Some Inequalities for the Rational Power of a Nonnegative Definite Matrix

YIK-HOI AU-YEUNG

University of Hong Kong, Hong Kong, and
University of Waterloo, Waterloo, Ontario, Canada

Communicated by Hans Schneider

ABSTRACT

In this note the author gives a simple proof of the following fact: Let \(r \) and \(s \) be two positive rational numbers such that \(r \leq s \) and let \(A \) and \(B \) be two \(n \times n \) nonnegative definite Hermitian matrices such that \(A^r \succeq B^r \). Then \(A^s \succeq B^s \).

1. INTRODUCTION AND STATEMENT OF THE THEOREMS

We denote by \(F \) the field \(R \) of real numbers, the field \(C \) of complex numbers, or the skew field \(H \) of real quaternions. If \(X \) is a matrix with elements in \(F \), we denote by \(X^* \) its conjugate transpose. In all three cases of \(F \), an \(n \times n \) matrix \(A \) is said to be Hermitian if \(A = A^* \) and unitary if \(AA^* = I \), where \(I \) is the identity matrix. Thus, if \(F = R \), then the words "Hermitian" and "unitary" merely mean "symmetric" and "orthogonal" respectively. We denote by \(A \succeq B \) (\(A \succ B \) resp.) that \(A \) and \(B \) are Hermitian of size \(n \) and \(A - B \) is nonnegative definite (positive definite resp.) and denote by \(Q \) and \(Q^+ \) the set of rational numbers and the set of positive rational numbers respectively.

Let \(A \succeq 0 \) and \(r = \frac{p}{q} \), where \(p \) and \(q \) are positive integers. Then we define \(A^r = (A^{1/q})^p \), where \(A^{1/q} \) is the unique nonnegative definite \(q \)th root of \(A \). It is easy to verify that \(A^r \) is well-defined. It is known that any Hermitian matrix can be diagonalized by a unitary matrix (for \(F = R \) or \(C \), this is well-known; for \(F = H \), see [1] or [2]). Now if \(A = U \text{diag}\{a_1, \ldots, a_n\}U^* \), where \(U \) is unitary, then \(A^r = U \text{diag}\{a_1^r, \ldots, a_n^r\}U^* \) and hence
\[A^r A^s = A^{r+s}, \]
for all \(r, s \in Q^+ \). If \(A > 0 \), then define \(A^0 = I \) and \(A^{-r} = (A^r)^{-1} \) \((r \in Q^+) \) and in this case equality (1) also holds for all \(r, s \in Q \).

It is known (for example, see [3]) that if \(A \succeq B \succeq 0 \), then \(A^{1/2} \succeq B^{1/2} \). The purpose of this note is to give a simple proof of the following theorems which the author is not able to trace whether are known or not.

Theorem 1. If \(A, B \succeq 0 \) and \(A^r \succeq B^r \) for some \(r \in Q^+ \), then \(A^s \succeq B^s \) for all \(s \in Q^+ \) such that \(r \succeq s \).

Theorem 2. If \(A, B \succeq 0 \) and \(A^r > B^r \) for some \(r \in Q^+ \), then \(A^s > B^s \) for all \(s \in Q^+ \) such that \(r \succeq s \).

2. PROOF OF THE THEOREMS

We first prove some lemmas.

Lemma 1. If \(X, Y \succeq 0 \), \(P \succeq T > 0 \), and \(XTX \succeq YPY \), then \(X \succeq Y \).

Proof. Since \(X, Y \succeq 0 \), \(X \) and \(Y \) can be diagonalized simultaneously [4] by a cogredient transformation. Hence there exists a nonsingular matrix \(S \) such that \(X = S^*XS \) and \(Y = S^*YS \), where \(X \) and \(Y \) are diagonal matrices. Now \(X \succeq Y \) is equivalent to \(X \succeq Y \) and \(XTX \succeq YPY \) is equivalent to \(X^T X \succeq Y^T Y \), where \(T = STS^* \) and \(P = SPS^* \). Therefore, without loss of generality, we may assume that \(X = \text{diag}\{x_1, \ldots, x_n\} \) and \(Y = \text{diag}\{y_1, \ldots, y_n\} \), where \(x_1, \ldots, x_n, y_1, \ldots, y_n \) are nonnegative real numbers. From \(XTX \succeq YPY \) we have

\[x_i^2 t_{ii} \succeq y_i^2 p_{ii} \quad (i = 1, \ldots, n), \]
where \(t_{ii} \) and \(p_{ii} \) are the diagonal elements of \(T \) and \(P \) respectively. Since \(P \succeq T > 0 \), we have \(p_{ii} \geq t_{ii} > 0 \). From this and inequality (2) our lemma follows. \(\blacksquare \)

By taking \(X = A^{1/2} \) and \(Y = B^{1/2} \) and \(P = T = I \), we have the following corollary.

Corollary. If \(A \succeq B \succeq 0 \), then \(A^{1/2} \succeq B^{1/2} \).

Lemma 2. If \(X \succeq Y \succeq 0 \) and \(X > 0 \), then \(Y \succeq YX^{-1}Y \).
Proof. Again we may assume that X and Y are of the form as in the proof of Lemma 1. Then $YX^{-1}Y = \text{diag}\{x_1^{-1}y_1^2, \ldots, x_n^{-1}y_n^2\}$ and the lemma follows immediately from these explicit expressions.

The following lemma is known (see the proof of Lemma 2 of [4]).

Lemma 3. If $A, B \geq 0$ and $A = \text{diag}\{A_1, 0\}$, where A_1 is of size m and > 0 and if, for any $u \in F^n$, $uAu^* = 0$ implies $uBu^* = 0$, then $B = \text{diag}\{B_1, 0\}$, where B_1 is of size m.

Lemma 4. If $A, B \geq 0$, $A^r \geq B^r$ and $A^s \geq B^s$, where $r, s \in Q^+$, then $A^{(r+s)/2} \geq B^{(r+s)/2}$.

Proof. By using the canonical forms of A and A^r in the previous section, it is obvious that, for any $u \in F^n$, $uAu^* = 0$ if and only if $uA^ru^* = 0$ (and similarly for B). Now suppose that $uAu^* = 0$. Then $uA^ru^* = 0$. Since $A^r \geq B^r \geq 0$, we have $uB^ru^* = 0$ and hence $uBu^* = 0$. Therefore, by Lemma 3, we may assume $A > 0$, and we also assume $r > s$. From equality (1) and Lemma 2, we have

$$A^{(r+s)/2}A^{-s}A^{(r+s)/2} = A^r,$$

$$\geq B^r,$$

$$= B^{(r-s)/2}B^sB^{(r-s)/2},$$

$$\geq B^{(r-s)/2}B^sA^{-s}B^sB^{(r-s)/2},$$

$$= B^{(r+s)/2}A^{-s}B^{(r+s)/2}.$$

From this and Lemma 1 our lemma follows.

Proof of Theorem 1. Let $s \in Q^+$ such that $r \geq s$. Then, by the Corollary and Lemma 4, we see that there exists a sequence s_1, s_2, \ldots in Q^+ such that $\lim_{n \to \infty} s_n = s$ and $A^{s_n} \geq B^{s_n}$ for all n. Hence

$$A^s = \lim_{n \to \infty} A^{s_n} \geq \lim_{n \to \infty} B^{s_n} = B^s.$$

Theorem 2 follows from Theorem 1 and the fact that if $A^r > B^r$, then $A^r > (B + \epsilon I)^r$ for sufficiently small positive ϵ.

Nonnegative Definite Matrix 349
REFERENCES

Received April, 1971; revised version received November, 1972