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PERSPECTIVES IN BASIC SCIENCE
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Renal basement membrane components. Basement mem- for the glomerular basement membrane (GBM), a thick-
branes are specialized extracellular matrices found throughout ened basement membrane composed of specialized base-
the body. They surround all epithelia, endothelia, peripheral ment membrane protein isoforms that are critical for itsnerves, muscle cells, and fat cells. They play particularly impor-

filtration function and for maintaining its structure.tant roles in the kidney, as demonstrated by the fact that defects
in renal basement membranes are associated with kidney mal- In this review, I describe the major basement mem-
function. The major components of all basement membranes brane components and discuss their localization in the
are laminin, collagen IV, entactin/nidogen, and sulfated proteo- kidney (and elsewhere, when appropriate) at maturityglycans. Each of these describes a family of related proteins

and during development and their involvement in renalthat assemble with each other in the extracellular space to
disease. In Figure 1, a schematic summary of the distribu-form the basement membrane. Over the last few years, new

basement membrane components that are expressed in the tion pattern of the major basement membrane compo-
kidney have been discovered. Here, the major components and nents in various segments of the nephron and in the
their localization in mature and developing renal basement

collecting duct has been provided. For more detailedmembranes are described. In addition, the phenotypes of base-
analyses of basement membrane assembly, structure, andment membrane component gene mutations, both naturally

occurring and experimental, are discussed, as is the aberrant function, readers should consult both classic and more
deposition of basement membrane proteins in the extracellular up-to-date overviews [1–5]. Here, special attention is
matrix in several renal diseases. paid to how mutations in basement membrane protein

genes have provided valuable insights regarding the
functions of their products in the kidney.

The entire outer surface of each individual nephron
and collecting duct is coated by a basement membrane,
a thin sheet of extracellular matrix composed primarily LAMININ
of laminin, collagen IV, entactin/nidogen, and sulfated What is known about laminin has increased drastically
proteoglycans. Basement membranes are thought to play

over the last 10 years, as various investigators working
roles in filtration, cell adhesion, migration, and differenti-

in different systems on their “own” proteins of interestation. It has become clear over the last decade, with
found themselves thrust into the laminin field upon mo-the identification and characterization of novel basement
lecular cloning and sequencing of the correspondingmembrane components, that all basement membranes
genes. Because of the resulting expansion of the lamininare not alike. This fact has especially important implica-
family, those researchers actively investigating lamininstions for understanding the biology of the kidney. Renal
(as well as those who merely wish to understand them)epithelial basement membranes exhibit a defined molec-
have had to endure not just one, but two changes inular heterogeneity, which corresponds in many ways to
nomenclature, and a third has been proposed. Some re-the segmental nature of the nephron. It is thought that
cent reviews provide excellent discussions of the struc-this molecular heterogeneity in the basement membrane
ture and function of laminins [6–10].may contribute to the functional specificity manifested

Laminin now refers to a still growing family of a, b,by distinct nephron segments. This is most certainly true
and g chains which form abg cruciform or Y-shaped
heterotrimers. Originally, laminin was thought to consist

Key words: extracellular matrix, kidney disease, laminin, collagen, en-
of a single trimer containing chains referred to as A, B1,tactin, glomerular basement membrane, tubular basement membrane.
and B2 [11]. These chains are now called a1, b1, and
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Fig. 1. Schematic drawing of a nephron and
an associated collecting duct, with the compo-
nents of the various basement membranes and
of the mesangial matrix listed. Components
in brackets were not observed in all species
tested, and those in lower case or small font
were observed only at low levels. As discussed
in the text, laminin trimers are predicted based
on immunohistochemical colocalization and
thus could be incorrect. However, they still
correctly describe which individual chains are
present. Abbreviations are: Lam, laminin; Col,
collagen; A, agrin; P, perlecan; B, bamacan;
GBM, glomerular basement membrane; MM,
mesangial matrix; BC, Bowman’s capsule; PT,
proximal tubule; LH, loop of Henle; DT, distal
tubule; CD, collecting duct.

ture regarding the biochemistry of laminin and its effects as any kind of proof that the chains are actually coassem-
bled to form the predicted trimers. Biochemical isolationon cells in culture deals with studies of laminin-1.

All laminin chains are evolutionarily related to each of pure trimers and identification of the constituent chains
are the recognized and respected methods. However, fewother, but they can be easily divided into a, b, and g

subfamilies based on sequence and domain arrangement pure laminin trimers have actually been isolated from kid-
ney, although there are some notable exceptions [20]. In[8]. In the current laminin nomenclature, laminin hetero-

trimers are named with Arabic numerals in essentially any event, the successful isolation and purification of a
laminin trimer from a tissue with basement membranes astheir order of discovery [12]. There are currently 12

reported heterotrimers assembled from five a, three b, heterogeneous as those found in the kidney will not reveal
anything about that trimer’s exact origin, so some predic-and three g chains (Table 1).

Most laminin chains are found in the kidney, as deter- tions will still have to be made. Therefore, for the sake of
simplicity, laminin trimers are referred to rather than tomined by immunohistochemical assays. It is formally possi-

ble to predict which laminin trimers are present in specific specific chains in cases in which trimer composition can be
reasonably inferred from immunohistochemical colocaliza-basement membranes by colocalizing a, b, and g chains

immunohistochemically, but this is not currently viewed tion studies, with the caveat that these predictions may be
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Table 1. Laminin trimer subunit composition genes causes Herlitz’s junctional epidermolysis bullosa,
a severe skin-blistering disease [35–39], but significantTrimer Subunits Reference
renal abnormalities associated with these mutations haveLaminin-1 a1b1g1 [13]

Laminin-2 a2b1g1 [14] not been reported.
Laminin-3 a1b2g1 Laminins-8 and -9 are essentially absent from adult
Laminin-4 a2b2g1 [14]

kidney, but they could play a role in nephrogenesis.Laminin-5 a3b3g2 [15]
Laminin-6 a3b1g1 [16] Laminin-8 is evident in the nascent epithelial basement
Laminin-7 a3b2g1 [17] membrane of the renal vesicle shortly after the mesen-
Laminin-8 a4b1g1 [18]

chyme to epithelium transition. Laminin-9 appears to beLaminin-9 a4b2g1 [18]
Laminin-10 a5b1g1 [14, 18] present in the immature GBM, but the a4 chain gradually
Laminin-11 a5b2g1 [14, 18] disappears as the glomerulus matures [18, 29].
Laminin-12 a2b1g3 [19]

Laminin-10 is likely the most abundant laminin trimer
in the mature kidney. It is found throughout the length
of all tubular and collecting duct basement membranes
[18, 22]. Laminin-11, on the other hand, is highly re-

incorrect. However, they still describe which individual
stricted in the kidney; it is found in only the GBM and

chains are present in particular basement membranes.
arteriolar (endothelial and vascular smooth muscle) base-

Despite its ease of isolation, widespread use, and long ment membranes. Laminin-11 is also the only trimer that
history, laminin-1 is somewhat rare overall in basement has been shown to be important for proper renal func-
membranes in vivo. However, the kidney is special in that tion. This was demonstrated by targeted mutation of the
it is a major site of laminin-1 accumulation at all stages laminin b2 chain gene. Mice lacking b2 exhibit massive
of development. In adult kidney, laminin-1 is found in proteinuria beginning at approximately seven days of
proximal tubular basement membranes (TBMs) in the age and die at three to five weeks of age. Ultrastructur-
cortex and in loops of Henle basement membranes in ally, the GBM appears normal, but the podocyte foot
the medulla [21, 22]. In nephron development, laminin-1 processes are fused. At the molecular level, the laminin
is thought to play an important role because antibodies

b1 chain substitutes for b2 in the basement membrane,
to the a1 chain inhibit the mesenchyme to epithelium but b1 is apparently functionally inadequate [40].
transition that occurs at the onset of nephrogenesis [23]. It is important to note here that based on in situ hybrid-

Laminin-2 is found in a subset of TBMs at low levels ization studies, the existence of laminin-11 in the GBM
[18, 22]. In mice and humans, it is also found in the has been questioned. This is because a5 and b2 RNAs
mesangial matrix, although in rat, this matrix contains were not detected inside the same cells [30], and laminin
laminin-4 instead [18, 22, 24, 25]. It is unclear what role trimers assemble inside cells. However, no laminin chains
(if any) laminins-2 and -4 might have in the kidney, as other than a5, b2, and g1 have been detected in the
mutations in the a2 chain, which cause muscular dystro- mature GBM [18, 21, 22, 24, 25, 41]. The existence of
phy in humans and mice [26–28], do not appear to cause as yet unreported a and b chains in the GBM or the
any renal defects. biochemical isolation of laminin-11 from glomeruli could

Laminin-3 is not apparent in the kidney, except perhaps resolve this important issue.
very transiently in the GBM during development [29]. We have generated mice with a targeted mutation in
However, its very existence has been questioned [30], the laminin a5 chain gene, and these mice therefore lack
and the only biochemical studies historically viewed as both laminins-10 and -11. The mutants die in utero at
identifying laminin-3 used monoclonal antibodies thought embryonic day 14 to embryonic day 17 and show defects
to recognize a1 [14], but which actually recognize a5 [31]. in neural tube closure, digit septation, and maturation
Deposition of laminins-5, -6, and -7 (the a3-containing of the placenta [42]. We are still in the midst of character-
laminins) has not been examined in great detail in the izing internal organ defects, some of which are quite
kidney, so it is difficult to make predictions about which subtle, but it is evident that some embryos have small
of these trimers are present. In addition, there are some or absent kidneys, suggesting an important role for the
conflicting results in the literature. In adult kidney, we laminin a5 chain in kidney development (J.H.M., manu-
found a3 to be associated with the basement membrane script in preparation).
underlying the epithelium of the renal papilla, but it was The existence of laminin-12 was only recently reported
not detectable in glomerular, tubular, or collecting duct [19]. Laminin-12 contains the novel g3 chain. Although
basement membranes [18]. Although we detected little g3 has been shown to be expressed in the kidney by
a3 in developing kidney, others reported the presence Northern blot analysis and by in situ hybridization [19,
of a3 in ureteric buds [32]. In addition, laminin g2 was 43], it has not yet been localized to specific basement
found in collecting duct as well as in proximal and distal membranes or elsewhere in the kidney by immunohisto-

chemical methods.TBMs [33, 34]. Mutation in any of the laminin-5 subunit
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COLLAGEN IV 65] and an analogous disease in dogs and knockout mice
[66–68]. It has also been shown that a point mutation inCollagen IV, like laminin, is a ubiquitous component
the a4 chain gene is responsible for autosomal dominantof basement membranes. The collagen IV network, which
benign familial hematuria (also known as thin GBMis proposed to have a structure similar to chicken wire,
disease) [69], and autosomal dominant Alport syndromeis composed of approximately 180 kDa a chains. There
has been linked to the juxtaposed a3 and a4 chain genesare six genetically distinct a chains (a1 through a6),
[70]. These findings are extremely important becauseand all have similar domain structures: There is a short
they show that mutations in type IV collagen chain genesnoncollagenous NH2-terminal domain called 7S, a long
can be responsible for the full spectrum of Alport syn-central collagenous domain composed of interrupted
drome-like GBM abnormalities and the observed modesGly-X-Y amino acid triplet repeats, and a COOH-termi-
of inheritance.nal noncollagenous domain called NC1. a chains assem-

A particularly interesting aspect of Alport syndromeble to form triple helical rod-like trimers, and these tri-
is that in most cases, the a3 through a5(IV) chains aremers organize into a network via 7S:7S and NC1:NC1
all absent from the GBM, despite the fact that only onetrimer:trimer interactions. Timpl, Paulsson, Hudson et
of the three chain genes harbors a mutation. However,al, Kuhn, and Pihlajaniemi further discuss this structure
this is perfectly consistent with the hypothesis that these

[1, 2, 44–47].
chains are all part of the same collagen IV network in

The a1 and a2 collagen IV chains assemble in a 2:1 the GBM and that this network requires all three chains
ratio to form the most widely deposited collagen IV for proper assembly [45, 60, 71]. Alternatively, Thorner
network, and, like laminin-1, these chains are a major et al found that a mutation of the a5 chain gene in dog
part of the EHS tumor extracellular matrix [48]. a1 and resulted in a reduction in mRNA levels for a3 and a4,
a2(IV) are essentially ubiquitous in basement mem- suggesting a transcriptional mechanism to explain their
branes, with the notable exceptions of the synaptic base- absence [72]. However, such a mechanism does not seem
ment membrane at the neuromuscular junction and, at applicable in the mouse and human diseases, where post-
least in rodents, the GBM. These very specialized base- transcriptional mechanisms seem more likely [67, 68, 73].
ment membranes instead contain the a3 through a5(IV) In the absence of the a3 through a5(IV) chains, the
chains [24, 25, 49–52]. [a6(IV) deposition has not yet a1 and a2(IV) chains substitute to form the GBM [59,
been assessed at synapses, but it is absent from the 66–68, 72, 74–76]. This basement membrane appears nor-
GBM.] Exactly how the a3 through a6(IV) chains assem- mal early in life but becomes damaged over time, and
ble stoichiometrically into a trimer has been difficult to this correlates with the delayed onset, progressive nature
ascertain. However, it is clear that there are networks of Alport syndrome. In an attempt to identify potential
in basement membranes that contain a3 through a6(IV) mechanisms for this damage, it was shown that bulk
that are separate from the a1/a2(IV) network [53–55]. collagen IV isolated from human Alport kidney [con-

As far as the nephron is concerned, the pattern of taining primarily a1 and a2(IV) chains] was more suscep-
tible to endoproteolysis than a similar isolate from nor-collagen IV chain deposition varies somewhat from spe-
mal kidney [containing a1 through a6(IV)], suggestingcies to species. In human GBM, the a3 through a5(IV)
that Alport GBM is slowly damaged by endogenous pro-chains predominate, but lower levels of a1 and a2(IV)
teases that have little effect on normal GBM [77].are present and have been localized by immunoelectron

The collagen a3(IV) chain is also of keen interestmicroscopy to the subendothelial aspect of the GBM [56].
because it harbors the auto-antigen associated with Good-In rodents, little if any a1 and a2(IV) can be detected
pasture syndrome, an autoimmune disorder consistingin the GBM [25], but they are part of the mesangial
of glomerulonephritis, pulmonary hemorrhage, and anti-matrix in all species tested. A perhaps more significant
GBM antibody formation [44]. The Goodpasture antigendifference among species is that in the tubular portion
is contained in the NC1 domain of a3 [78–82]. In aof the nephron, the a3 through a6(IV) chains are con-
phenomenon related to Goodpasture syndrome, a mi-fined to distal TBMs in humans, but a3 through a5(IV)
nority of Alport patients with a renal transplant developare present additionally in proximal TBMs in rodents
the renal manifestations of Goodpasture syndrome inand cow. Along with these chains, a1 and a2(IV) are
the allograft. This has been shown to result from thefound ubiquitously in TBMs. In Bowman’s capsular base-
production of alloantibodies to the NC1 domain of the

ment membrane, the major chains are a1, a2, a5, and
a3 and/or the a5(IV) chains that are present in the trans-

a6(IV) [25, 57–59]. planted kidney but not in the native kidneys [51, 83–87].
The importance of the a3 through a5(IV) chains to

the proper function of the GBM is underscored by the
ENTACTIN/NIDOGENeffects of mutations in the genes that encode these chains

[60–62]. The most severe mutations cause Alport syn- The component referred to both as entactin and nido-
gen (En/Nd) is an elongated approximately 150 kDadrome (hereditary glomerulonephritis) in humans [63–
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molecule containing three globular domains separated tion. These functions might not have been revealed in
studies of this agrin mutant because the mutation onlyby two linear segments. It serves as a link between the

laminin and collagen IV networks in all basement mem- affects a portion of the protein, and a form of agrin still
accumulates in basement membranes [101]. However,branes [1, 4, 88]. En/Nd binds tightly to laminin via the

laminin g1 chain short arm [89] and also binds to collagen ongoing studies of new knockout mice with a null muta-
tion in the agrin gene have not revealed any obviousIV; it does not bind well to laminin-5, which contains the

g2 chain [90]. Recently, homologues of En/Nd have been defects in the kidney, but because the mice die at birth,
renal function in the absence of agrin cannot be rigor-identified in both mouse and human, and these are called

entactin-2 [91] and nidogen-2 [92], respectively. These ously addressed (R.W. Burgess and J.R. Sanes, personal
communication).molecules are apparently orthologous and exhibit a wide

pattern of expression quite similar to that of En/Nd. How- Bamacan (basement membrane chondroitin sulfate
proteoglycan) exhibits a wide distribution in basementever, antibodies to nidogen-2 show that although it is

ubiquitous in renal basement membranes (like En/Nd), membranes [102], and in the kidney, bamacan is detected
in the mesangial matrix and in virtually all basementit has a more restricted distribution pattern in skeletal

and cardiac muscle [92]. In terms of the kidney, it remains membranes except the GBM [103]. Interestingly, bama-
can is a component of the GBM during kidney develop-to be determined whether these molecules have specific

functions there or whether they have general roles in for- ment, but it is gradually eliminated by maturity [104].
Thus, it may play some as yet unknown role in glomerulo-mation and/or maintenance of all basement membranes.
genesis.

Collagen XVIII, which has recently been shown to be
BASEMENT MEMBRANE PROTEOGLYCANS

a HSPG, is a widely deposited component of basement
Proteoglycans, which are found in all basement mem- membranes, including those found associated with renal

branes, consist of protein cores with attached heparan tubules and glomeruli (abstract; Naito et al, J Am Soc
sulfate, chondroitin sulfate, and/or dermatan sulfate side Nephrol 19:523A, 1998) [105, 106]. Although the func-
chains [93, 94]. These long carbohydrate chains impart tion of collagen XVIII in basement membranes is un-
a negative charge to the molecule and contribute to the known, it will certainly be the subject of intense atten-
negative charge of basement membranes. This is thought tion, as the C-terminal fragment of the a1(XVIII) chain
to be especially important to the charge-selective ultra- is endostatin, an angiogenesis inhibitor that can induce
filtration properties of the GBM [95], so proteoglycans tumor regression [107].
have historically been of significant interest in terms of
their pattern of deposition in the kidney. In addition,

DEVELOPMENTAL TRANSITIONSproteoglycans are thought to stabilize the basement
membrane by binding laminin, collagen IV, and En/Nd. Basement membrane dynamics are an important as-

pect of kidney development. A recent review detailed theBecause it is a component of the EHS tumor matrix,
perlecan is the best studied heparan sulfate proteoglycan transitions in basement membrane component deposition

that occur during kidney development [29], so only a lim-(HSPG) and was once considered essentially ubiquitous
in basement membranes [93, 96]. However, recent stud- ited discussion of transitions in collagen IV and laminin

chains are presented here. Kidney development involvesies have identified novel proteoglycans that supplement
and/or replace perlecan in some basement membranes. mesenchyme to epithelium transformations and complex

morphological changes [108, 109]. Coincident with theseFor example, agrin is a HSPG [97] that is present through-
out the width of the mature GBM, whereas perlecan is morphological changes are molecular transitions in the

basement membrane components that are found in vari-restricted to the subendothelial aspect of the GBM [40,
98, 99]. Perlecan is ubiquitous in the other renal base- ous parts of the developing nephron. This is most dramat-

ically demonstrated by changes in the composition ofment membranes, whereas lower levels of agrin are de-
tected in some TBMs [100]. the developing GBM, in terms of the laminin and type

IV collagen isoforms that are deposited there. For exam-Based on studies of mice with a targeted mutation in
agrin, the only known function of agrin is to signal the ple, at the S-shaped stage of nephrogenesis, the future

GBM contains the a1 and a2 chains of collagen IV andclustering of preexisting acetylcholine receptors on the
surface of muscle fibers. Agrin mutant mice die at or laminins-1, -8, and -10. At the capillary loop stage, the

laminin b2 chain appears, probably as a constituent ofshortly before birth because of paralysis caused by the
absence of any significant neuromuscular transmission laminin-11, and the collagen a3 through a5(IV) chains

are deposited and are thought to form a network sepa-[101]. No other abnormalities have been detected. Given
its signaling and general physical properties, agrin might rate from the one composed of the a1 and a2(IV) chains.

As the glomerulus matures, the a1/a2(IV) network isalso have a role in kidney development, in basement
membrane structural integrity, or in glomerular filtra- diminished and becomes confined to the subendothelial
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aspect of the GBM in humans and is virtually eliminated concentration may induce expression of transforming
in rodents and dog. Laminin-11 continues to be deposited growth factor-b, which, in turn, induces extracellular ma-
into the GBM, and the other laminins are gradually trix gene expression and an increase in matrix deposition.
eliminated by an unknown mechanism [18, 22, 25, 52, Alternatively, the high glucose may cause glycation of
77, 110–112]. matrix proteins, which, in turn, decreases their turnover.

As discussed earlier in this article, in Alport syndrome, In addition to the observed increases, glomerular HSPG
mutations in one of the COL4A3-COL4A5 chain genes levels have been shown to be reduced in diabetic ne-
prevents accumulation of all three of these chains. As a phropathy, and this may contribute to proteinuria by
consequence, the collagen IV chain transition cannot affecting the charge-selective barrier of the GBM.
occur in the GBM, and this leads to a retention of the In a different glomerulopathy, membranous nephrop-
a1 and a2(IV) chains throughout the width of the GBM. athy, the GBM “spikes” stained with antibodies to the
Although these chains function properly early in life, collagen a3 through a5(IV) chains, entactin/nidogen, lam-
they eventually fail to maintain the proper structure and inin, and HSPG [117, 118]. In the interstitium of patients
function of the GBM, leading to the delayed-onset glo- with chronic renal disease, abnormal deposition of colla-
merulonephritis characteristic of Alport syndrome. Like- gens IV, V, and VI, laminin, and HSPG was observed,
wise, the laminin transitions that occur in the developing and the extent of their deposition correlated with the
GBM have been experimentally prevented by mutating severity of the histologic lesions [119]. Finally, the lami-
the laminin b2 chain gene in mice [40, 113]. Because nin b2 and collagen a3(IV) chains were found to be
the b1 to b2 transition cannot occur, these mice retain aberrantly deposited in proximal TBMs of transplanted
functionally inadequate b1-containing laminins in their kidneys undergoing chronic rejection. Importantly, allo-
GBMs. Although these GBMs appear ultrastructurally grafts exhibiting pathology characteristic of cyclosporine
normal, they do not function properly [40]. These results toxicity did not have such deposits. This suggests that the
show that laminin b2 has an important role in the GBM fibroses observed in chronic rejection and cyclosporine
that cannot be compensated for by the related b1 chain. toxicity have different underlying mechanisms [120].

BASEMENT MEMBRANE COMPONENTS CONCLUSIONS
AND DISEASE

Basement membranes are of undisputed importance
Abnormal deposition of basement membrane and to the function of the kidney. Their diverse constituent

other extracellular matrix components has been ob-
proteins not only contribute to their formation and func-

served in several disease states that, in contrast to Alport
tion, but some components have also been shown to be

syndrome, do not involve defects in genes encoding ma-
involved in glomerular and tubulointerstitial diseases,trix components. In these cases, the matrix abnormalities
either because of mutation or increased deposition inare secondary to an underlying pathophysiology that
the extracellular matrix. With the impending completionmay or may not be well understood. An extensive discus-
of the sequencing of the human genome, new basementsion of this complex topic is beyond the scope of this
membrane components will likely be identified. A morereview, but a few examples of abnormal matrix accumu-
complete understanding of the biology of all basementlation in renal disease are worth mentioning. Further-
membrane components will hopefully lead to better toolsmore, given the recent discoveries of novel basement
and improved approaches for investigating the causes ofmembrane components, it is important that they also be
renal disease and its progression and for preventing orassayed for abnormal deposition in the diverse array of
attenuating the progressive nature of renal disease.human kidney diseases.

One prominent example is the aberrant accumulation Reprint requests to Jeffrey H. Miner, Ph.D., Renal Division Box
8126, Washington University School of Medicine, 660 South Euclidof matrix molecules in diabetic nephropathy [114–116].
Avenue, St. Louis, Missouri 63110, USA.Thickening of the GBM and expansion of the mesangial
E-mail: minerj@thalamus.wustl.edumatrix characterize the diffuse glomerulosclerosis associ-

ated with the onset of albuminuria in insulin-dependent
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