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David Garcı́a-Bernal,1 Marisa Parmo-Cabañas,1 Ana Dios-Esponera,1 Rafael Samaniego,2

Dolores Hernán-P de la Ossa,1,3 and Joaquin Teixidó1,*
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SUMMARY

Lymphocyte integrins mediate cell arrest on endothe-
lium during immune surveillance after activation by
chemokine-stimulated inside-out signals. Here we
show that a Vav1-talin complex in T cells is a key
target for chemokine-triggered inside-out signaling
leading to integrin a4b1 activation. Thus, Vav1 disso-
ciation from talin was required to generate high-
affinity a4b1 conformations. Assembly of the Vav1-
talin complex required PtdIns(4,5)P2, which was
provided by talin-bound phosphatidylinositol phos-
phate kinase Ig. Chemokine-promoted Vav1 dissoci-
ation from talin followed an initial increase in talin
binding to a4b1. This process was dependent on
ZAP-70, which binds to and phosphorylates Vav1 in
the complex, leading to further a4b1 activation and
cell adhesion strengthening. Moreover, Vav1-talin
dissociation was needed for Rac1 activation, thus
indicating that a4b1 and Rac1 activation can be
coupled by chemokine-stimulated ZAP-70 function.
Our data suggest that Vav1 might function as
a repressive adaptor of talin that must dissociate
from a4b1-talin complexes for efficient integrin
activation.
INTRODUCTION

Chemokines promote the migration of immune cells from lymph

and blood circulation into lymphoid tissues and sites of inflam-

mation during immune surveillance (Campbell et al., 2003; Charo

and Ransohoff, 2006; Rot and von Andrian, 2004). This process

is achieved after rapid stimulation of a4b1 and aLb2 integrin

activity on T lymphocytes by chemokines presented on the

endothelium. Thus, chemokine binding to G protein-coupled

receptors induces rapid activation of effector molecules that

lead to integrin-mediated upregulation of cell adhesion, a

process called inside-out signaling (Kinashi, 2005; Ley et al.,

2007; Luster et al., 2005). Integrin cytoplasmic regions are

responsible for sensing and transmitting molecular information
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originated by this signaling, to finally generate high-affinity

conformations of the integrin extracellular domain.

Talin is a homodimer protein that physically links integrin

b subunits with the actin cytoskeleton (Calderwood, 2004;

Campbell and Ginsberg, 2004; Nayal et al., 2004). The talin

N-terminal head domain contains the FERM (protein 4.1, ezrin,

radixin, and moesin) region that binds to an NPXY or NPXF

membrane-proximal motif in b-subunit cytoplasmic tails (Camp-

bell and Ginsberg, 2004). The FERM region also interacts with

the type I phosphatidylinositol phosphate kinase g90 (PIPKIg90)

(Di Paolo et al., 2002) (also called PIPKIg-661) (Ling et al., 2002),

leading to local accumulation of its product phosphatidylinositol-

4, 5-bisphosphate [PtdIns(4,5)P2)], a phosphoinositide that

stimulates talin-b1 integrin interaction (Martel et al., 2001) by

disrupting the interaction between the head and the C-terminal

rod domain of talin (Goksoy et al., 2008). The talin rod domain

interacts with vinculin and actin, providing links to the actin cyto-

skeleton (Gilmore and Burridge, 1996). Talin is required for

affinity regulation of b1 and b3 integrins (Calderwood et al.,

1999; Nieswandt et al., 2007; Petrich et al., 2007; Tadokoro

et al., 2003; Wegener et al., 2007), and overexpression of the talin

head domain promotes separation of a and b subunit cyto-

plasmic domains (Kim et al., 2003), a key event leading to integrin

activation (Carman and Springer, 2003). Moreover, the chemo-

kine CXCL12 also causes spatial separation of these domains

in aLb2 (Kim et al., 2003), suggesting that talin is a true candidate

for regulation of integrin activation in response to chemokines.

Earlier work reported that talin associates with the guanine-

nucleotide exchange factor (GEF) Vav on mouse T cells (Fischer

et al., 1998), but the functional role of this association was not

addressed. Vav1 is a key component of the inside-out signaling

generated upon binding of CXCL12 to its receptor CXCR4 that

leads to stimulation of a4b1 integrin activation on T lymphocytes

(Garcia-Bernal et al., 2005). Vav1 is a multidomain protein that

functions as GEF predominantly for Rac (Bustelo, 2000; Turner

and Billadeau, 2002). Importantly, it has been demonstrated

that Vav proteins play crucial roles in T cell activation and devel-

opment (Tybulewicz, 2005). Activation of Vav GEF activity

requires phosphorylation at tyrosine residues located on its

acidic domain, whereas the Dbl-homology region is responsible

for GEF activity and the SH2 and SH3 domains interact with

autophosphorylated tyrosine kinases and with several adaptor

proteins (Bustelo, 2000; Turner and Billadeau, 2002). ZAP70,
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Lck, Fyn, and Syk have been linked to Vav phosphorylation by

activated receptors in lymphocytes, including CXCR4 (Ottoson

et al., 2001; Ticchioni et al., 2002; Tybulewicz, 2005).

In the present work we have studied the role of the Vav1-talin

association in chemokine-stimulated T lymphocyte adhesion

mediated by a4b1. In addition, we have investigated the func-

tional cross-talk between PtdIns(4,5)P2 and the molecular

machinery activated during inside-out signaling triggered by

chemokines. We provide evidence that changes in Vav1-talin

association, which are controlled by PtdIns(4,5)P2, are required

for regulation of T cell adhesion mediated by a4b1.

RESULTS

CXCL12 Promotes Vav1-Talin Dissociation that
Is Linked to Stimulation of Vav1 Phosphorylation
Vav1 and talin were found constitutively associated in nonstimu-

lated human Molt-4 T cells and PBL-T lymphocytes (Figures 1A

and 1B). Notably, Vav1-talin association was rapidly reduced

upon cell exposure to CXCL12. Dissociation between Vav1

and talin was independent of a potential protease activity on talin

(Figure S1A available online), and total talin amounts were unal-

tered in cells silenced for Vav1 expression by RNA interference

(Figure 1B, right), indicating that absence of the Vav1-talin asso-

ciation does not lead to talin cleavage. More than 98% of Vav1

and talin proteins were present in the digitonin- or Triton

X-100-soluble fraction after cell lysis (Figure S1B), indicating

that changes in dynamic associations between these molecules

were detected in a relevant fraction of their total cellular popula-

tion. In addition, whereas talin showed a cortical distribution

independently of cell exposure to CXCL12, Vav1 cortical

localization was substantially reduced after incubation with the

chemokine (Figure S1C), suggesting a change in Vav1 subcel-

lular localization resulting from CXCL12 actions.

Vinculin coprecipitated with talin, and concomitant with che-

mokine-promoted Vav1-talin dissociation, vinculin gradually

increased its binding to talin (Figure 1B, left). Talin binding to

vinculin was independent of Vav1, as shown by the fact that

Vav1 silencing did not affect the binding (Figure 1B, right).

Also, although Vav1 antibodies coprecipitated talin, no vinculin

was detected in these immunoprecipitates, and vinculin anti-

bodies coprecipitated talin but not Vav1 (not shown), suggesting

the unlikelihood of Vav1-vinculin interaction.

Vav1 tyrosine phosphorylation was difficult to detect in

Vav1-talin complexes in nonstimulated T cells, and only when

association decreased because of CXCL12 was a clear Vav1

phosphorylation observed (Figures 1A and 1D). Activation of

this phosphorylation was preceded by a gradual increase in

Vav1 coprecipitation with ZAP-70 (Figure 1A), a kinase involved

in Vav1 phosphorylation (Ottoson et al., 2001; Ticchioni et al.,

2002). In addition, we observed that CXCL12 stimulated a tran-

sient Vav1-b1 association in Molt-4 and PBL-T cells (Figure 1A).

Interestingly, when we abolished Vav1-talin association by

silencing talin expression with i-talin siRNA, we found a defective

chemokine-promoted Vav1 tyrosine phosphorylation, as well as

impairment in Rac activation (Figures 1C–1E; Figure S2A). To

determine whether inhibition of Rac activation was directly

dependent on impaired Vav1 activity, we expressed a constitu-

tively active Vav1 form (DCH+Ac-GFP) (Lopez-Lago et al.,
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2000) and analyzed whether Rac activation was restored. With

Vav1 DCH+Ac-GFP transfection efficiencies ranging 35%–

40%, we obtained a partial recovery of Rac activation in talin-

silenced cells, as compared to control (WT) GFP transfectants

(Figure 1F). These data suggest that impairment in Rac activation

after targeting talin involves defective Vav1 phosphorylation, and

possibly Vav1-independent mechanisms.

CXCL12 Stimulates Talin-Integrin b1 Association
With similar kinetics as Vav1-talin disassembly, CXCL12

promoted in Molt-4 and PBL-T cells a rapid and transient

increase in the association of talin with the b1 subunit of a4b1

(Figure 2A, left and middle). As expected, no talin-b1 complexes

were seen in talin-silenced cells (Figure 2A, right), although they

had no alterations in a4b1 heterodimer formation or in a4b1 cell

surface expression (Figure S2B). Importantly, no talin-b1

complexes were detected in Vav1-silenced cells, and CXCL12

was unable to promote the association (Figure 2B), indicating

that talin-b1 binding was dependent on Vav1. Transient Vav1-b1

association triggered by CXCL12 was also confirmed with b1 anti-

bodies, whereas this complex was not formed in Vav1-silenced

cells.

We used CCL21 to investigate whether other chemokines can

also influence Vav1, talin, and b1 associations. CCL21 induced

Vav1 release from talin, which was linked to increased talin-b1

association (Figure 2C), indicating that these dynamic changes

might represent common GPCR-mediated T cell responses

with functional implications. Together, these data indicate that

chemokines regulate associations between Vav1, talin, and b1,

which could have important consequences for a4b1-mediated

T cell attachment.

Talin Is Required for Chemokine-Promoted
a4b1-Dependent T Cell Adhesion
To study whether changes in associations between Vav1, talin,

and b1 could influence T cell attachment mediated by a4b1,

we silenced talin expression and tested transfectant adhesion

to a4b1 ligands. Talin-silenced T cells revealed a partial reduc-

tion in CXCL12-stimulated attachment to VCAM-1 and CS-1-FN

under static conditions, relative to control and ni-talin 1 siRNA

transfectants (Figure S2C).

Flow chamber adhesion assays under shear stress revealed

that CXCL12 triggered a rapid firm attachment to VCAM-1 in

75%–85% of Molt-4 and PBL-T cells transfected with control

or ni-talin 1 siRNA, while a minor transfectant population (5%–

10%) displayed transient arrest (Figure 3A). Control experiments

indicated blocking of adhesion by cell pretreatment with per-

tussis toxin or with a4 mAb (not shown). Instead, i-talin 1 siRNA

transfectants predominantly rolled, displaying low stable arrest

on VCAM-1 that was associated with increased transient attach-

ment, suggesting that talin is required during initial events of

chemokine-triggered a4b1-VCAM-1 interaction. Moreover, con-

trol and ni-talin 1 siRNA transfectants developed higher resis-

tance to detachment at increased shear stress than i-talin

1 siRNA counterparts (Figure 3B). The potential involvement of

talin at initial steps of adhesion was studied by measuring cell

binding of 15/7, a mAb that recognizes a b1 integrin activation

epitope on a4b1 (Yednock et al., 1995), as well as by analyzing

binding of VCAM-1-Fc. 15/7 mAb and VCAM-1-Fc bound



Figure 1. CXCL12 Promotes Vav-Talin Dissociation that Is Linked to Stimulation of Vav1 Phosphorylation

(A) Cells were incubated for the indicated times with CXCL12 (200 ng/ml) and subjected to immunoprecipitation with control (Ctr) or Vav1 antibodies, followed by

immunoblotting with antibodies to the stated proteins.

(B) Lysates from nontransfected (left) or control or Vav1 siRNA-transfected (right) Molt-4 cells were subjected to immunoprecipitation and immunoblotting.

(C) Nontransfected (–) or Molt-4 cells transfected with the indicated noninterfering or interfering talin 1 (ni-talin 1 or i-talin 1, respectively) or with control siRNA

were analyzed by immunoblotting with talin antibodies. Numbers below gels indicate values from densitometer analyses.

(D and E) Control or i-talin 1 siRNA transfectants were incubated with CXCL12 and tested in immunoprecipitation and immunoblotting assays or subjected

to GTPase assays to detect active Rac.

(F) Molt-4 cells were cotransfected with control or i-talin 1 siRNA and wild-type (WT) or constitutively active (DCH+Ac) Vav1 forms and tested in Rac GTPase

assays.
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Figure 2. CXCL12 Stimulates Integrin b1-Talin Association on T Cells

(A and B) Molt-4 and PBL-T cells, or the indicated siRNA transfectants, were incubated with CXCL12 and subjected to immunoprecipitation with control (Ctr)

or anti-b1 followed by immunoblotting with antibodies to the indicated proteins. Numbers below gels indicate values from densitometer analyses.

(C) PBL-T cells were incubated with CCL21 (200 ng/ml) and subjected to immunoprecipitation with anti-Vav1 or anti-b1 and immunoblotting to the stated

proteins.
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substantially less to CXCL12-incubated talin knockdown cells

than control or ni-talin 1 siRNA transfectants (Figures 3C and

3D). Control experiments showed that all transfectants retained

a similar degree of 15/7 mAb or VCAM-1-Fc binding upon expo-

sure to Mn2+, a positive control for integrin affinity regulation

(Figures 3C and 3D). These data indicate that activation of

a4b1 in response to CXCL12 is defective in talin-silenced cells,

which probably accounts for reduced stable T cell tethers and

impaired strengthening of a4b1-VCAM-1 interaction.

ZAP-70 Is Essential for Chemokine-Promoted
Vav1-Talin Dissociation
CXCL12 induces gradual coprecipitation of Vav1 and ZAP-70

concomitant with weakening of Vav1-talin association and

stimulation of Vav1 phosphorylation (Figure 1), so we reasoned

that if dissociation involves ZAP-70 function, perhaps by inhibit-

ing its activity or its expression, we could affect the rate of Vav1-

talin disassembly. Therefore, we incubated T cells with the ZAP-

70 inhibitor piceatannol, or targeted ZAP-70 expression with

siRNA, and we analyzed Vav1-talin complexes in coimmunopre-

cipitation experiments. Whereas cells preincubated with carrier

DMSO or control siRNA transfectants displayed Vav1-talin

dissociation by CXCL12, those exposed to piceatannol or

ZAP-70-silenced cells showed resistance to disassembly of

this complex, which was associated to inhibition by piceatannol

of Vav1 tyrosine phosphorylation without affecting Vav1-ZAP-70

coprecipitation (Figures 4A and 4B). Furthermore, association
956 Immunity 31, 953–964, December 18, 2009 ª2009 Elsevier Inc.
between Vav1 and ZAP-70 required a preformed Vav1-talin

complex, as indicated by the fact that silencing talin prevented

Vav1-ZAP-70 association (Figure 4C). Together with lack of

Vav1 phosphorylation in talin-knockdown cells (Figure 1D), these

results strongly suggest that ZAP-70-dependent Vav1 phos-

phorylation, but not the earlier Vav1-ZAP-70 association, is

required for Vav1 release from talin. Contrary to defective

Vav1-talin dissociation in ZAP-70-silenced cells, talin-b1 or

Vav1-b1 associations stimulated by CXCL12 were not affected

by ZAP-70 knocking down (Figure 4D), indicating that they do

not depend on Vav1-talin disassembly.

Notably, piceatannol-treated or ZAP-70 knockdown T cells

showed a blockade of CXCL12-stimulated adhesion to VCAM-1

(Figure 4E), which arose from defective acquisition of a4b1 active

conformations leading to reduced adhesion strengthening, as

visualized in 15/7 mAb and VCAM-1-Fc binding assays (Fig-

ure 4F; Figure S3). These data indicate that CXCL12 promotes

ZAP-70 binding to Vav1 in Vav1-talin complexes, followed

by stimulation of Vav phosphorylation that leads to reduced

Vav1-talin association, which is essential for progression of

a4b1-mediated T cell adhesion.

PtdIns(4,5)P2-Sequestering Probes Impair Both
Vav1-Talin-b1AssociationsandCellAdhesion toVCAM-1
PtdIns(4,5)P2 stimulates talin binding to the b1 integrin cyto-

plasmic domain (Martel et al., 2001), thereby constituting a

candidate molecule regulating cell adhesion by inside-out



Figure 3. Talin Is Required for Chemokine-Stimulated T Cell Adhesion under Shear Stress Mediated by a4b1

(A and B) Control or talin siRNA transfectants were perfused in flow chambers coated with VCAM-1 immobilized with CXCL12 and analyzed for rolling and

transient or stable cell arrest (A; n = 3) or for cell detachment after increasing shear rates (B; n = 3). Data are presented as indicated in Experimental Procedures.

**Adhesion was significantly inhibited compared to control siRNA transfectant attachment, p < 0.01, or *p < 0.05. DTransient arrest was significantly increased

compared to control siRNA transfectants, p < 0.05.

(C) Molt-4 siRNA transfectants were incubated with or without CXCL12 or Mn2+, followed by incubation with 15/7 or control mAb and analysis by flow cytometry.

(D) siRNA transfectants were preincubated with control or a4 mAb and subsequently incubated in the absence or presence of CXCL12 or Mn2+, before addition of

VCAM-1-Fc. Cell-bound ligand was detected as indicated in Experimental Procedures. Insert numbers represent mean fluorescence intensity units. Represen-

tative results of three independent experiments for (C) and (D) are shown.
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signaling. The pleckstrin homology (PH) domain of phospholi-

pase C-d1 (PLC-d1) binds PtdIns(4,5)P2 with high affinity (Watt

et al., 2002) and has been used as a GFP-fused form to localize

PtdIns(4,5)P2 and to study the role of this phosphoinositide in

cell adhesion (Downes et al., 2005; Martel et al., 2001; Tall

et al., 2000). We expressed PH-PLC-d1-GFP (PH-GFP) in
I

Molt-4 cells, which was predominantly found in the cell

membrane fraction, whereas control GFP was localized in the

cytoplasm (Figure 5A). Interestingly, PH-GFP expression pre-

vented Vav1-talin assembly and talin-b1 binding promoted by

CXCL12 (Figures 5B and 5C). Furthermore, PH-GFP transfec-

tants showed a reduction in chemokine-upregulated attachment
mmunity 31, 953–964, December 18, 2009 ª2009 Elsevier Inc. 957



Figure 4. ZAP-70 Is Required for Chemokine-Promoted Vav1-Talin Dissociation and a4b1-VCAM-1 Interaction

(A) Left: Molt-4 cells preincubated in piceatannol (25 mM, 3 hr) or in carrier DMSO were exposed to CXCL12 and subjected to immunoprecipitation and

immunoblotting. Lysates from cells transfected with ZAP-70 or control siRNA were analyzed by immunoblotting with anti-ZAP-70 (middle) or subjected to

immunoprecipitation and immunoblotting (right).

(B) Piceatannol-treated cells were incubated with CXCL12 and subjected to immunoprecipitation and immunoblotting. Numbers below gels indicate values from

densitometer analyses.

(C and D) Lysates from control, talin 1, or ZAP-70 siRNA transfectants were subjected to immunoprecipitation with Vav1 or b1 mAbs, followed by immunoblotting.

(E) Cells preincubated in piceatannol or DMSO, or control or ZAP-70 siRNA transfectants were tested in adhesion assays to VCAM-1 immobilized with or without

CXCL12. ***Adhesions were significantly inhibited, p < 0.001 or **p < 0.01 (n = 3).

(F) Control or ZAP-70 siRNA transfectants were tested for 15/7 mAb (left) and VCAM-1-Fc (right) binding as stated in the legend for Figure 3.
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Figure 5. Associations between Vav1, Talin, and b1, and Chemokine-Activated Cell Adhesion Mediated by a4b1 Are Impaired by

PtdIns(4,5)P2-Sequestering Probes

(A) Molt-4 cells transfected with PH-PLC-d1-GFP (PH-GFP) or GFP vector alone were subjected to cell fractionation assays, and lysates were analyzed by

immunoblotting with antibodies to GFP, CD45 (marker for membrane fraction), or RhoGDI (marker for cytosolic fraction).

(B and C) Same transfectants were tested by immunoprecipitation with anti-Vav1 or anti-talin and subsequent immunoblotting.

(D) Transfectants were tested in static adhesion assays to VCAM-1 immobilized with or without CXCL12. **Adhesions were significantly upregulated, p < 0.01.

(E) Transfectants were incubated with or without CXCL12 or Mn2+, followed by incubation with 15/7 or control mAb and analysis by flow cytometry. Data represent

mean fluorescence intensity values from three independent experiments.

(F) Transfectants were perfused in flow chambers coated with VCAM-1 immobilized with CXCL12 and analyzed as in Figure 3. ***Adhesion was significantly

inhibited compared to GFP transfectant attachment, p < 0.001. DDTransient arrest was significantly increased compared to GFP transfectants, p < 0.01, or
Dp < 0.05.
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to VCAM-1 under static conditions (Figure 5D), and binding of

15/7 mAb was defective compared to control GFP counterparts,

whereas both transfectants retained similar levels of Mn2+-trig-

gered 15/7 mAb binding (Figure 5E). Control flow cytometry

experiments indicated that expression of a4 and b1 subunits

in PH-GFP transfectants was similar to control GFP counter-

parts (not shown).

Adhesion assays under shear stress revealed that PH-GFP

T cell transfectants had lower stable arrest associated with

increased transient adhesion than did GFP transfectants and
I

showed higher detachment at increasing shear rates (Figure 5F).

To assess whether integrin-independent cellular functions might

be affected by PH-GFP expression, we subjected these trans-

fectants to chemotaxis toward CXCL12 across bare filters. The

results revealed that GFP and PH-GFP transfectants achieved

comparable chemotaxis (Figure S4), indicating that PH-GFP

expression is not exerting global inhibitory effects. Therefore,

PH-GFP-dependent alteration of talin association with Vav1

and b1 correlates with impairment in chemokine-stimulated

T cell adhesion mediated by a4b1, suggesting that PH-GFP
mmunity 31, 953–964, December 18, 2009 ª2009 Elsevier Inc. 959
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sequesters PtdIns(4,5)P2 required for formation of the signaling

platform that is essential for adhesion.

Role of PIPKIg90 in CXCL12-Activated Cell Adhesion
Mediated by a4b1 and in Vav1-Talin-b1 Association
Because PtdIns(4,5)P2 is synthesized by phosphatidylinositol

phosphate kinases (Ling et al., 2006), from which the PIPKIg90

isoform binds to talin (Di Paolo et al., 2002; Ling et al., 2002), we

analyzed whether overexpression of this kinase could restore

the defective adhesion seen in PH-GFP transfectants. Molt-4

cells express endogenous PIPKIg90, which associates with talin

(Figure 6A), but not with Vav1 (not shown). In addition, we found

that extent of PIPKIg90-talin association was not substantially

altered by CXCL12. Transfected PIPKIg90-GFP (KIg90-GFP)

coprecipitated with talin again independently of CXCL12 action,

whereas the mutant KIg90W647F-GFP form showed large reduc-

tion in binding to talin (Figure 6B), as earlier reported with NIH

3T3 cells (Di Paolo et al., 2002). KIg90-GFP and KIg90W647F-

GFP transfectants had a similar degree of CXCL12-activated

attachment to VCAM-1, without further activation relative to

control GFP transfectants (Figures 6C and 6D), suggesting that

PIPKIg90 endogenous activity was sufficient to stimulate adhe-

sion of both KIg90-GFP and KIg90W647F-GFP transfectants.

However, KIg90-GFP, but not the mutant kinase form, was

capable of recovering adhesion that was impaired by PH-GFP co-

transfection (Figures 6C and 6D). Constitutive Vav1-talin associa-

tion and its reduction by CXCL12, as well as stimulation of talin-b1

binding, were not altered in KIg90-GFP or KIg90W647F-GFP trans-

fectants, but again only the former showed recovery of these

dynamic associations that were abolished by PH-GFP expression

(Figures 6E and 6F). Control experiments indicated dominant

activity of KIg90-GFP over PH-GFP in CXCL12-stimulated adhe-

sion to VCAM-1 (Figure S5), suggesting that KIg90-GFP is prob-

ably competing with PH-GFP locally rather than throughout the

cell. Therefore, defective associations between Vav1, talin, and

b1 resulting from PtdIns(4,5)P2 sequestering by PH-GFP results

in failure to activate cell attachment, but local recovery of phos-

phoinositide synthesis by talin-bound KIg90-GFP would allow

correct molecular associations leading to rescue of adhesion.

A recent study showed that a RhoA-phospholipase D1 (PLD1)-

PIPKIg90 signaling module regulates LFA-1 activity in human T

lymphocytes (Bolomini-Vittori et al., 2009). Because PLD1-

derived phosphatidic acid (PA) can regulate PIPKIg90 activity

(Jarquin-Pardo et al., 2007), we studied whether PLD1 could

also control chemokine-stimulated T cell adhesion mediated

by a4b1. We addressed this question by using n-butanol, a

primary alcohol that scavenges PA produced after PLD1 activity

(Brown et al., 2007). Although n-butanol blocked CXCL12-

promoted, LFA-1-dependent Molt-4 adhesion to ICAM-1, in

agreement with previous work (Bolomini-Vittori et al., 2009), it

did not affect adhesion to VCAM-1 (Figure S6A). Control exper-

iments showed that the inactive t-butanol did not alter stimulated

adhesion to ICAM-1. In addition, binding of 15/7 mAb or VCAM-

1-Fc to Molt-4 cells exposed to CXCL12 was not affected by

n-butanol (Figure S6B). These results suggest that, contrary to

LFA-1, stimulation by chemokines of a4b1-dependent T cell

adhesion does not require PLD1 activity.

Finally, CXCL12-stimulated T cell adhesion mediated by a4b1

was not impaired by the PKC inhibitor Gö6850 at concentrations
960 Immunity 31, 953–964, December 18, 2009 ª2009 Elsevier Inc.
up to 2 mM, whereas it blocked PMA-triggered adhesion

(Figure S7A). We did not use higher amounts of Gö6850 because

it might influence the activity of other kinases. Furthermore,

Molt-4 transfectants overexpressing dominant-negative (DN)

PKC a or q isoforms (DN PKC a K368R or DN PKC q K409R)

(Baier-Bitterlich et al., 1996) attached to VCAM-1 at a similar

degree compared to wild-type counterparts upon CXCL12 stim-

ulation (Figure S7B), suggesting that PKC a or q activity is not

needed for chemokine-stimulated T cell adhesion mediated by

a4b1. A previous study reported that Gö6850 exerted partial inhi-

bition of CXCL12-activated T cell adhesion to VCAM-1 at

concentrations of Gö6850 of 10 mM (Ghandour et al., 2007).

The differences in concentrations together with distinct experi-

mental conditions including different time scales might account

for the different results.

DISCUSSION

When T lymphocytes become exposed to chemokines, inside-

out signals are generated that finally impinge on integrin cyto-

plasmic domains, leading to integrin activation and stimulation

of cell adhesion (Ley et al., 2007). Vav1 is a key component of

this signaling because it is required for a4b1 integrin activation

(Garcia-Bernal et al., 2005). Talin directly interacts with b subunit

integrin cytoplasmic domains and regulates integrin activation

(Tadokoro et al., 2003; Wegener et al., 2007), thereby represent-

ing a main candidate for transmission of chemokine signals.

Indeed, earlier work (Manevich et al., 2007) and our present

results demonstrate that talin is essential for chemokine-stimu-

lated T lymphocyte adhesion mediated by a4b1. Here we show

that Vav1 and talin constitutively associate in human resting T

lymphocytes and that they complex into an essential signaling

platform. Thus, when chemokine-triggered signaling converges

on this platform, Vav1 and talin gradually dissociate, represent-

ing a key event for activation of a4b1-mediated cell adhesion,

as shown in the model proposed in Figure S8. The importance

of this platform is based on the fact that silencing Vav1 or talin,

or expressing PtdIns(4,5)P2-sequestering probes, leads to

failure to assemble the complex and to a subsequent blockade

of CXCL12-stimulated T cell attachment to VCAM-1. The molec-

ular properties of Vav1-talin association, whether a direct or

indirect interaction takes place, have yet to be studied.

In addition to associate to Vav1, talin has a constitutive low

level of binding to b1, which requires Vav1 because it is absent

in Vav1-silenced cells. Therefore, a Vav1-talin-b1 complex is

formed in nonstimulated T cells, although association between

Vav1 and b1 is probably weak and occasionally difficult to

detect. Indeed, CXCL12 stimulates Vav1-b1 association with

similar kinetics as activation of talin-b1 binding, suggesting

that increased talin-b1 association might approach and favor co-

precipitation of Vav1 and b1.

PtdIns(4,5)P2 induces conformational changes on talin, lead-

ing to increased talin affinity for b1 integrins (Martel et al.,

2001). PtdIns(4,5)P2 is mainly synthesized by type I phosphatidy-

linositol phosphate kinases (Ling et al., 2006), from which

PIPKIg90 is able to bind to talin, resulting in increased kinase

activity (Di Paolo et al., 2002; Ling et al., 2002). We found that

PIPKIg90 is expressed on T cells and that it associates with talin.

Moreover, overexpressed PIPKIg90-GFP, but not the mutant



Figure 6. Overexpression of PIPKIg90 Overcomes PH-GFP-Dependent Blockade of Associations between Vav1, Talin, and b1, as well as

a4b1-Mediated T Cell Adhesion

(A and B) Untransfected (A) or Molt-4 cells transfected with PIPKIg90-GFP, PIPKIg90W647F-GFP, or GFP vector alone (B) were incubated with CXCL12 and

subsequently subjected to immunoprecipitation with anti-PIPKIg90 or anti-talin and immunoblotting with antibodies to the indicated proteins. Total expression

of PIPKIg90-GFP and PIPKIg90W647F-GFP was assessed by immunoblotting (B, right).

(C and D) Cells were transfected with PIPKIg90-GFP or PIPKIg90W647F-GFP alone or in combination with PH-GFP, and subsequently tested in static adhesion

assays to VCAM-1 immobilized with or without CXCL12 (C), or in flow chamber adhesion assays (D) measuring interacting cells (left) or shear resistance (right).

***Adhesions were significantly increased, p < 0.001, **p < 0.01, or *p < 0.05, or inhibited AAAp < 0.001. DTransient arrest was significantly increased, p < 0.05.

(E and F) Same transfectants were incubated with CXCL12, followed by immunoprecipitation with Vav1 or b1 mAb and immunoblotting with antibodies to the

indicated proteins.
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PIPKIg90W647F-GFP form, bound to talin and rescued talin asso-

ciation with Vav1 and b1 from the PH-GFP inhibitory effects.

Both PIPKIg90 and b1 interact with overlapping sites on the F3

subdomain of the FERM talin domain (Barsukov et al., 2003),

suggesting that binding is mutually exclusive. PIPKIg90 associ-
I

ates with talin but not with Vav1 and CXCL12 does not trigger ta-

lin release from PIPKIg90, so we propose that local production of

PtdIns(4,5)P2 by talin-bound PIPKIg90 promotes assembly and/

or stabilization of nearby Vav1-talin complexes, in addition

to stimulating constitutive talin-b1 association. Constitutive
mmunity 31, 953–964, December 18, 2009 ª2009 Elsevier Inc. 961
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b1-associated talin in nonstimulated T cells might function as the

ground pool for promoting future tethers in a PtdIns(4,5)P2-

dependent manner. An important role for PIPKIg90 has also

been recently proposed during chemokine-stimulated T cell

adhesion mediated by LFA-1 (Bolomini-Vittori et al., 2009).

Increased talin-a4b1 binding and Vav1 dissociation from talin

in response to CXCL12 are required dynamic steps for stimula-

tion of aa4bb1 activation (Figures S8B and S8C). Upregulation

of talin-b1 binding needs preformed Vav1-talin complex, but it

is independent of Vav1 dissociation from talin, suggesting that

it occurs before Vav1-talin disassembly. The molecular events

underlying CXCL12-stimulated talin-b1 binding are not known

but they might include a better access of the complex to

PtdIns(4,5)P2 resulting from chemokine actions. Stimulation by

CXCL12 of talin binding to a4b1 is critical but not sufficient to

fully activate the integrin, because it requires ZAP-70-dependent

subsequent dissociation of Vav1 from talin for further integrin

activation, as detected with 15/7 anti-b1 mAb, a reporter of

a4b1 activation. ZAP-70 is recruited and binds to Vav1 in pre-

formed Vav1-talin complexes upon chemokine stimulation, as

indicated by the fact that it does not occur in talin-silenced cells.

A potential mediator of ZAP-70 recruitment is Lck, which is

a target of CXCL12 signaling (Inngjerdingen et al., 2002) and

tyrosine phosphorylates ZAP-70. Earlier work demonstrated

that ZAP-70 is involved in Vav1 tyrosine phosphorylation in

response to CXCL12 (Ottoson et al., 2001). Our results indicate

that ZAP-70 binding to Vav1-talin complexes leads to Vav1

phosphorylation, which possibly weakens Vav1-talin associa-

tion. Therefore, our data strongly suggest that chemokine-

promoted, ZAP-70-dependent phosphorylation of Vav1 starts

while associated with talin in the signaling platform. This conclu-

sion is based on the following results. Talin silencing or PH-GFP

expression blocks both formation of Vav1-talin complex and

subsequent Vav1 phosphorylation. Furthermore, talin knock-

down impairs Vav1-ZAP-70 binding, and inhibition of ZAP-70

activity abolishes chemokine-dependent Vav1 phosphorylation

associated with blocking of Vav1-talin disassembly. Although

this phosphorylation is difficult to detect at early time points in

Molt-4 cells, results with PBL-T cells together with the above

observations indeed indicate that phosphorylation occurs in

Vav1-talin complexes, and thus, talin functions as a modulator

of Vav1 tyrosine phosphorylation. Together, our data suggest

that Vav1 functions as a constitutive repressive adaptor of talin

that needs to be phosphorylated in order to be released from

a4b1-talin complexes and render talin available for additional

b1 integrin activation. It is noteworthy that the talin pool recently

dissociated from Vav1 after chemokine-ZAP-70 signals may be

involved in a4b1 activation seconds after the first chemokine

signal is transduced, and it could also contribute to strength-

ening of attachment at later times in the adhesion process.

According to the present data, it is therefore unlikely that pre-

existing a4b1 high-affinity molecules, or clustered a4b1 hetero-

dimers after ligand binding that are engaged in outside-in

signaling, could be associated to the Vav1-talin platform.

CXCL12-triggered phosphorylation of Vav1 is essential for

Rac1 activation and progression of a4b1-mediated T cell adhe-

sion (Garcia-Bernal et al., 2005). An additional consequence of

deficient Vav1 phosphorylation in talin-silenced cells was the

impairment of Rac1 activation. The kinetics of Rac1 activation
962 Immunity 31, 953–964, December 18, 2009 ª2009 Elsevier Inc.
in response to CXCL12 indicate that this is a late signaling

event mediating stimulation of a4b1-dependent cell adhesion

strengthening, rather than involvement in a4b1 activation (Figure

S8C). Further adhesion strengthening might come from

CXCL12-stimulated binding of vinculin to talin, which might be

based on promotion of PtdIns(4,5)P2-mediated opening of the

head-tail vinculin interaction (Gilmore and Burridge, 1996) or talin

rod stretching exposing buried vinculin-binding sites (del Rio

et al., 2009).

Monocyte adhesion mediated by a4b1 is also tightly controlled

by chemokines (Chan et al., 2001). The Syk kinase is expressed

in monocytes instead of ZAP-70, which is highly specific of

T cells. Syk interacts with and tyrosine phosphorylates Vav

proteins (Deckert et al., 1996), thus raising the possibility that

a similar pathway of early chemokine-dependent activation of

a4b1 involving Syk-Vav1 might occur in monocytes. It is note-

worthy that phospholipase C mediates a4b1 activation in re-

sponse to chemokines in monocytes (Hyduk et al., 2007).

Thus, although ZAP-70 and Syk could have parallel roles in

Vav activation, the involvement of PLC in a4b1 activation may

be restricted to monocytes.

Paxillin binds to the cytoplasmic domain of a4 (Liu et al., 1999),

modulating adhesion strengthening to a4b1 ligands (Alon et al.,

2005). However, recent data showed that paxillin is not involved

in chemokine-stimulated adhesion mediated by a4b1 (Manevich

et al., 2007). Instead, Rap1 and kindlin-3 control chemokine-

promoted T cell adhesion involving a4b1 and LFA-1 (Moser

et al., 2009; Shimonaka et al., 2003). It will be important to inves-

tigate potential structural and functional cross-talks between

the Vav1-talin signaling platform and Rap1 and kindlin-3 in

chemokine-triggered a4b1-dependent adhesion. Because a4b1

function is fundamental for T lymphocyte arrest on endothelium

after chemokine stimulation at sites of inflammation (Luster et al.,

2005), the present results should contribute to a better definition

of the dynamic associations between components of the

signaling machinery associated to a4b1 activation.

EXPERIMENTAL PROCEDURES

Cells and Antibodies

Human Molt-4 T cells and peripheral blood T lymphocytes were cultured and

prepared as described (Garcia-Bernal et al., 2005). The Consejo Superior de

Investigaciones Cientificas Ethics Committee (Madrid, Spain) approved the

protocols used to obtain and process the human samples. Control P3X63,

a4 HP1/2, b1 TS2/16, and CD45 RP2/21 mAb were gifts from F. Sánchez-

Madrid (Hospital de la Princesa, Madrid, Spain). Polyclonal b1A antibodies

and the b1 mAb 15/7 were gifts from G. Tarone and R. Alon (Turin University,

Italy; Weizmann Institute of Science, Rehovot, Israel, respectively), whereas

PIPKIg90 antibodies were from P. De Camilli (Yale University, New Haven,

CT). CXCR4 mAb was from R&D Systems (Minneapolis, MN); phosphotyro-

sine, Vav1, RhoGDI, and a4 antibodies were from Santa Cruz Biotechnology

(Santa Cruz, CA); anti-Rac1 was from BD Biosciences PharMingen (San Diego,

CA); anti-GFP was from Molecular Probes (Eugene, OR); and anti-vinculin

and anti-talin clone 8D4 were from Sigma-Aldrich (St Louis, MO). Antibodies

to ZAP-70 were from J.M. Rojo (Centro de Investigaciones Biológicas, Madrid,

Spain).

Transfections and RNA Interference

Vector coding for GFP-fused PH domain of PLC-d1 was from M.J. Rebecchi

(State University of New York, NY), whereas PIPKIg90-GFP and PIPKIg90-

W647F-GFP vectors were obtained from P. De Camilli. GFP-fused Vav1

wild-type and the mutant Vav1 DCH+Ac vectors were from X. Bustelo (Centro
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de Investigación del Cáncer, Salamanca, Spain). Three independent siRNA

duplexes against human talin 1 were purchased from Ambion (Austin, TX).

One of them strongly inhibited talin 1 expression and was labeled as i-talin 1

(interfering-talin 1); the other two showed little or no inhibition of talin 1 expres-

sion and they were presented as ni-talin 1 (noninterfering-talin 1) (see

Figure 1C). ZAP-70 siRNA was purchased from Dharmacon (Lafayette, CO),

and control and Vav1 siRNA (Vav1.3) were as reported (Garcia-Bernal et al.,

2005). Vectors and siRNA were nucleofected according to the described

procedure (Garcia-Bernal et al., 2005). Molt-4 or PBL-T siRNA transfectants

were assayed 16 hr or 6 hr posttransfection, respectively.

Cell Adhesion and Soluble Binding Assays

For static cell adhesion to VCAM-1 alone or immobilized with CXCL12 (R&D

Systems), we used the described method (Garcia-Bernal et al., 2005). Extent

of adhesion was quantified with a fluorescence analyzer (for siRNA transfec-

tants) or by flow cytometry (GFP transfectants). For flow chamber adhesion

assays, we followed the reported protocol (Garcia-Bernal et al., 2006). In brief,

transfectants were infused into flow chambers containing coimmobilized

VCAM-1 and CXCL12. Rolling cells firmly attaching for at least 20 s were

expressed as stable arrest, whereas cells attaching for a maximum of 5 s

but resuming rolling were expressed as transient arrest. Otherwise, tethering

cells that did not arrest at any moment were expressed as rolling cells. To eval-

uate shear resistance, cells were allowed to attach, followed by sequential

increases of the flow. The number of cells remaining bound was determined

as the percentage of total adhered cells after the adhesion step. For soluble

binding, transfectants were stimulated for 45 s with CXCL12 or MnCl2 before

adding VCAM-1-Fc, which was detected by flow cytometry (Garcia-Bernal

et al., 2005). Before addition of the 15/7 mAb, cells were exposed to

CXCL12 or MnCl2 for 1 min.

Immunoprecipitation, Immunoblotting, Cell Fractionation,

and GTPase Assays

For immunoprecipitation, Molt-4 (2 3 107) and PBL-T (5 3 107) cells were lysed

with 1% digitonin as reported (Ticchioni et al., 2002). After preclearing with

protein G-sepharose (Amersham Pharmacia Biotech, Uppsala, Sweden),

supernatants were incubated with antibodies, followed by coupling to protein

G-sepharose beads. Proteins were resolved by SDS-PAGE and transferred to

membranes that were sequentially incubated with primary antibodies and with

horseradish peroxidase-conjugated secondary antibodies. Proteins were

visualized with SuperSignal chemiluminiscent substrate (Pierce, Rockford, IL).

For cell fractionation, cells (3 3 106) were incubated at 4�C with 100 ml of hypo-

tonic digitonin buffer, as described (Redondo-Munoz et al., 2006). In brief,

cytosolic and membrane fractions were separated by centrifugation and the

pellet was extracted with NP-40 lysis buffer whereas lysates were clarified

by centrifugation. Protein detection was performed as above. For GTPase

assays, we followed the method described (Garcia-Bernal et al., 2005). In brief,

cells exposed to CXCL12 were lysed and aliquots from extracts were sepa-

rated for total lysate controls and for incubation with GST-PAK-CD fusion

protein (Sander et al., 1998) and glutathione-agarose beads. Bound proteins

were eluted and subjected to immunoblotting via Rac1 antibodies.

Statistical Analyses

Data were analyzed by one-way analysis of variance (ANOVA), followed by

Tukey-Kramer multiple comparisons. In both analyses, the minimum accept-

able level of significance was p < 0.05.

SUPPLEMENTAL DATA

Supplemental Data include eight figures and can be found with this article online

at http://www.cell.com/immunity/supplemental/S1074-7613(09)00499-3.
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