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Summary with suggestions for future research. Though many studies are
A global rising organ shortage necessitates the use of extended cri-
teria donors (ECD) for liver transplantation (LT). However, poor
preservation and extensive ischemic injury of ECD grafts have been
recognized as important factors associated with primary non-
function, early allograft dysfunction, and biliary complications
after LT. In order to prevent for these ischemia-related complica-
tions, machine perfusion (MP) has gained interest as a technique
to optimize preservation of grafts and to provide the opportunity
to assess graft quality by screening for extensive ischemic injury.
For this purpose, however, objective surrogate biomarkers are
required which can be easily determined at time of graft preserva-
tion and the various techniques of MP. This review provides an
overview and evaluation of biomarkers that have been investi-
gated for the assessment of graft quality and viability testing
during different types of MP. Moreover, studies regarding conven-
tional graft preservation by static cold storage (SCS) were screened
to identify biomarkers that correlated with either allograft dys-
function or biliary complications after LT and which could poten-
tially be applied as predictive markers during MP. The pros and
cons of the different biomaterials that are available for biomarker
research during graft preservation are discussed, accompanied
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currently still in the experimental setting or of low evidence level
due to small cohort sizes, the biomarkers presented in this review
provide a useful handle to monitor recovery of ECD grafts during
clinical MP in the near future.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

Graft quality at time of liver transplantation (LT) is a major deter-
minant of early graft performance and thereby strongly influenc-
ing graft survival and morbidity during recipient follow-up [1].
Over the last decade, grafts from extended criteria donors (ECD)
had to be used increasingly for LT due to organ shortage. The
quality of these grafts has been shown to be variable [2,3].
Although some ECD liver grafts turn out to function properly in
recipients, their use has also been associated with impaired graft
survival due to primary non function (PNF), early allograft
dysfunction (EAD) and severe biliary complications like
ischemic-type biliary lesions (ITBL, Fig. 1) [4,5].

Though pathophysiology between PNF, EAD, and biliary com-
plications is assumed to differ, extensive ischemic- and preserva-
tion injury has been recognized as a shared risk factor in these
entities [1,6]. Primary non-function occurs in up to 5–8% of LT’s
and necessitates immediate re-transplantation in all cases.
Though PNF may be caused by technical failure resulting in inad-
equate blood flow through the graft [7], the association between
unfavourable donor risk factors and PNF suggests that its cause is
likely multifactorial [8]. Early allograft dysfunction is typically
characterized by increased serum transaminase levels in recipi-
ents during the first postoperative week [9], but unlike PNF, liver
grafts showing EAD do not always need immediate re-transplan-
tation [10]. The most common complication associated with
ischemic- and preservation injury are biliary complications.
Dependent on the type of graft (donation after brain death;
DBD vs. donation after circulatory death; DCD), up to 50% of
recipients develop complications due to bile leakage, anastomotic
strictures, ITBL, bile duct necrosis, and cast formation [11,12].
The various times of onset and different nature of biliary
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Fig. 1. Incidence of ischemia/preservation related complications after LT.
Estimation of the incidence of PNF, EAD, and ITBL in separate DBD and DCD grafts,
based on cohort- and case-matched studies [5,9–11,76,86,110]. Percentages
represent the mean incidence ± standard error. Studies used to calculate the
incidence of EAD maintained the criteria formulated by Olthoff et al. [9,10].
Definitions on PNF and ITBL can be found in the Supplementary data.
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complications suggest that they are caused by different underly-
ing mechanisms, including surgical trauma, DCD, high donor age,
prolonged ischemia time, cytotoxicity of bile salts and immune
factors [6,11].

Prediction models as the donor risk index were developed to
estimate the risk of graft failure in recipients and to match
high-risk grafts to suitable recipients [13]. Furthermore, earlier
research on the topic of predicting graft function after LT has
focussed mainly on clinical characteristics from donors and recip-
ients, including the model for end-stage liver disease-score
(MELD) [14–16]. However, models that are mainly based on such
characteristics are unable to assess the degree of injury that is
caused by the process of graft procurement, cold preservation,
and reperfusion. Moreover, the under-utilization of grafts with
unfavourable donor characteristics like advanced donor age,
DCD, and African race, can lead to an undesirable diminution of
the donor pool [17].

Therefore, machine perfusion (MP) is increasingly being
investigated as a novel technique to improve graft preservation
of particularly ECD grafts. Through MP, ischemia related compli-
cations like PNF, EAD, or ITBL can be reduced or even prevented
and potentially allow for expansion of the extended criteria
donor pool to be utilized for LT. Other potentially beneficial fea-
tures of MP consist of the possibility to add supplements during
perfusion that could further benefit graft quality [18,19], or even
attempt for restoration of ischemic injury [20,21]. Beside safety
and technical feasibility of MP, investigators pronounce on the
need of sensitive biomarkers that can distinguish poor quality
grafts from those that will function properly after implantation
[22,23]. Next to other well-known risk factors for impaired graft
quality as illustrated in Fig. 2, the time required for ex vivo MP
provides the opportunity to monitor graft quality by measure-
ment of biomarkers in perfusates and biopsies, which could be
a helpful decision tool for improving the accuracy of selecting
grafts for LT. This purpose however demands for objective surro-
gate biomarkers that are easily obtainable at time of graft preser-
vation and is challenged by the various techniques of MP
currently investigated.

In this review, we provide an overview of potentially useful
biomarkers that were identified through a systematic search of
the literature (Supplementary data), in order to assess graft
viability testing during various techniques of MP. Because of
the limited experience with clinical MP in LT, biomarker studies
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regarding conventional graft preservation by static cold
storage (SCS) that correlated with either PNF, EAD, or biliary
complications after LT and which could potentially be applied
as predictive markers during MP were also included. Finally,
the pros and cons of the different biomaterials are discussed,
accompanied with suggestions for future research.

Key Points

• The increased use of extended criteria grafts demands 
for more objective and sensitive biomarkers to 
evaluate the large discrepancy of graft quality in liver 
transplantation

• Measurement of prudent biomarkers during machine 
preservation (MP) could be helpful in the prediction of 
early graft performance after LT

• During MP, surrogate biomarkers for graft quality could 
help select the most optimal preservation technique 
before implantation

• Research shows discriminative potential of a variety 
of biomarkers for graft injury and function, but requires 
robust validation in larger cohorts before applicable in 
the clinic

• Non-invasive evaluation of biomarkers released into 
perfusates during MP is an attractive alternative for 
invasively obtained tissue biopsies
Different machine preservation strategies

Because of easier accessible logistics and lower costs, SCS has
become the standard preservation technique in clinical practice
of LT to date. The low temperature during SCS delays metabolic
processes in order to restrict ischemic injury. However, especially
ECD grafts seem more vulnerable for prolonged ischemia,
increasing morbidity and mortality in recipients after LT. There-
fore, during the last ten years, various techniques by MP have
been investigated in preclinical and clinical settings in order to
further optimize graft quality and thus improve outcome of
ECD liver transplantation. The main differences in the setup of
MP are determined by pumping-temperature, the route- and
pressure of recirculating preservation solution, and whether oxy-
gen is administered (Fig. 3). As summarized in Table 1, several
studies already performed MP on human liver grafts. Hypother-
mic MP (HMP) without the administration of oxygen comes
closest to conventional preservation by SCS, but is believed to
improve preservation through continuous recirculation of
solution to all segments of the liver and the removal of remnant
metabolites from the graft (Fig. 4). Guarrera et al. [24] performed
the first clinical series of non-oxygenated HMP in humans
(n = 20) using standard criteria donors. In this study, HMP was
shown to be safe and analysis of perfusates and biopsies
demonstrated an attenuation of ischemic injury markers during
preservation [25–27]. Furthermore, the authors suggest that
HMP could have beneficial effect on the incidence of EAD and
biliary complications in recipients after LT. The feasibility of
HMP was also investigated by Monbaliu et al. [28], who used
HMP as a screening-tool to distinguish transplantable from
4 vol. 61 j 672–684 673
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Fig. 3. Mechanisms of various machine preservation strategies. Different techniques of graft preservation can be used to protect against ischemic injury, to recondition
the graft before reperfusion or even to maintain physiology. The various techniques have different potentially protective underlying mechanisms. Via all techniques, graft
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non-transplantable ECD human liver grafts that were rejected for
LT. Beside Guarrera et al., the second reported clinical trial using
MP prior to LT is from Dutkowski et al. [29]. In contrast to
674 Journal of Hepatology 201
Guarrera et al., this study used hypothermic oxygenated MP
(HOPE) for the preservation of ECD grafts. Previous experimental
studies from this group showed beneficial effects of HOPE on
4 vol. 61 j 672–684



Table 1. Studies on machine perfusion of human liver grafts.

Study
[Ref.]

Year MP
temp

Oxygenated Pressure 
(mmHg)

Size Subject Donor Trans-
planted

Markers during MP 
for impaired viability

Biomaterial

arterial venous
Op den Dries et al.,
[37] 

2013 37°C Yes 50 11 4 Human ECD No ↑ Enzymes, lactate 
levels, ↓ bile 
production, bile 
composition (γGT, 
bilirubine, LDH), O2, 
CO2

Perfusate, 
tissue, bile

Dutkowski et al.,
[29]

2013 10°C Yes n.a. <3 8 Human ECD Yes n.r. -

Guarrera et al.,
[24]

2010 4-8°C No 6 3 20 Human SCD Yes ↑ AST, ALT, LDH Perfusate

Guarrera et al.,
[25] *

2011 4-8°C No 6 3 6 Human SCD Yes ↑ ICAM-1, IL-8, 
TNF-α

Perfusate, 
tissue

Henry et al.,
[26] *

2012 4-8°C No 6 3 33 Human SCD Yes ↑ Inflammatory 
cytokines, adhesion 
molecules, oxidative 
markers, acute 
phase proteins, 
CD68

Tissue

Jomaa et al.,
[104] 

2013 4-8°C No 30 7 16 Human ECD No n.r. -

Monbaliu et al.,
[28]

2012 4-6°C No 20-30 7 17 Human ECD No ↑ AST, ↑ LDH Perfusate, 
tissue

Tulipan et al.,
[27] *

2011 4-8°C No 6 3 n.r. Human SCD Yes ↑ MCP-1, ↑ IL-1Rα Perfusate, 
serum

Studies on biomarkers to monitor quality of grafts obtained from standard criteria donors (SCD) or extended-criteria donors (ECD) during MP.
n.r., not reported.
n.a., not applied.
⁄These studies all derived from the trial by Guarrera in 2010.
AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; ICAM-1, intracellular adhesion molecule 1; IL-8, interleukin 8; TNF- a, tumor
necrosis factor alpha; MCP-1, monocyte-chemoattractant protein 1; IL-1R a, interleukin 1 receptor antagonist.
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biliary injury and endothelial damage [30,31]. Protective mecha-
nisms of HOPE seem to be based mainly on the down regulation
of mitochondrial and nuclear activity prior to reperfusion. More-
over, the used low-pressure perfusion at 3 mmHg caused less
endothelial injury compared to more physiological pressures
around 8 mmHg. Notably, grafts were perfused solely through
the portal vein due to practical considerations and to prevent fur-
ther damaging of the usually fragile hepatic artery [32]. Reactive
oxygen species that are generated during ischemia can induce
injury to mitochondria, which effects appear to exacerbate after
hypothermic conditions [33,34]. Some researchers believe that
reconditioning of the tissue by MP at higher temperatures can
prevent this [35,36]. Moreover, (sub)normothermic MP (SNP) is
seen as a preferable model for viability testing because metabolic
function can be judged, for instance through bile output during
warm MP [37,38]. Although not yet performed in clinical LT, Op
den Dries et al. performed a feasibility study of normothermic-
perfusion (NMP) on four discarded human donor livers, which
showed no harmful effects on liver tissue after 6 h of pumping
[37]. Also in large animal models, graft NMP improved survival
compared to SCS [35,39]. Finally, an alternative for perfusion with
constant temperature is controlled oxygenated rewarming (COR)
of primarily cold stored liver grafts. Gradual increase of the MP
temperature is thought to minimize re-oxygenation injury that
is normally triggered by immediate rewarming of the graft, like
in reperfusion and NMP. First results of COR in animal models
indicate that post-reperfusion recovery is more successful in
Journal of Hepatology 201
grafts that were subjected to COR compared to HMP, SNP, and
SCS [40]. Gradual rewarming in this study however did not
exceed 20–25 �C because of potentially toxic effects of the
preservation solution at higher temperatures.

Many experimental studies have been performed on the
different techniques of MP, of which some also attempted to
identify biomarkers for graft quality assessment (Table 2). One
would expect that these various MP techniques require different
biomarkers for the assessment of graft quality. In the next
paragraphs, we highlight on the most promising biomarkers
for viability testing in MP of which some have been shown also
to be predictive for early graft function after clinical LT
(Table 3).
Biomarkers for viability assessment during machine perfusion

Production and composition of bile

Beside using bile output as a parameter for outcome after reper-
fusion [32], some studies also investigated whether bile produc-
tion during MP is a useful indicator for graft viability and the
secretory function of hepatocytes and cholangiocytes; Brock-
mann et al. identified bile outflow during NMP as a discriminative
variable for early graft survival [35]. Op den Dries et al. [37] also
demonstrated the production of bile by human liver grafts under
normothermic conditions. Based on this small series, they
4 vol. 61 j 672–684 675
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conclude that bile production during NMP is the most important
parameter for viability [41], although no strong correlations
could be made since these grafts were not actually transplanted.
Vairetti et al. demonstrated that bile is also produced during
colder SNP [36]. More importantly, this study showed that bile
outflow during MP was no guarantee for improved bile flow after
graft reperfusion. Boehnert et al. emphasized that evaluation of
solely bile flow during MP might be biased due to the secretion
of serum-like fluids from the injured biliary mucosa, which could
falsely increase bile volume [23,42]. In order to correct for this
bias, they measured lactate dehydrogenase (LDH) in bile as a
marker for biliary epithelial injury and found its content in bile
to be lower after NMP compared to SCS, while bilirubin and
phospholipid concentrations were higher [23]. Impaired secre-
tion of phospholipids gives a surplus of free bile salts which are
toxic for cholangiocytes. A higher ratio of bile salts/phospholip-
ids, rather than bile production solely, has been associated with
the development of ITBL [43,44]. Also the secretion of HCO3

� into
bile, involved in local pH regulation, has been described as a mar-
ker for cholangiocyte function. The evidence of bile outflow or -
composition as a marker at temperatures below 20 �C is however
marginal. Since lower temperatures shut-down metabolic cellu-
lar processes, bile parameters are probably more informative
under (sub)normothermic conditions.

Liver enzyme release as indicator of hepatocyte injury

Aspartate aminotransferase (AST), alanine aminotransferase
(ALT), and LDH are the most frequently studied biomarkers in
liver disease. Both AST and LDH are enzymes that are mainly
present in the cell cytoplasm of various tissues, including liver,
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and they are often used as general injury markers to monitor
graft function after LT. For a more specific assessment of
hepatocyte injury, ALT is often determined. In their clinical trial,
Guarrera et al. found perfusate levels of AST and ALT measured
during HMP to strongly correlate with post-transplant peak AST
and ALT serum levels in recipients. This suggests that injury that
becomes apparent after graft implantation, can already be
detected during HMP. Monbaliu et al. distinguished transplanta-
ble from non-transplantable grafts based on AST levels in
perfusates during HMP [28]. But also during NMP, the release
of AST and ALT were predictive for recipient survival in a large
animal model [35]. Moreover, hepatic enzyme release during
MP strongly correlated with donor warm-ischemia time, which
in turn has been associated with poor graft quality [45]. The value
of enzyme release into perfusates to predict PNF and EAD has also
been confirmed by clinical LT studies with conventional SCS
(Table 3) [46–48].

Energetic recovery status by adenine nucleotides

Cold temperatures and the absence of oxygen supply to tissue
causes the shutdown of adenine nucleotide metabolism, which
causes failure of ion transport by electron pumps on the cell
membrane [49]. Therefore, Minor et al. investigated whether oxy-
genation during MP could recover energy status by measuring
the energy charge potential and adenosine triphosphate (ATP)
levels in tissue [40]. At the end of various MP methods and
already before reperfusion, oxygenated tissue showed a higher
energy charge potential and increased ATP levels compared to
cold stored livers. This study furthermore demonstrated that
hypothermic conditions hampered energetic recovery compared
4 vol. 61 j 672–684



Table 2. Studies on biomarkers that were measured during various types of MP prior to (mimicked) reperfusion in animal models.

Study Year MP 
temp

Oxygenated Pressure 
(mmHg)

Size Subject Donor 
model

Markers during MP Assay

°C arterial venous
Boehnert et al.,
[23]

2013 38 Yes 60 7 30 Pig DCD ALT, necrosis, bile 
volume, pO2, urea

Perfusate, 
tissue, bile

Brockmann et al.,
[35] 

2009 39 Yes n.d. n.d. 38 Pig DBD & 
DCD

Bile volume, base 
excess, AST, ALT, HA, 
portal pressure, portal 
venous resistance

Bile, perfusate

Fondevila et al.,
[39] 

2011 36-37 Yes 40-60 8 18 Pig DCD AST, bilirubin, LDH, pH, 
pO2

Perfusate

Fondevila et al.,
[105] 

2012 4 Yes 20-30 4 11 Pig DCD
AST, pH, O2, Na+, K+

Perfusate

Jamieson et al.,
[21] 

2011 39 Yes 85-95 n.d. 8 Pig Steatosis Bile volume, base 
excess, albumin, AST, 
ALT, steatosis, glucose, 
urea

Bile, tissue, 
perfusate

Liu et al.,
[45]

2014 4-6 Yes 20 3 36 Pig DCD pH, AST, L-FABP, ATP, 
redox active iron, arterial 
resistance

Perfusate

Minor et al.,
[40]

2013 4-20  Yes 25 4 24 Pig DBD Energy charge potential, 
ATP, AST, ALT, lactate, 
LPO

Perfusate, 
tissue

Obara et al.,
[106] 

2012 4-8 Yes 88 6 7 Pig DCD AST, ALT, LDH, arterial Perfusate

Olschewski et al.,
[107]

2010 4-21 Yes n.d. n.d. 30 Rat DCD Portal venous resistance, 
bile volume, lactate, ALT

Bile, perfusate

Perk et al.,
[90] 

2012 37 Yes n.d. 7-9 19 Rat DCD Glucose, urea, lactate Perfusate

Schlegel et al.,
[30] 

2013 4 Yes n.a. 3 46 Pig DCD NADH, pCO2 Perfusate

Shigeta et al.,
[108]

2013 4-25 Yes 28 4 9 Pig DCD AST, LDH, HA Perfusate

Vairetti et al.,
[36]

2008 4-37 Yes n.a. n.d. 30 Rat DBD AST, LDH, bile volume 
(LDH), γGT

Perfusate, bile

Vairetti et al.,
[71] 

2009 20 Yes n.a. 6-7 48 Rat Steatosis AST, LDH Perfusate

Xu et al.,
[38] 

2012 39 Yes 70-80 5-8 12 Pig DCD ALT, bile volume, CO2, 
ATP, necrosis, apoptosis

Bile, tissue, 
perfusate 

Venous/arterial flow,

flow

n.d., not defined.
n.a., not applied.
ALT, alanine aminotransferase; HA, hyaluronic acid; LDH, lactate dehydrogenase; L-FABP; liver-type fatty acid binding protein; ATP, adenosine triphosphate; LPO, lipid
peroxides; NADH, Nicotinamide adenine dinucleotide.
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to (sub)normothermic conditions. In clinical LT, decreased ATP
levels have been shown to increase the risk for graft PNF or
EAD; Kamiike et al. [50] used expression of ATP and total adenine
nucleotides in peri-transplant liver biopsies to predict graft via-
bility, based on functional outcome within the first days after
LT. Compared to other nucleotides, ATP was demonstrated to be
most sensitive for ischemia, as its expression decreased faster.
However, a reduction of total adenine nucleotide levels in liver
biopsies was more predictive for PNF after LT than ATP levels
solely. Following revascularization, good functioning grafts also
showed a better recovery of ATP and total adenine nucleotide
levels. These levels were inversely related to the period of warm
ischemia during graft implantation. Similar studies performed by
Lanir et al. [51] and Hamamoto et al. [52], confirmed lower (total)
adenine nucleotide levels in biopsies that were obtained during
Journal of Hepatology 201
respectively cold storage and post-reperfusion, which also corre-
lated with the development of PNF. Moreover, Hamamoto et al.
found increased levels of Xanthine in perfusates also to be asso-
ciated with PNF. These findings suggest that assessing energetic
recovery of grafts in tissue and perfusates might be a good
predictor for graft viability during MP in both hypo- as (sub)
normothermic conditions.

Endothelial injury markers: hyaluronic acid & thrombomodulin

The absence of blood and oxygen causes ischemic- and preserva-
tion injury to cells of the liver sinusoids [53]. Hyaluronic acid
(HA) is a high-molecular weight glycosaminoglycan (4–8
million kDa) formed by the cellular plasma membrane [54] and
its uptake mainly occurs by sinusoidal endothelial cells of the
4 vol. 61 j 672–684 677



Table 3. Overview of studies investigating biomarkers during clinical LT associated with PNF, EAD or biliary complications.

Study
[Ref.]

Outcome Incidence Year Size Injury marker Donor assay Graft 
type

Evidence
level

Abraham et al.,
[70]

PNF 29% 1996 38 ↑ Hepatocyte swelling
Apoptosis, hemorrhage, hepatocyte 
swelling and necrosis

Liver tissue DBD* 3B

Hamamoto et al.,
[52] 

PNF 6% 1994 68 ↓ Adenine nucleotides
↑ Xanthine

Liver tissue
Perfusate

DBD* 3B

Kamiike et al.,
[50]

PNF 20% 1988 30 ↓ Adenine nucleotides Liver tissue
Bile

DBD* 4

Lanir et al.,
[51]

PNF 20% 1988 25 ↓ Adenine nucleotides 
(ATP <2 nmoles/mg)

Liver tissue DBD* 3B

Bronsther et al.,
[57] 

PNF 9% 1993 70 ↑ HA (>400 µg/L) Perfusate DBD* 3B

Rao et al.,
[58] 

PNF  6% 1996 102 ↑ HA (>400 µg/L) Perfusate DBD* 2B

Berberat et al.,
[67]

PNF 
and EAD

7%/22% 2006 59 ↑ CRP, 
↓ CTGF, WWP2, CD274, VEGF, FLT1

Liver tissue n.d. 3B

Khettry et al.
[69] 

PNF 
and EAD

8%/16% 1991 50 10%-50% hemorrhage  and/or 
necrosis 

Galbladder 
tissue

DBD 3B

Lange et al.,
[48] 

PNF 
and EAD

10%/4% 1996 50 ↑ AST, ALT, LDH Perfusate DBD* 4

Calmus et al.,
[68] 

EAD 19% 1995 32 ↑ Amino acids Perfusates DBD* 3B

Cywes et al.,
[109]

EAD n.d. 1993 30 ↑ Platelet adhesion Liver tissue DBD* 3B

Devlin et al.,
[46]

EAD 19% 1995 53 ↑ AST, LDH Perfusate DBD* 3B

Pacheco et al.,
[47] 

EAD 21% 2010 47 ↑ AST, ALT, LDH Perfusate n.d. 4

Suehiro et al.,
[65]

EAD 14% 1997 58 ↑ TM (>20 FU/ml)
↑ Sinusoidal TM staining

Perfusate
Liver tissue

DBD* 3B

Brunner et al.,
[12]

Biliary 
complications

n.d. 2013 79 >10% epithelial damage, disturbed 
tight junction protein architecture

Extrahepatic 
bile duct tissue

DBD 3B

Op den Dries 
et al.,
[76]

ITBL 16% 2014 128 Vascular injury with arteriolonecrosis,
>50% loss of cells in deep peribiliary 
glands

Extrahepatic 
bile duct tissue

DBD 
and 
DCD

2B

Farid et al.,
[80]  

ITBL n.d. 2013 22 ↓ Portal vein branch-size Liver tissue DBD 3B

Hansen et al.,
[75]

ITBL 19% 2012 93 Presence of arteriolonecrosis Extrahepatic 
bile duct tissue

DBD 2B

Verhoeven et al.,
[86]

ITBL 35% 2013 56 ↑ HDmiR/CDmiR ratio Perfusate DBD 
and 
DCD

2B

↓ Bile flow rate

ATP, adenosine triphosphate; HA, hyaluronic acid; TM, thrombomodulin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase;
HDmiR, hepatocyte-derived miRNA; CDmiR, cholangiocyte-derived miRNA; DBD, donation after brain death; DCD, donation after circulatory death; n.d., not defined.
⁄Graft type assumed to be DBD, derived from the year of publication.
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liver [55]. In clinical LT, a disruption of the hepatic micro-vascular
integrity by preservation injury was shown to reduce the uptake
of HA from the circulation, causing levels of HA in the liver to rise,
which subsequently lead to EAD [56]. Comparable studies by
Bronsther et al. [57] and Rao et al. [58] provided stronger evi-
dence for HA to be associated with PNF and diminished graft sur-
vival after LT; levels over 400 lg/L in the perfusate had a highly
negative predictive value of 95%. Furthermore, these studies
demonstrated a correlation between HA levels in perfusates
and post-operative AST and ALT levels in recipients. In the setting
of NMP, Brockmann et al. found HA levels during NMP as one of
their most significant predictors for graft viability after LT in a
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large animal model [35]; the mean level of HA in perfusates of
successful grafts was 108 ng/ml, while non-successful grafts
released much higher HA levels (6087 ng/ml).

Another endothelial cell marker is Thrombomodulin (TM),
which has potential anticoagulant effects if it forms a complex
with thrombin. When the vascular endothelium of liver sinusoids
is injured for instance by graft preservation, TM is inactivated by
cleavage into smaller fragments of so-called soluble thrombo-
modulin (sTM) and it is subsequently released from the cell sur-
face [59–64]. Suehiro et al. [65] found TM levels over 20 FU/ml in
perfusates to be sensitive for identifying grafts with PNF or EAD
after LT. These grafts showed a higher expression of TM on liver
4 vol. 61 j 672–684
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sinusoidal endothelial cells at the end of cold storage. In a smaller
study performed by Sido et al., intraoperative sTM levels were
measured in blood to assess graft endothelial reperfusion injury
[60]. After reperfusion, sTM levels correlated significantly with
release of liver enzymes and increased adherence of leukocytes
in liver tissue. In clinical LT, however, only one study investigated
TM as a predictor for outcome and graft quality [65] and no data
are known on the potential use of TM as a marker for viability
testing in the setting of MP.

Inflammatory markers, kupffer cells and proteolytic enzymes

Graft ischemia induces an inflammatory cascade that attracts
leukocytes and neutrophils to the site of tissue injury and subse-
quent leakage of proteolytic enzymes, causing breakdown of cells
and surrounding tissue post-reperfusion [66]. In a retrospective
study that derived from the first clinical trial applying HMP for
LT, Henry et al. investigated the effect of HMP on the expression
of several injury markers [26]. Oxidative stress markers as
hypoxia-inducible factor-1a and -1b were significantly decreased
in biopsies that were taken at the end of HMP, compared to SCS
grafts. Also the expression of inflammatory markers like tumour
necrosis factor-a (TNF-a) were significantly lower in grafts
already at time of HMP. The authors hypothesize that these
pro-inflammatory factors are eliminated through the diluting
effects of HMP, thereby also reducing the production of down-
stream chemokines and adhesion molecules like intercellular
adhesion molecule-1 and P-selectin. This hypothesis was sup-
ported by the observation that at the end of HMP, less infiltrating
Kupffer cells (CD68 positive) were present in tissue compared to
SCS biopsies. Berberat et al. [67] found several inflammatory
genes in post-reperfusion biopsies predictive of graft outcomes;
high expression of TNF-a was correlated with shortened graft
survival, while high c-reactive protein expression correlated with
the need of interventions after LT. A linear combination of five
down regulated vascular genes was superior in forecasting graft
related complications, with a positive predictive value of 72%
and negative predictive value of 96%. Calmus et al. [68] also
demonstrated a strong correlation between ongoing proteolysis
during SCS and EAD; increased levels of free amino acids that
were released from the liver into perfusates showed good
positive- and negative-predictive value (respectively 100% and
95%) for EAD in the first postoperative week. As Henry et al.
and Calmus et al. show, it is feasible to measure inflammatory
markers and proteolytic enzymes during cold graft preservation
prior to reperfusion. However, the strongest effect on these
markers usually becomes apparent after revascularization of
the graft [25] and therefore it would be highly interesting to
observe the predictive value of these markers in normothermic
conditions. Up to now, many MP studies only investigate such
markers after reperfusion [25,32].

Tissue hemorrhage and cell necrosis

The degree in which tissue is affected by graft ischemia varies
and is usually reflected by histopathological changes. Xu et al.
investigated these histological changes during NMP of porcine
liver grafts [38]. A remarkable finding was that the degree of
necrosis and apoptosis in biopsies taken after warm ischemia
and subsequent cold storage, appeared to be reversed after 4 h
of NMP. This not only suggests that histological evaluation at
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time of NMP might be a useful indicator for graft viability, it also
indicates that NMP has the potential to recover ischemic damage.
This has also been suggested by other NMP studies that per-
formed histological evaluation after reperfusion [23,39]. The
prognostic value of necrosis and apoptosis occurring during SCS
was also evaluated in different tissues from clinical studies;
Khettry et al. demonstrated extensive hemorrhage and/or necro-
sis of 10–50% in the donor gallbladder mucosa to have a high
positive and negative predictive value for PNF and impaired graft
survival, whereas vascular congestion was present in all donor
gallbladders [69]. In addition, Abraham et al. identified apoptotic
cells and zone 3 hemorrhage in post-reperfusion liver tissue to
have good discriminative power for PNF (AUC = 0.90 and 0.77
respectively) [70].

Degree of graft steatosis

Beside DCD, steatotic livers form another important source
within the category of ECD grafts that could benefit from
improved preservation and subsequent graft outcome by MP.
Bessems et al. [20] found improved functional parameters in stea-
totic rat livers after HMP compared to normal preservation by
SCS. Similar beneficial effects were observed by Vairetti et al.,
who concluded that subnormothermic temperatures are pre-
ferred over colder temperatures for the recovery of steatotic
grafts [71]. Despite exciting results on MP for optimizing the
quality of steatotic grafts, these studies were not informative
on potential biomarkers prior to reperfusion. However, a more
recent study by Jamieson et al. measured a decrease in lipid
deposits during NMP of rat livers which correlated with a reduc-
tion in the degree of steatosis [21]. Previous clinical studies
showed the value of histological macro vesicular steatosis to pre-
dict graft PNF, which has been extensively reviewed earlier [72].
Dutkowski et al. [73] integrated the degree of steatosis in a
balance of risk score with other risk factors for graft failure,
consisting of recipient age, MELD-score, re-transplantation, cold
ischemia, and donor age. This score indicates that one should
be reluctant with the use of moderate to severe steatotic liver
grafts (>30%) in recipients with a balance of risk-score P9, but
microvesicular steatosis has not been related to poorer outcome.
Though histological scoring in steatotic grafts seems promising in
the setting of both MP and SCS, in general, one should be aware
for the risks of intra- and inter observer variability that hampers
a standardized histological evaluation [74].
Markers for biliary injury

As previously explained, bile ducts of particularly ECD grafts have
been shown to be vulnerable for ischemic injury and are respon-
sible for a high percentage of graft loss (Fig. 1). Therefore, biliary
complications are also an important outcome for several MP
studies. Up to now, MP studies on human liver grafts (Table 1)
have shown that MP is not harmful for bile ducts, but most stud-
ies are too small to demonstrate whether a significant benefit
actually exists [24,29,37]. Schlegel et al. recently demonstrated
beneficial effects of HOPE on biliary fibrosis, but no markers were
investigated during HOPE on their predictive capacity for biliary
injury [31]. Several clinical studies however identified markers
in tissue and perfusates during SCS that were able to predict
biliary complications.
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Peribiliary epithelial damage and vascular injury

Brunner et al. developed a bile duct damage-score based on the
degree of injury in the epithelium of the extrahepatic bile duct
and diminished epithelial barrier integrity measured by tight
junction proteins [12]. Samples of common bile duct tissue show-
ing more than 10% of destructed epithelium or/and subepithelial
connective tissue at the beginning of cold preservation were pre-
disposed to develop major biliary complications and diminished
graft survival. Also Hansen et al. [75] scored extrahepatic bile
duct specimens and found arteriolonecrosis causing mural necro-
sis to be the most prominent risk factor for ITBL. Similar observa-
tions were recently reported in a larger cohort studied by Op den
Dries et al. [76]. Additionally, the investigators found that grafts
that would develop ITBL, lost over 50% of cells within deep perib-
iliary glands that are located along the common bile duct and
which are involved in cholangiocyte proliferation in response to
injury [77,78]. Based on their findings, the authors formulated
the hypothesis that ITBL results from an insufficient regenerative
capacity of injured cholangiocytes by peribiliary glands, caused
by arteriolonecrosis in the bile duct wall, rather than being the
result of extensive epithelial injury alone [79]. Remarkably, the
degree of injury in peribiliary glands did not differ between
DBD and DCD grafts. Beside changes in the arterial vasculature
of the peribiliary plexus, a case-control study by Farid et al.
showed changes in the luminal size of the portal vein branch
(PVB) in liver tissue specimens to be more pronounced after
reperfusion [80]; a smaller PVB size was seen in grafts that later
developed ITBL. This supports earlier findings on the importance
of portal blood flow, which is responsible for approximately 40%
of the blood supply in the common bile duct, for the risk to
develop ITBL [81,82]. Unfortunately, differences in PVB size
became apparent only after reperfusion.

Cholangiocyte-derived microRNAs

MicroRNAs (miRNAs) are small regulatory RNAs with high
cell-type specificity and their resistance against RNAse mediated
degradation in different media and conditions makes them
an attractive candidate for biomarker research [83–85].
Hepatocyte-derived miRNAs (HDmiRs) were identified as sensi-
tive markers in serum for acute graft rejection and more recently,
our group reported that lower levels of cholangiocyte-derived
miRNAs (CDmiRs) in perfusates during SCS are predictive of ITBL
in both DBD and DCD grafts [86,87]. In this study, miRNAs
remained stable in University of Wisconsin (UW) and histidine-
tryptophan-ketoglutarate (HTK) perfusates, also after incubation
at room temperature. Preliminary data show that miRNAs can
also be measured during MP (data not shown). Furthermore,
HDmiRs and CDmiRs are also released into bile [88]. Interest-
ingly, a very recent study shows that recipients developing ITBL
have an altered miRNA composition in bile [89].
Discussion

As dynamic preservation is now entering the clinic, researchers
emphasize on the need of predictive and sensitive biomarkers that
are able to objectively assess graft quality during MP. Biomarkers
could help to enlarge the donor pool by objectively screening
liver grafts that initially would be discarded based on their
predisposing characteristics. Several experimental studies
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already demonstrated that a combination of biomarkers mea-
sured during MP could be used as a damage index for ECD grafts
[45,90]. However, since the clinical application of MP is still in its
infancy, the introduction of such damage scores based on surro-
gate biomarkers should be studied in larger cohorts. Prospective
randomized clinical trials on MP would offer the best opportunity
for unbiased evaluation of potential biomarkers, provided that
sampling of materials during MP is executed accurately. More-
over, such trials could also definitely answer the question which
MP strategy is most capable of optimizing ECD graft quality.

The requirements for a biomarker to make it into clinical prac-
tice are that its measurement should be easy and relatively fast,
with a high sensitivity and specificity for outcome. Moreover,
biomarkers should be measurable in biomaterials that are avail-
able at time of graft preservation, so its discriminative capacity
could be used in graft screening and allocation [91]. Biopsies from
liver or extrahepatic bile duct specimens can be collected during
preservation and are suitable for histological evaluation and
quantification of injury based on (low) expressed biomarkers. It
should however be emphasized that biopsies are obtained inva-
sively and only represent a small part of the liver or bile duct,
which could lead to incorrect interpretation when injury is
unequally distributed throughout the tissue (Table 4). Moreover,
inter- and intra-observer variability can hamper a standardized
evaluation of histological markers. The collection of perfusates
form an attractive non-invasive alternative for a variety of mark-
ers during conventional preservation and MP. Another advantage
of using perfusates over tissue biopsies is that larger volumes can
be collected and markers released into perfusates are believed to
represent the condition of the entire liver parenchyma rather
than only a small part of the liver. Limitations consist of difficul-
ties in the normalization of markers; most MP systems use a
recirculating perfusion system, in which biomarkers can accumu-
late. Therefore, perfusate levels of conventional biomarkers like
AST could differ from standards in clinical practice. This also
applies to perfusion temperature; hypothermic conditions will
cause a delayed metabolism of the liver and requires an adjusted
evaluation of biomarkers and cut-off values compared to normo-
thermic, physiologic conditions.

A limitation for many biomarkers in general is that their
quantification can be labour intensive and time consuming. Some
techniques, for instance polymerase chain reaction, are however
progressing in terms of accelerated measurements, which makes
them applicable in the prolonged time-window created by MP
[92,93].

In general, biomarkers can be used either to determine graft
injury or graft function. Up to now, most biomarkers concern
markers for injury, while bile production currently is the only
marker for liver function. Robust markers of function rather than
injury are however of importance, because severe ischemic injury
not necessarily means that a graft will not function properly fol-
lowing LT. Additional markers of function could consist of sub-
strates which do not naturally occur in the body, but are
cleared by the liver. For instance the plasma disappearance rate
of intravenously administered indocyanine green (PDR-ICG) or
13C-labeled methacetin (LiMAx test), which are predictive of
PNF, EAD and hepatic artery thrombosis after LT [94–97]. How-
ever, results of such tests are influenced by perfusion flow rates
[98,99]. Moreover, functional markers require a metabolically
active liver, which can only be achieved under (sub)normother-
mic conditions (Fig. 4).
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Table 4. Materials for biomarker measurement during graft preservation. Summary on the advantages and disadvantages between the different biomaterials that can be
used to asses graft quality at time of MP or during SCS prior to LT.

Biomaterial Advantages Disadvantages
Tissue Histological evidence for graft quality

Large amount of cells 
Invasive
Only local representation 
Risk of inter- or intra-observariability

Perfusate Non-invasive
Larger quantities available
Suitable application for various types of MP

Timing; short before implantation
No standardized workup between LT centers

Bile Non-invasive
Indicative for hepatocyte and cholangiocyte function
Suitable application for MP

Less informative during hypothermic conditions 
Smaller quantities available
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Beside biomarkers for injury and function, it is evident that
donor- and recipient risk factors can influence outcome after LT
(Fig. 2). Genetic polymorphisms in both donors and recipients
have been identified that increase the risk for recipients to
develop ITBL or bacterial infections after LT [100–102]. Therefore,
genetic profiling could be helpful in matching donors to equiva-
lent recipients [91]. Moreover, information on donor and recipi-
ent risk factors are usually available in an early stage of LT [103].
Concluding remarks and future directions

The limited experience of MP in clinical LT hampers the evalua-
tion on which MP strategy is most optimal for graft quality and
the evaluation of potential biomarkers for quality assessment.
Another factor that hampers evaluation of biomarkers is the
inconclusiveness between studies on outcome definitions; inves-
tigators maintain different criteria for comparing cohorts, making
it impossible to perform a reliable meta-analysis on outcomes
describing corresponding markers. More clear international
guidelines on outcome definitions are therefore recommended,
as was previously initiated by Olthoff et al. [9]. Comparing bio-
markers during MP and conventional SCS, we can however con-
clude that non-invasive measurement of injury markers into
perfusates and the assessment of liver function based on the pro-
duction of bile are well-possible in MP. For all markers, however,
one should take into account the baseline differences that can
exist between donors, liver grafts, and MP techniques that influ-
ence biomarker measurements and pleas for custom criteria and
cut-off values in the evaluation of biomarkers [10]. This review
forms a starting point for future studies on quality assessment
by biomarkers and graft screening in the changing setting of graft
preservation and MP in clinical LT in the coming years.
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