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Remaining structures at the N- and C-terminal regions of
alpha-synuclein accurately elucidated by amide-proton exchange
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a b s t r a c t

Alpha-synuclein is analyzed in physiological conditions by CLEANEX-PM methodology, in which the
amide-proton exchange can be monitored at millisecond scale. The relationship between kex and
[OH]� is confirmed as a linear correlation with slope 1, indicating EX2 regime. There are significant
residual structures at the N- and C-terminal regions. The structure at the C-terminal region is more
stable than that of the N-terminal region. The middle part including NAC region is not completely
protected. The data acquired at various pH and mixing time conditions followed by linear fitting give
accurate information about residual structures.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Parkinson disease (PD) is caused by the conversion of the
soluble alpha-synuclein [1] protein to the insoluble oligomer and
fibril in the Lewy bodies [2]. The analysis of the formation of the
insoluble species of alpha-synuclein is really important to rescue
the patient with PD [3]. The information about the structure of
the soluble form is used to develop the new drug.

The advantage using NMR is to enable us to analyze the solution
dynamical structure of the protein. Generally, the dynamical struc-
ture has been analyzed by using many different NMR techniques,
including paramagnetic relaxation enhancement (PRE) [4], residual
dipolar coupling (RDC) [5], and R2 relaxation dispersion experi-
ments [6]. The intrinsically disordered protein has only limited
structure by itself in the physiological condition, and the rigid
structure can be formed upon binding to the other protein in some
cases [6]. The human alpha-synuclein has only the limited and
residual structure in a monomer at the neutral pH [7]. However,
this structure might be a key structure related to the core
formation of the amyloid fibril. The consensus idea based on the
experiments with the soluble and monomeric alpha-synuclein is
that either N-terminal or C-terminal, or both regions prevent the
amyloid formation by forming the long-range interaction [8]. The
middle domains (non-A-beta-amyloid component (NAC) region)
[9] in each molecule take the beta-structure and are interacted
each other inter-molecularly in the fibril [10].

The hydrogen/deuterium (HD) exchange is very powerful strat-
egy for the estimate of the formation of the hydrogen bond as well
as the ratio of the area buried [11]. However, there are some lim-
itations for the actual experiments of the unfolded proteins: (1)
the reaction of the HD exchange is done so quickly compared to
the time duration for the data acquisition that it is difficult to dis-
tinguish between the completely unfolded and remaining struc-
tural regions in case of the intrinsically disordered protein. (2) It
is the time-consuming step to start the HD exchange reaction
either by the addition of the deuterium buffer to the lyophilized
powder of protein, or by the buffer change with the gel filtration
column.

On the other hand, in case of the clean chemical exchange-
phase modulated (CLEANEX-PM) experiment we just need to
prepare the regular NMR sample [12–14]: namely, the deuterium
buffer for the initiation of the exchange between bulk water proton
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Fig. 1. (A) The ratio of the proton exchange between the amide in protein and bulk
water during the different duration (20 ms (+), 50 ms (d), and 100 ms (h))
monitored by the CLEANEX-PM experiments. (B) The exponential fitting to the ratio
of the kinetic exchange of the each residue at T81–A90. (C) The linear fitting to the
relationship between the solution pH and kex. The kex values were calculated based
on the exponential fitting in Fig. 1B.
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and amide proton in protein is not required. The CLEANEX-PM
experiment, which enables us to have many different data points,
is more suitable to estimate the differences of the weak protection
between the residual structure and completely unfolded structure.
Here, the CLEANEX-PM data has been acquired at the various pH
and mixing time conditions followed by the linear fittings to get
detail information about the residual structure.

2. Materials and methods

2.1. Protein preparation

Recombinant human alpha-synuclein was expressed by the
cell-free expression system in RIKEN. The 15N-labeled and 15N,
13C double-labeled protein were produced and purified by the
affinity and ion-exchange columns. All NMR samples were dis-
solved in the deuterated 20 mM Tris–HCl buffer with 100 mM NaCl
and 10% D2O at the various pHs. The Centriprep 10 cartridge (Ami-
con) was used for the buffer change prior to the NMR experiments.

2.2. NMR spectroscopy

Backbone resonance assignments of the alpha-synuclein at pH 7
and 15 �C were made using 3D HNCO, HNCACO, HNCA, and HNC-
OCA [15]. 3D HNCACB were also collected for the determination
of the amino acid type. The CLEANEX-PM experiments were
performed at 15 �C, at various pH and exchange duration times.
The CLEANEX-PM transverse relaxation optimized spectroscopy
(TROSY) heteronuclear single quantum coherence (HSQC) experi-
ments [13] were performed with mixing times (0.005, 0.010,
0.015, 0.02, 0.05, 0.1 s). Spectra were collected with an increment
delay of 3 s. As a reference, TROSY HSQC without the mixing times
was collected. All spectra were recorded on Bruker Avance 600
spectrometer equipped with a triple-resonance CryoProbe and
processed using NMRPipe [16].

3. Results

3.1. Two different strategies of the process of the exchange of amide-
proton

Fig. 1A shows the ratio of the exchange of each amide-proton in
the amino-acid sequence during the different duration time. As
expected, the longer incubation time (100 ms) allowed more
exchange between the water proton and amide proton than the
shorter time (20 ms). At a glance, the residues at the C-terminal
region between the 100 and 140 show the less ratio of the
exchange compared to the other region.

We processed the data in two different manners from here. In
one process, the kex values of each residue at the different pHs
were calculated first, and then the calculation of the extrapolated
values (A0) of the kex based on the different pH data was performed
(Figs. 1 and 2). In another process, first the midpoint of the sigmoid
curve was calculated based on the transition of the exchange ratio
of each residue as a function of pH, and then the calculation of the
extrapolated midpoint values (B0) of the transition was performed
with the different duration times (Figs. 3 and 4B).

3.2. kex and A0

Fig. 1B shows the transition of the ratio of the exchange during
the various incubation times including 5, 10, 15, 20, 50, and 100 ms
at pH 7. The exponential fittings were performed with the kinetic
data at each residue.
Fig. 1C reveals that the data of the kex values of each amino-acid
at the four different pHs (6.5, 7.0, 7.5, and 8.0) are fitted by the
formula (1) shown below.



Fig. 2. The protection factors as a function of the residue number. The values of the
kinetic constants were normalized using the intrinsic exchange rate of each amino-
acid in the sequence. (A) The protection factors calculated based on one data set at
pH 7.0. (B) The protection factors based on the calculated value (A0). Four data sets
were used for the linear fitting as shown in Fig. 1C in order to calculate the A0. The
residue numbers are shown whose values of the protection factor are more than
five and E131. Error bars are included.

Fig. 3. (A) The relationship between the solution pH and exchange ratio. The
Henderson–Hasselbalch equation [32] was used for the fitting of the sigmoid
curves. (B) The midpoints of the transition of the exchange ratio for each residue
were calculated in Fig. 3A, and plotted in Fig. 3B as a function of the time duration
for the exchange. The linear fittings were performed between the time duration and
midpoint, and the B0 values were calculated.
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Y ¼ A0 � ð10ðXÞÞ ð1Þ

The linear fitting indicated the rate constant (kex) is 1:1 propor-
tional to [OH�] with the slope 1 [14]. Our experimental data from
CLEANEX-PM was confirmed to be in the EX2 regime. Secondly, we
calculated the extrapolated values (A0) based on the fitting, which
is the value at pH 0. Finally, the protection factor was calculated
using the intrinsic exchange rate [17] to normalize the each A0 va-
lue of the different type of amino-acid.

3.3. Protection factor derived from kex at pH 7

Fig. 2A represents the calculated result of the protection factors
only using the data at pH 7.0. Namely, it was calculated only based
on the kex values in Fig. 1B. The most values are near one, which
shows no protection. However, some errors are not negligible in
this figure, and it is somehow difficult to conclude which region
has the protection or not.

3.4. Protection factor from A0

On the other hand, the Fig. 2B data is more informational and
convincing, in which the three extra data points at pH 6.5, 7.5,
and 8.0 are included in addition to those at pH 7.0, and the A0 value
for the protection calculation was acquired after the linear fitting
(Fig. 1C). The residues at the N-terminal region including G7,
Q24, and A29 can be more protected than the others. In addition,
the residues at the C-terminal region including the F94, A107,
N122, M127, and Y133 are significantly more protected.

3.5. Midpoint of the transition of the pH and B0 (second strategy)

For the second strategy, the Fig. 3A was shown as the example
of the pH dependency on the exchange ratio regarding T81–A90. As
expected, the relationship between two parameters (pH and ex-
change ratio) indicates the sigmoid-curve [18]. Fig. 3A is the
100 ms-exchange experiment by CLEANEX-PM at the different
pHs including 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0. When the reaction is
faster, the reaction curve shifts to the left side. Therefore, the mid-
point of the transition in the sigmoid curve can be another probe
for the estimation of the reaction kinetics (Fig. 3A).

Next, Fig. 3B indicates the relationship between the exchange
mixing time and the midpoint of the transition of pH. The data at
six different durations including 5, 10, 15, 20, 50, and 100 ms were
plotted against the calculated midpoint values of the transition.



Fig. 4. (A) The protection factors calculated by one data set at 100-ms duration, and
(B) the factors calculated by the B0 values based on the six data sets at 5, 10, 15, 20,
50, and 100 ms duration. The residue numbers, whose protection factors are more
than five and E130 and E131, were shown. Two types of plots (s) and (+) are used.
The data (open circle) points are reliable, whose values are almost identical
between the Figs. 2B and 4B with the different calculations as shown below. Error
bars are indicated. (C) The difference of the data by the different calculation
strategies. The ratios of the protection factors (Fig. 4B/2B) were shown. The
residues, whose values are more than two or less than 0.5, are shown as the residue
numbers, and shown as (+) in Fig. 4B. The regions, where two strategies give the
consistent values, are shown by the bars on the top of the figure.
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The linear relationship of the duration time for the exchange was
confirmed against the midpoint of the pH transition as shown in
an Eq. (2).

Y ¼ B0� logðXÞ ð2Þ

The extrapolated value of the midpoint of pH from the different
mixing times, which we call as B0 (mixing time vs. pH midpoint) at
1 ms, is a similar parameter to the A0 (pH vs. kex) (Fig. 3B). But, the
pH in Fig. 1C is inversely proportional to the pH midpoint in Fig. 3A
and B. Therefore, it was shown that the duration time and [OH�]
have a linier relationship with the slope-1 (Fig. 3B). The values of
the midpoints were fitted to be inversely proportional to the dura-
tion time, indicating the EX2 regime, again. The intrinsic exchange
ratio was used for the further calculation of the protection factor
[18] (Fig. 4A and B).

In this case, the t1/2 (time for the half-reaction) is calculated
from the intrinsic exchange rate (kex,int) at pH 7 for example. Next,
the pH1/2,int, which needs the half reaction of the unprotected pro-
ton for 1 ms duration, can be calculated by the formula (3) as
shown below.

10ð7�pH1=2;intÞ ¼ 1=t1=2;pH7 ð3Þ

The protection factor (PF) is calculated with the formula (4).

PF ¼ 10ððpH1=2;obsÞ=pH1=2;intÞ ð4Þ

where the pH1/2,obs is B0.
For instance, the expected curves for unprotected amides are

shown as a function of pHs in the paper [18]. In case of 100-ms
duration, the pH1/2,int for 100 ms was calculated.

3.6. Protection factor from the midpoint of pH at 100 ms

Fig. 4A reveals the protection factor as a function of the residue
number in case of only 100 ms exchange duration. This calculation
was done based on the midpoint of the pH transition using only
Fig. 3A data. The residues at both N-terminus and particularly
C-terminal region seem to be more protected than the others.
Interestingly, there are three different types of residues at the
N-terminal domain: some residues are significantly more pro-
tected (M5, A11, and Q24) than others. The other residues seem
to be not protected at all, and take the random coil structure even
at the same region based on the protection factor data. However,
the C-terminal residues at 120–140 seem to be significantly more
protected than the residues in any other regions. Particularly, the
residues (A107, V118, N122, A124, Y125, M127, and D135) indicate
higher protection, whose protection factors are more than five.
The data in Fig. 4A is basically similar to those of Fig. 2B. However,
the data in Fig. 4A is much clearer to show the remaining structure
especially at the C-terminal region.

3.7. Protection factor from B0

Fig. 4B shows the protection factors based on the calculated B0
values from the Fig. 3B. Fig. 4B seems to be similar to the Fig. 4A.
But additionally some residues are more significantly protected
(K6, G7, K12, A27, and A29) at the N-terminal region, and (F94,
K97, A102, I112, D121, Y136, and E137) at the C-terminal region
in Fig. 4B. Interestingly, as seen in Fig. 4A, most of all C-terminal
residues (A107–A140) have the higher protection factors corre-
sponding to the stable residual structure rather than the random
coil structure. Only E130 and E131 are somewhat less protected
compared with the other C-terminal residues. On the other hand,
at the N-terminal region, some residues have the higher protection
factors, whereas the others have the lower values. By contrast, all
residues at the NAC region (K60–V95) are monotonously less
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protected than the residues in the other regions including the N-
and C- terminal regions. The residues at A30–T59 are also not pro-
tected at all.

4. Discussion

4.1. Advantage of the data collection at different pHs

For the analysis of the remaining structure of a-synuclein, the
data of CLEANEX-PM was collected at different pHs and exchange
durations. There are two benefits for collecting data at different
pHs: (1) the EX2 regime can be confirmed as a function of pH
[14], and (2) the second strategy (Sections 3.5–3.7) using the mid-
point of pH transition can be also employed including the calcula-
tion of B0. Namely, the different processes can be tested and
compared using the data at different pHs as shown below.

However, it is not clear why the extrapolation results gave the
better data (Fig. 2A and B). It is probably simply due to the better
statistics with four data sets instead of one data set.

4.2. Comparison of two data derived from the different processes

To check the reliability of the data (Fig. 4C), the protection
factors in Fig. 4B were divided by the protection factors in
Fig. 2B. The ratio at all residues should be close to one. It is because
the data are identical, but two procedures of calculations are
different. The ratios regarding some residues were not close to
one, indicating significant errors included in the calculations. In
Fig. 4C, the residues, whose ratio is more two or less 0.5, have been
shown as the residue numbers. Interestingly, the border region be-
tween the N-terminal and NAC domains (H50, A53, T54, E57, and
K58) and another border region between the NAC and the
C-terminal (K97, K102, N103, and G106) domains give the different
values between two procedures. The residues at the C-terminal
region including D135 and E139 also indicate the different values.
Namely, these significant errors in the calculations seem to be ob-
served specific to the border area, probably because the protection
factor can be more sensitive to the change of the environments
especially at the border area. In addition, T72, V74, and T75, which
are located in the middle of the NAC region, show the different ten-
dency between two calculated values. Interestingly, K10, A11, K12,
K21, A27 and E35 also indicate the large differences, which are
located in the N-terminal domain.

4.3. EX2 and EX1 regimes

We also had checked the EX2 regime [19] in the CLEANEX-PM
experiments to monitor the exchange kinetics as functions of the
pHs and mixing time durations [14]. In Fig. 1B, most residues indi-
cate the pattern for the EX2 regime with the pH dependency. How-
ever, some of the EX1 regime may be contributed to this reaction
especially in the experiments at the higher pH. It is the reason
why the value of the final ratio at the longer time seems to be less
than one in some cases. Nevertheless, the CLEANEX-PM experi-
ment is a powerful tool to identify the remaining structure in the
intrinsically disordered protein.

4.4. Residual structure monitored by CLEANEX-PM

The studies on the alpha-synuclein by the HD exchange and
CLEANEX-PM had been conducted by another group [11]. The sig-
nificant protection had been only observed at the C-terminal
regions in alpha-synuclein. In addition, they clearly showed that
the protection was effected by the ion-strength, indicating the
existence of the electrostatic interaction between the regions.
Our results using the fast amide proton exchange by CLEANEX-
PM with the fitting procedure showed that the residual structure
also exists at the N-terminal part of alpha-synuclein as well as
the C-terminal region by collecting the various data points as func-
tions of pH and exchange time durations.

Taking together with the preceding study [11], the protection
for the exchange at the C-terminal region is at least partially due
to the existence of the negative charge cluster composed of aspar-
tic acid and glutamic acid. The exchange is hindered by the nega-
tive charge itself. On the other hand, it is possible that the
protection at the C-terminal region is related to the existence of
the N-terminal region. Because the N-terminal region is also pro-
tected which contains the several positive charge residues, it can
be concluded that the electrostatic interaction between the nega-
tive and positive charges contributes to the long-range interaction,
leading to the formation of the residual structure at the N- and
C-terminal regions. The long-range interaction at both ends in
the alpha-synuclein is also supported by the PRE [8] and chemical
shift [20] experiments.

4.5. Residual structure in alpha-synuclein

The remaining structure of alpha-synuclein at the neutral pH
had been studied based on the chemical shift and relaxation
studies [5,21]. It was concluded that the rapid fibrillation of the al-
pha-synuclein was due to the loss of the long-range contact by the
comparison studies on the synuclein analogues. The spin-labeling
experiment (PRE) is one of the most powerful techniques particu-
larly to figure out the remaining long-range interaction. The long-
range interaction between the C-terminal domain and 30–100 re-
gion had been indicated at the neutral pH [22]. At lower pH, the
PRE studies also showed that the C-terminal region is in more
proximity to the NAC region, and probably has lower interactions
with the N-terminal region [23]. The protection at the C-terminal
region is supposed to be related to the local negative cluster, as
well as the long-range interaction as shown above. We are not sure
about the reason why the protection is not observed at the NAC re-
gion, although the long-range contact exists between the NAC re-
gion and the C-terminal region [8,22]. Regarding the long-range
contact, the PRE studies give more direct evidence compared to
the protection studies.

More recently, the intermolecular interaction of the head-to-tail
style and tail-to-tail style had been clearly shown at pH 6 and pH
2.5, respectively [4]. Our data is basically consistent with the data
derived from the PRE studies. We demonstrated that the N-termi-
nal (M5–A29) and C-terminal (F94–E137) regions are protected at
the neutral pH, and therefore two regions probably interact each
other. The CLEANEX-PM experiment is also quite useful, because
the advantage is that the data is completely free from any modifi-
cation of the protein.

The N-terminal end had been shown to be essential to bind to
the membrane [24] and apt to be helical structure [25]. It is consis-
tent with our results of the fast exchange (Fig. 4B). The region
M5–G7 is highly protected.

4.6. Residual structure in the mutants and amyloid formation

The critical area in the sequence for the amyloid formation of
the alpha-synuclein is already known by the biological studies.
The responsible area for the amyloid formation including A30P
[26], E46K [27], and A53T [28] corresponds to the A30–T64 region,
and is almost disordered to the same degree as the NAC region
(N65–A90) in our studies. Each mutation might lead to a higher
protection at this area to prevent the formation of the stable inter-
acted structure between the N- and C-terminal domains. However,
in case of E46K, it was reported that the mutation enhances the
contact between the C- and N-terminals to the opposite way [29].
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4.7. Differences of the structure between monomer in solution and
amyloid

The location of the beta-sheet structure in the amyloid fibril had
been shown by the quenched HD exchange [10,30], solid state NMR
[10], and the combination of the solution NMR for the unfolded state
and solid-state NMR [31]. The beta-sheet regions were composed of
L38–K43, V48–N65, V70–Q79, and G86–K97 in the fibril of the
alpha-synuclein [30]. Interestingly, all of above-mentioned area is
not protected at all in solution in our experiment (Fig. 4B). We have
concluded that the beta-sheet area in the fibril takes completely
unfolded structure in the soluble monomer. There must be the dra-
matic structural changes between the physiological soluble condi-
tion and amyloid insoluble condition.
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