, and

A(L,;) when we refer to the adjacency list of c.

2.2. Computing the implicit represent&ion

We first show how to compute an implicit representation of G, if G is a tree. Choose

any vertex r and root G at r. The data structure is an array P(u) for all u E V, where

P(v) is the parent of v (P(r) = 0). The number of bits needed to store P is nrlognl.

Two vertices u and v are adjacent in G iff either P(v) = u or P(u) = t;. Hence, the

adjacency test can be done in constant time. Clearly, the above method works if G is

a forest also.

Suppose a c-forest coloring of a sparse graph G is given, where c is the arboricity

of G. To compute an implicit representation of G, root all forests. The data structure

is an n x c array P, where P(v,i) is the parent of 1: in the ith forest. The number of

bits needed to store P is cn[lognl. Two vertices u and v are adjacent in G iff, for

some i, either u = P(v,i) or 1: = P(u,i). For a given pair of vertices this test takes

O(c) = 0(1) time, since c is constant.

Lemma 1. Given a c-forest coloring of an n-vertex sparse graph G with arhoricity

c, an (‘optimal) implicit representation of cnrlognl bits can be computed either in

O(n) sequential time, or in O(logn) parallel time using O(n/ logn) EREW PRAM

processors.

Proof. As shown above, the array P provides an implicit representation of G. The

basic steps for computing P involve: rooting a tree and computing the parent of each

vertex. Both these steps can be implemented in O(n) sequential time, or in O(logn)

time with O(n/ logn) EREW PRAM processors using standard techniques (see e.g. [I 1,

Ch. 31). 0

We now discuss the computation of an implicit representation of G when a k-forest

coloring of G is given, where k is a constant approximation for c. If we use the

previous approach and compute an n x k array P, we need kn.[log n1 bits to store P.

However, we can do better than this by following a different approach to reduce the

number of bits.

Our data structure consists of two arrays P and Q: P is an array of length M and

Q of length n. In the array P we store first the parents of u,, then the parents of 2’2,

and so on. Q(i) indicates the position in P where the parents of vi begin (if Q(i) =

Q(i + 1) or Q(i) > m, then ui has no parents). The implementation is presented in

Algorithm 1.

S. R. Arikati et al. f Discrete Applied Mathematics 78 (1997) 1-16

Algorithm 1. Computation of implicit representation.

Input: A graph G = (V,E), 1 VI = n, with a k-forest coloring.

Output: An implicit representation of G.

(1) e := 1;

(2) for i := 1 to n do

(a) Q(i) := 8;

(b) for j := 1 to k do

(i) if vi is not a root in the jth forest then

(ii) P(e) :A parent of vi in the jth forest;

(iii) e := G + 1;

fi

od

od

Observe that each edge of G is represented exactly once in P. Hence, to store P we

need m [lognl bits and to store Q we need nrlogml bits. Since m d c(n - 1) (because

G has arboricity c), the total number of bits required is at most c(n - l)[log ~1 +

n [log n1 + n [log cl d (c + 2)n [log ?zl.

Vertex vi is a parent of vj iff Ui = P(L’) for some Q(J < L d Q(J’ + 1) - 1. These

two vertices are adjacent in G iff one of them is a parent of the other. Since Q(J +

1) - QG) < k for all j, the adjacency test takes O(k) = O(1) time.

Lemma 2. Given a k-forest coloring of an n-vertex sparse graph G with arboricity c,

where k = O(c), an implicit representation of (c + 2)n [log n1 bits thenceforth almost

optimal implicit representation) can be computed either in O(n) sequential time, or in

0(log n) parallel time using O(n/ log n) EREW PRAM processors.

Proof. As shown above, arrays P and Q provide an implicit representation of G. The

sequential time bound follows immediately by Algorithm 1. We derive the parallel

complexity bounds as follows. Let ~1, ~2,. . , v, be the vertices of G. From the k-forest

coloring, we create (temporarily) an n x k array P’. In this array we store, for each

vertex Ui, its parents in the k forests in the same way as we did in the proof of Lemma

1; i.e. first the parents of ~1, then the parents of ~2, etc. This is done by associating a

processor with vertex vi in forest 8, 1 < L < k. Then, this processor copies the parent

of u, in the dth forest into the array position P’[(i - l)k + L]. Since every edge of G

is represented only once in the k-forest coloring, some of the entries of P’ are empty.

We remove all the empty entries by performing a parallel prefix computation on P’.

The resulting array is the required array P. It is easy to see that having P and by

performing another prefix summation on it, we can construct the array Q. Since prefix

sums in an array of size p can be computed in O(log p) time using 0(p/log p) EREW

PRAM processors [l 11, the required implicit representation can be achieved within the

stated complexity bounds. 0

S. R. Arikati et al. I Discret? Applied Mathematics 78 (1997) I- 16 7

We have shown that implicit representation can be computed using forest coloring.

Thus, for the rest of the paper, we will be concerned with the forest coloring problem.

3. Forest coloring with known arboricity

In this section we present algorithms for computing optimally forest colorings of

sparse graphs when the arboricity of the graph is known. It then follows by Lemma 2

that this leads to an optimal computation of an almost optimal implicit representation.

We begin with some useful technical lemmas.

Lemma 3. Suppose the vertices of u graph G can be ordered as VI, 2’2,. , I:,, .such

that each vertex vi has at most k neighbors before it (i.e. (among ~1,. , c,.. i). Then,

G is k-&rest colorable.

Proof. We will use induction on i. The basis, i = 1, is trivial. Assume that the subgraph

of G induced by VI,. , V,_I can be colored using k colors, say integers from 1 up to

k. Let the neighbors of v, that come before it, be ~1,. . , up, where p d k. For each

1 d j d p, color the edge (vi, ui) with color j. [7

We refer to the ordering defined in Lemma 3 as a k-ordering of the vertices

Lemma 4. Let G = (V, E) be an n-vertex graph with arboricity c. Then, G bus u

vertex of degree at most 2c - 1.

Proof. Since G has arboricity c, m = I_E < c(n - 1). So the sum of the degrees is at

most 2c(n - 1) and hence G must have a vertex of degree at most 2c - 1. LI:

Lemma 5. Let G = (V, E) be an n-vertex graph M’ith arboricity c and let U he the

set qf vertices of degree at most 2c. Then, /UI 3 (1,1(2c + 1))n.

Proof. AS before, m = \El < c(n - 1). There are n - ICI) vertices of degree at least

2c + 1, and summing the degrees of these vertices we get (n - / UI)(2c + 1) 5 2m. The

lemma follows by rearranging the terms. n

Lemma 3 implies that in order to find a k-forest coloring (and thus an optimal

implicit representation) of a sparse graph G, it suffices to find a k-ordering of G. A

sequential algorithm for computing a forest coloring of G is given in Algorithm 2

Theorem 1. Let G be an n-vertex sparse graph with arhoricity c. Then, Algorithm

2 finds a (2c - I)-forest coloring of G in O(n) time.

Proof. By Lemma 4, G has a vertex of degree at most 2c - 1; call it rn and delete

it from G. The remaining graph has also arboricity < c and therefore has a vertex,

8 S.R Arikati et al. IDiscrete Applied Mathematics 78 (1997) I-16

Algorithm 2. A sequential algorithm to compute forest coloring.

Input: A graph G = (V,E), /VI = n, and its arboricity c.

Output: A (2c - 1)-forest coloring of G.

(1) G’ := G; Low := {V : degree of u in G’ is at most 2c - 1); i := n.

(2) while Low # 0 do

(a) Pick a vertex, say U, from the set Low.

(b) for each neighbor w # Low of u do

Decrease the degree of w by one and add w to the set Low if its

degree becomes 2c - 1.

(c) G’ := G’ - U; Ui := U; i := i - 1.

(3) Compute a (2c - 1)-forest coloring of G using the procedure given in the

proof of Lemma 3.

Algorithm 3. A parallel algorithm to compute forest coloring.

Input: A graph G = (V,E), 1 VI = n and its arboricity c.

Output: A 2c-forest coloring of G.

(1) G’ := G; i := 1; mark all vertices unlabeled.

(2) while there is an unlabeled vertex do:

(a) Let U be the set of vertices of G’ with degree at most 2~.

(b) for each u E U do: label(v) = i.

(c) G’ := G’ - U; update the degrees of neighbors of U accordingly.

(d) i := i + 1.

(3) for each vertex v in G do: delete all the neighbors u from its adjacency

list satisfying label(u) < label(v).

(4) for each vertex u do: let its neighbors be ~1,. . . , zq, where e < 2~; color

the edge (v, uj) with color i, 1 bi <d.

say v,_ 1, of degree at most 2c - 1. By repeating this process, we obtain a sequence

~1,. . . ,u,. This procedure is formalized in Algorithm 2. It is easy to verify that the

sequence 01,. . . , v,, generated in Step 2 of the algorithm, is a (2c - 1)-ordering of

vertices of G and hence, by Lemma 3, a (2c - 1)-forest coloring of G. We now

discuss the complexity of the algorithm. The time needed by each iteration of the

while loop is bounded by the degree of the vertex U. So the total time of the while

loop is bounded by the sum of degrees, which is O(m) = G(n), since G is sparse.

Also Step 3 clearly takes O(n) time. The bound follows. 0

A parallel algorithm to compute a forest coloring of sparse graphs is given in

Algorithm 3.

S. R. Arikati et al. I Discrete Applied Mathematics 7X 11997) I-16 0

Theorem 2. Let G be an n-vertex sparse graph with arboricity c. Then, Algorithm 3

finds a 2c-forest coloring of G in O(logn) time using O(n/ logn) CRCW PRAM pro-

cessors, or in O(log II log* n) time using O(n/ log n log* n) EREW PRAM processors.

Proof. The proof of correctness comes easily by Lemma 5. We will now analyze

the complexity of the algorithm. Steps 1 and 4 can be implemented in 0(1) time

using O(n) processors on an EREW PRAM. Step 3 can be implemented in O(logn)

time using O(n/ log n) processors, on an EREW PRAM, by performing a prefix sum

computation in the adjacency lists of G’ [I I]. We now argue about the complexity

of Step 2. By Lemma 5, the number of iterations of the while-loop is O(logn). Note

that if in each iteration we update the adjacency list and recompute the degree of each

vertex after deleting U, we will spend (roughly) O(logn) time per iteration and thus

O(log’n) time overall. Below, we show how we can do better than this. We begin

with the CRCW PRAM implementation.

We will first show how we can implement Step 2 in O(logn) time with O(n) proces-

sors. The implementation is based on the following observation: instead of recomputing

the degree of each vertex in G’, it is sufficient to mark, during the ith iteration, those

vertices that have degree at most 2c. These are exactly the vertices which will be

assigned label i and will not participate in any further iteration. This can be done as

follows. For every vertex v E G’, assign one processor P, to every vertex u in its

adjacency list. Call such a processor active if u has not been labeled yet. Let M(n)

be a specific location in shared memory associated with vertex z‘. Then, all active pro-

cessors P, repeat, in parallel, the following two steps for 2r + 1 times: (a) Every P,,

writes its id, id(P,), into the specified memory location M(r). (b) All P, read the

contents of M(v); if M(v) = id(P,), then P, becomes inactive. As a final step, we

check if the contents of M(v) after the (2c + 1)th iteration is the same as that after the

2cth iteration. (This final step can be easily implemented in the local memory of one

processor.) If this is true, then the degree of c is at most 2c; otherwise, I’ has degree

greater than 2c. Call the above procedure mark-U. It is clear from its description that

procedure mark-U takes O(I) time using O(n) processors on a CRCW PRAM. Hence,

Step 2 takes overall O(logn) time and O(n) processors.

We will now show how to reduce the number of processors to O(n/ logn). The

analysis is identical to the proof of L,emma 1 in [7] and originates from the method

given in Section 4 of [3]. (We only describe it here for the sake of completeness.)

We implement Step 2 in two phases. The first phase consists of O(loglogn) iter-

ations. During the ith iteration we update the adjacency lists and recompute the de-

grees of vertices in G’, using the O(log n/ log log n)-time, O(n log log n/ log n)-processor

CRCW PRAM algorithm of [3] for computing prefix sums. By Lemma 5, the size of

G’ reduces by a constant factor E after each iteration, where E > 1/(2c t 1). Us-

ing O(n/ logn) (i.e. fewer) processors, the ith iteration can be implemented in tune

0(((1 - E)ln)/(n/logn) + log n/ log logn) = 0((1 - z)’ logn + logn/ log logn). As a

consequence, the first phase can be implemented in O(log n) time using O(n/ log n)

processors. At the end of the first phase, the size of G’ has been reduced to O(n/ log n).

10 S. R. Arikati et al. I Discrete Applied Mathematics 78 (1997) I-16

Then, in the second phase, we simply apply to G’ our non-optimal implementation de-

scribed above. Hence, Step 2 can be implemented in O(logn) time using O(n/logn)

processors on a CRCW PRAM.

Let us now discuss the EREW PRAM implementation. As before, we will first

show how to implement Step 2 in O(logn log* n) time using O(n) processors and

then we will discuss the optimal implementation. Our approach (for the non-optimal

implementation) is inspired by a method used in [8]. Since now concurrent read and/or

write is not allowed, we have to modify the procedure mark-U. The goal is again to

mark the vertices with degree d 2c.

For every vertex v E G’, we allocate, as before, a processor P, to every vertex u

in the adjacency list of v. Call a vertex U, as well as its associated processor, marked

if u is of degree d 2c. If we delete, in one step, all marked vertices in the adjacency

list of a vertex v (with degree > 2c), then large “gaps” may be created. But now

we do not have the concurrent access capability to overcome this problem. Instead of

deleting all marked vertices, we delete a (large enough) subset of them in such a way

that adjacency lists in G’ are correctly updated (i.e. without gaps). This allows us to

check easily if the degree of a vertex 21 is 6 2c. (Simply assign a processor to the

adjacency list of v and let it follow the successor pointers for at most 2c steps. If after

2c steps, or earlier, the processor reaches the end of the list, then v has degree d 2c.)

To find the desired subset of marked vertices, we do the following. In the ith iteration

of the while-loop we construct an auxiliary graph H = (VH,EH), where VH = {x :

x is marked in G’} and E H = {(x, y) : x, y are consecutive marked vertices in some

adjacency list of G’ }. Let h = 1 VH I. Note that H has maximum degree bounded by

2c and can be constructed in 0(1) time using O(h) processors: to every marked vertex

x in G’, assign a processor P, to its adjacency list. By following successor pointers

and cross-links, processor P, marks (in at most 2c steps) all occurrences of x in other

adjacency lists. Then P,, during a second pass on the adjacency list of x, checks if

the successor vertex of x, succ(x), in the adjacency list of a vertex v is also marked.

If yes, edge (x, succ(x)) is added to EH. (Note that duplicate edges are not created,

since P, can easily keep track of the edges that it had already added to EH.) An

edge (x,y) in H means that marked vertices x and y should not be simultaneously

deleted in the adjacency list of v. This implies that an independent set in H denotes

a set of marked vertices which can be deleted such that neither large gaps are created

nor concurrent memory accesses occur. In [6, S} it is shown how to compute, in such

a bounded-degree graph H, an independent set I of size II\ > 6h, for some constant

0 < S < 1, in O(log* h) time using O(h) EREW PRAM processors.

Now, the implementation of procedure mark-U is completed as follows. If P, is

marked and u E I, then u is deleted from the adjacency list of v. Since u E I, this

operation is not performed by the predecessor and the successor vertices of u and thus

there are no memory conflicts. Hence, at the end of every iteration the adjacency list

of v, for every v E G’, has been correctly updated.

At the end of the ith iteration, the size of G’ has been reduced by a (constant)

factor of at least S/(2c + 1). This implies that the total number of iterations is bounded

S. R. Arikati et al. I Discrete Applied Mathematics 78 (1997) I-16 II

Algorithm 4. A sequential algorithm to approximate arboricity.

Input: A graph G = (V,E).

Output: A 2-approximation of the arboricity of G.

(1) G’:=G; k:=O.

(2) for i := n downto 1 do

(a) Let u be a vertex of smallest degree 6 in G’. Define G’ = G’ - u and

update the degrees of neighbors of u accordingly.

(b) c, := U; k := max{k,ci}.

od

(3) return k.

by O(logn). Since each iteration can be implemented in O(log* n) time with O(n)

processors, Step 2 takes O(lognlog* n) time using O(n) processors. To achieve an

optimal number of processors O(n/ log n log* n), we just apply the method given in

Section 4 of [8], or in the proof of Theorem 5.1 in [2]. (We do not give the analysis

here, since it is rather tedious and the interested reader is referred to [2, 81 for the

details.) C

By Theorems 1, 2, and Lemma 2, the following result is now immediate.

Theorem 3. Let G be an n-vertex spurse graph of known urboricity. Then, un ulmost

optimal implicit representation of G can be computed in: (i) O(n) sequential time:

(ii) O(logn) time using O(n/logn) CRCW PRAM processors; (iii) O(logn log* n)

time using O(n/ log n log* n) EREW PRAM processors.

4. Approximating arboricity

As it is mentioned in Introduction, all previous algorithms as well as those presented

in the previous section require a priori the knowledge of the arboricity of the input

graph in order to obtain its implicit representation. However, the known algorithms

for computing the exact value of the arboricity are based on matroid theory (either in

sequential [5] or in parallel randomized computation [151) and therefore are of high

complexity.

In this section we present simple and efficient algorithms to compute a 2-approximation

to the arboricity of a graph. It follows by Lemma 2 that this approximate value can be

used to give an almost optimal implicit representation. In the following, G = (V,E),

IV/ = n, IEl = m, denotes a graph of unknown arboricity c. Algorithm 4 finds a

sequential 2-approximation for c.

Lemma 6. A 2-upproximation for the arboricity of a graph G can be computed in

O(m + n) time.

12 S.R Arikati et al. I Discrete Applied Mathematics 78 (1997) I-16

Algorithm 5. A parallel algorithm to approximate arboricity.

Input: A graph G = (V,E).

Output: A 2-approximation of the arboricity of G.

Comment: Procedure Par-Test-Ord is described in Algorithm 6.

(1) fi := [m/n]; i := 0;

(2) while Par-Test-Ord(G, /3) = false do

i := i + 1; j? := 2’8;

od

(3) L := p/2 + 1; R := /?; stop := false;

(4) while stop = false do

(a) Y := L(L + N/21;
(b) If Par-Test-Ord(G, y) = true then

If Par-Test-Ord(G, y - 1) = faise then stop := true else R := y

else L := y

od

(5) Return y.

Proof. Let k be the value returned by Algorithm 4. It is clear that ~1, u2,, . . , u, is a

k-ordering and hence G is k-forest colorable by Lemma 3. Moreover, G contains an

induced subgraph H such that IIT(2 (k/2)1V(H)J, since IE(G’)I B (6/2)IV(G’)I at

the beginning of each iteration of the algorithm. Hence c > (k/2), implying that k is

a 2-approximation for c. It is routine to implement Algorithm 4 in O(m + n) time.

Our parallel algorithm to find a 2-approximation for the arboricity c of a graph G

consists of two phases. In the first phase we use a repeated-doubling scheme to find a

range for c, as follows. Assume we have a procedure 17 that, given a graph G and an

integer CI, returns true if it can find an cl-ordering of G. Now, observe that p = [m/n1

is a lower bound for c. We set tl = B and call II. If it returns false, then we double

j3, set CI = 8, and call ll again. After O(logc) calls to procedure II we will obtain a

/?’ such that p’/2 d c d j3’ and Il returns false for LY = fi’/2 and true for c(= p. In

the second phase we do a binary search in the range (/3’/2,/3’] to find a y such that

procedure I7 returns true for a = y and false for CI = y - 1. The entire algorithm is

given in Algorithm 5.

Lemma 7. A 2-approximation for the arboricity c of a graph G can be found in

0(log2 n log cj log log n) time using O(m log log n/ log2 n) CRC W PRAM processors,

or in 0(log2 n log c) time using O(m/ log2 n) ERE W PRAM processors.

Proof. First note that [m/n] is a lower bound on the arboricity of G. Let y* be the

value of y for which the algorithm stops. Observe that y* is the smallest such value for

y. Then, y* d 2c, since the algorithm stops for y = 2c by Theorem 2. A y*-ordering

S. R Arikati et al. IDiscrete Applied Mathematics 78 (1997) I-16 13

Algorithm 6. The procedure called by Algorithm 5.

PROCEDURE Par-Test-Ord(H, c()

Input: A graph H = (V,E), IVJ = n, and an integer tl.

Output: A boolean variable ans. The variable ans is set to true if and only if

the procedure is able to find an cc-ordering of G.

(1) H’ := H; n’ := n; ans := true; mark all vertices unlabeled.

(2) while there is an unlabeled vertex and (ans = true) do

Let U be the set of vertices of H’ with degree at most x.

If IU/ < (l/(x+ 1))n’ then ans := false

else

(a) mark all vertices of U as labeled.

(b) H’ := H’ - U; n’ := n’ - IUI; update the degrees of neighbors of U

accordingly.

fi

od

of G results in a y*-forest coloring of G by Lemma 3. Hence, y* is a 2-approximation

for arboricity of G. Let us now discuss the complexity of Algorithm 5. Step 2 is

executed at most [log cl times. The number of iterations of the while-loop in Step 4

is O(logc). In each iteration of the while-loops in Steps 2 and 4, we call the proce-

dure Par-Test-Ord. The complexity of this procedure dominates the resource bounds of

the algorithm, since all other steps can be trivially done in 0(1) time. Therefore, in

the following we argue only for the complexity of the procedure. Although procedure

Par-Test-Ord is very similar to Algorithm 3, unfortunately we cannot implement it

in the bounds stated in Theorem 2. The reason is that during every iteration of the

while-loop in Step 2 of the procedure, we have to count the cardinal&y of U. Hence,

in every iteration we need O(logn/ log log n) time using O(m log log n/ logn) CRCW

PRAM processors [3], or O(log n) time and O(m/ log n) EREW PRAM processors [111.

Note that if the procedure does not return false, then the size of H’ is reduced by a

constant factor after every iteration. This means that the total execution time of the

procedure is O(log’n/ loglogn) and it can be implemented using an optimal number

of O(m log logn/ log* n) CRCW PRAM processors. Similarly, on the EREW PRAM

model, we can implement procedure Par-Test-Ord in 0(log2 n) time with O(m/ log* n)

processors. Hence, the complexity bounds stated in the lemma follow. 0

It should be clear (by the proofs of Lemmas 6 and 7) that Algorithms 4 and 5 do

not only compute a 2-approximation of the arboricity of G, i.e., a value k such that

k d 2c, but also they compute a k-ordering of the vertices of G. Consequently, by

Lemmas 2 and 3, these algorithms can be used to compute an almost optimal implicit

representation of a sparse graph, even without knowing the exact value of arboricity.

We summarize the result below.

14 SR Arikati et al. IDiscrete Applied Mathematics 78 (1997) I-16

Theorem 4. Let G be an n-vertex sparse graph of unknown arboricity. Then, an

almost optimal implicit representation of G can be computed in: (i) O(n) sequential

time; (ii) O(log2 n/log log n) parallel time using O(n log log n/ log2 n) CRCW PRAM

processors,. (iii) O(log* n) parallel time using O(n/ log2 n) EREW PRAM processors.

5. Extensions and final remarks

5.1. Extensions

Our work on implicit representation has interesting consequences in the framework

of nested forest partitions. These partitions are introduced in the work of Nagamochi

and Ibaraki [14] to find minimum cuts in graphs; see also [20] for a detailed discussion

and generalizations to matroids.

Let P = (Fl,F2,..., Fk) be a partition of a graph G into forests; k is called the

length of the partition P. The partition P is nested if each forest spans the next forest;

i.e., V(Fj) > V(Fj+l) for each j B 1.

We have shown in Lemma 3 that given a k-ordering of G, we can find a (not

necessarily nested) forest partition of G of length k. We now briefly show how this

lemma can be extended to yield a nested forest partition of G of length k.

Let VI,..., v, be the given k-ordering of the vertices of G. Let us assume (induc-

tively) that the subgraph of G induced by VI,. . . , v,-I is partitioned into k nested

forests FI , . . . , Fk. Process as follows the set of edges L, incident on v,. Add to FI

a maximal subset of edges from LUn such that no cycle is created in F,, and delete

these edges from LUn. Next, add to F2 a maximal subset of edges from Lo, such that

no cycle is created in F2, and delete these edges from L,. Repeat this process until

L,” becomes empty. Since v, has degree at most k, LUn becomes empty when we add

edges either to forest Fk or to some forest Fj, for j < k. One can easily verify that

the resulting forest partition is nested.

5.2. Final remarks

We have presented simple and optimal algorithms to compute implicit representations

of sparse graphs. It is known that many intersection graphs also have implicit repre-

sentations [12]. The problem of characterizing the classes of graphs having implicit

representation is open.

Note that Lemmas 6 and 7 compute a 2-approximation of the arboricity of any

graph G (i.e., not necessarily sparse). Our bounds compare favorably with both the

sequential results in [5] (whose time varies between O(n*.‘fi) and 0(n3 logn))

and the parallel ones in [151 (presented in Introduction) which find the exact value of

the arboricity. It will be interesting to find better approximations for the arboricity of

a graph, without substantially increasing the resource bounds.

S.R Arikati et al. IDiscrete Applied Mathematics 78 (1997) l--l6 15

Although with our approximation we can compute an almost optimal implicit rep-

resentation, our algorithms compute a number of forests which is at most twice the

optimal. The known algorithms for computing an optimal forest coloring use matroid

partitioning and thus have a high complexity. It is of independent interest to come up

with efficient algorithms for computing an optimal forest coloring.

Acknowledgements

We are grateful to the anonymous referee for carefully reading the manuscript and

making several valuable comments and suggestions. We are also grateful to Shiva

Chaudhuri, Torben Hagerup, Glenn Manacher, Kurt Mehlhorn, Jaikumar Radhakrishnan,

Raimund Seidel and K.V. Subrahmanyam for many helpfnl discussions and much useful

criticism.

References

[II

PI

[31

[41

[51

[61

[71

PI

PI

[lOI

[III

1121

[I31

[I41

[I51

1161

[I71

J. Edmonds, Minimum partition of a matroid into independent sets, Res. NBS 69B (1965) 67-72.

R. Cole and U. Vi&kin, Deterministic coin tossing with applications to optimal parallel list ranking,

Inform. and Control 70 (1986) 32-53.

R. Cole and U. Vishkin, Faster optimal prefix sums and list ranking, Inform. and Comput. 81 (1989)

334-352.

M. Fiirer, X. He, M. Kao and B. Raghavachari, Parallel algorithms for straight-line grid embeddings

of planar graphs, Proceedings of the 4th ACM Symposium on Parallel Algorithms and Architectures

(SPAA’92) (1992) 41&419.

H.N. Gabow and H.H. Westermann, Forests, frames, and games: algorithms for matroid sums and

applications, Algorithmica 7 (1992) 465497.

A. Goldberg, S. Plotkin and G. Shannon, Parallel symmetry-breaking m sparse graphs, SIAM

J. Discrete Math. 1 (1988) 434-446.

T. Hagerup, Optimal parallel algorithms on planar graphs, Inform. Comput. 84 (1990) 7 l-96.

T. Hagerup, M. Chrobak and K. Diks, Optimal parallel 5-colouring of planar graphs, SIAM J. Comput.

18 (1989) 288-300.

M. Iri and S. Fujishige, Use of matroid theory in operating research, circuits and systems theory.

lnt. J. Systems Sci. 12 (1981) 27-54.

A. Itai and M. Rodeh, The multi-tree approach to reliability in distibuted networks, Proceedings of

the 25th IEEE Symposium on FOCS (1984) 137-147.

J.JUi, An Introduction to Parallel Algorithms, (Addison-Wesley, New York, 1992).

S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs, Proceedings of the 20th ACM

Symposium on Theory of Computing (STOC’88) (1988) 334-343.

L. Lovasz and Y. Yemini, On generic rigidity in the plane, SIAM J. Algebr. Discrete Methods 3

(1982) 91-98.

H. Nagamochi and T. Ibaraki, Computing edge-connectivity in multigraphs and capacitated graphs,

SIAM J. Discrete Math. 5 (1992) 5468.

H. Narayanan, H. Saran and V.V. Vazirani, Randomized parallel algorithms for matroid union and

intersection, with applications to arborescences, and edge-disjoint spanning trees, Proceedings of the

3rd ACM-SIAM Symposium on Discrete Algorithms (SODA’92) (1992) 357-366.

CSt. J.A. Nash-Williams, Edge-disjoint spanning trees of fimte graphs, J. London Math. Sot. 36

(1961) 445450.

C.St. J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Sot. 39 (I 964)

12.

16 S.R Arikati et al. I Discrete Applied Mathematics 78 (1997) I-16

[18] T. Ohtsuki, Y. Ishizaki and H. Watanabe, Topological degrees of freedom and mixed analysis of

electrical networks, IEEE Trans. Circuit Theory CT-17 (1970) 491499.

[19] W. Schnyder, Embedding planar graphs on the grid, Proceedings of the 1st ACM-SIAM Symposium

on Discrete Algorithms (SODA’90) (1990) 138-148.

[20] A. Subramanian, Two recent algorithms for the global minimum cut problem, SIGACT News 26

(1995) 78-87.

[21] J. van Leeuwen, Graph algorithms, in: .I. van Leeuwen, Ed., Handbook of Theoretical Computer
Science, Vol. A (Elsevier, Amsterdam, 1990) 525631.

