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Spatial  effects  such  as  cell  shape  have  very  often  been  considered  negligible  in models  of cellular  path-
ways,  and many  existing  simulation  infrastructures  do not  take such  effects  into  consideration.  Recent
experimental  results  are  reversing  this  judgement  by showing  that very  small  spatial  variations  can  make
a big  difference  in the  fate of a cell.  This  is  particularly  the  case  when  considering  eukaryotic  cells,  which
have  a complex  physical  structure  and  many  subtle  control  mechanisms,  but  bacteria  are  also  interesting
for the huge  variation  in  shape  both  between  species  and  in  different  phases  of their lifecycle.

In  this  work  we  perform  simulations  that  measure  the  effect  of  three  common  bacterial  shapes  on
the  behaviour  of  model  cellular  pathways.  To perform  these  experiments  we develop  ReDi-Cell,  a highly
scalable  GPGPU  cell  simulation  infrastructure  for the  modelling  of  cellular  pathways  in  spatially  detailed
environments.  ReDi-Cell  is validated  against  known-good  simulations,  prior  to  its  use in  new  work.  We
then  use  ReDi-Cell  to conduct  novel  experiments  that  demonstrate  the effect  that  three  common  bacterial

shapes  (Cocci,  Bacilli  and  Spirilli)  have  on the  behaviour  of model  cellular  pathways.  Pathway  wavefront
shape,  pathway  concentration  gradients,  and  chemical  species  distribution  are  measured  in  the three
different  shapes.  We also quantify  the  impact  of  internal  cellular  clutter  on the  same  pathways.  Through
this  work  we  show  that  variations  in  the  shape  or configuration  of  these  common  cell  shapes  alter  model
cell  behaviour.

© 2016  The  Authors.  Published  by  Elsevier  Ireland  Ltd.  This  is an open  access  article  under  the  CC  BY
. Introduction

The intricate networks of complementary physiological pro-
esses that compose cellular behaviour have been modelled in a
umber of studies (Loew and Schaff, 2001; Karr et al., 2012). These
rocesses are broadly known as cellular pathways. Some of this
odelling is reaction-only (Orton et al., 2005; Gong et al., 2010;

en Breems et al., 2014) and thus is not able to simulate the spa-
ially heterogeneous nature of the cell. Whilst reaction-only models
f cellular pathways have provided great insight there is scope
o improve the representation of the cell by capturing the cell
nvironment’s spatial details, such as cell geometry and organelle

lacement. Further work is required to understand the influence
f spatial organisation on cellular processes (Kholodenko, 2009).
eaction–diffusion systems can extend these reaction only models

Abbreviations: ReDi-Cell, reaction–diffusion cell; GPGPU, general purpose com-
uting on graphical processing units.
∗ Corresponding author.
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by allowing the chemical species and organelles to be accurately
positioned in the cytoplasm and by permitting the virtual cell to
take its natural shape. In silico studies allow a degree of measure-
ment and control that is impossible in vitro.

In this work we  simulate the effect of cell shape and
organelle placement on abstracted cellular pathways modelled by
reaction–diffusion systems (Sections 3 and 4). While the simula-
tions performed in this work are computationally expensive, the
numerical methods chosen are inherently suited to massively par-
allel hardware such as a GPU.

We develop ReDi-Cell (Section 5), a performant and scalable
GPGPU cell simulation environment suitable for this work. ReDi-
Cell is validated against VCell, a known-good cell simulation
(Sections 6.1–6.3). While VCell would allow us to perform the
same experiments as those undertaken in this work they would
take much longer to perform due to VCell’s inability to run on a
GPGPU. In the validation experiments performed in this work we
find that ReDi-Cell is approximately 24×  faster than VCell. VCell

is also closed source, making it impossible to port it to any other
architecture.

We then perform novel experiments that examine the effect that
three common cell shapes (Cocci, Bacilli and Spirilli)  have on model

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

dx.doi.org/10.1016/j.biosystems.2016.05.012
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2016.05.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:f.sayyid@warwick.ac.uk
mailto:s.kalvala@warwick.ac.uk
dx.doi.org/10.1016/j.biosystems.2016.05.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


5 ioSyst

c
t
i
(
o

o
i
a
f

2

t
a
d

2

n
o
k
a
t
n
m

m
t
d
t
s
b
a
t

t
i
d
o
i
m
r
M
i
f

2

h
s
g
g
2
b
(
A

o
a
c
s
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ellular pathways. Pathway wavefront shape, pathway concentra-
ion gradients, and chemical species distribution are measured
n three different shapes in order to quantify spatial sensitivity
Sections 6.5 and 6.6). Finally, the dampening potential of clutter
n intracellular signalling pathways is explored (Section 6.7).

By performing these simulations we seek to quantify the effect
f three common cell shapes, and internal clutter on the dynam-
cs of virtual cellular pathways. Numerical simulation allows us to
nswer these questions when it would be challenging to find closed
orm analytical solutions.

. Background

In this section we review the related biological background for
his work. Cellular dynamics and the evidence (both experimental
nd theoretical) for their spatially sensitive nature are discussed in
etail.

.1. Cellular dynamics

Cells receive and process signals related to internal and exter-
al changes in the environment, such as infection, stress, injury,
r nutrient need. This behaviour is achieved through mechanisms
nown as biological pathways, a series of internal molecular inter-
ctions that lead to a specific change in the cell. The effects of
hese interactions vary widely, but can include the production of a
ew chemical species, such as a fat or a protein, or generating cell
ovement.
Most cellular pathways fall into one of two  categories:

etabolic, or signal transduction. Metabolic pathways involve the
ransformation of one species into another, either to be used imme-
iately, to be stored, or to initiate other metabolic pathways. Signal
ransduction pathways amplify extracellular signals received at
urface receptors and propagate them through the cell. Cellular
ehaviour is also controlled by gene regulatory networks, which
re responsible for turning genes on and off. This switching governs
he production of proteins.

It has become clear that these reaction pathways are highly spa-
ially organized within the cell, with many reactions occurring only
n specific regions (Srere, 2000). For example, within signal trans-
uction pathways, spatial gradients and microdomains of signalling
ccur due to localised chemical species, such as phosphatases. As
ntracellular distances increase, active signalling messengers are

ore likely to become deactivated on their journey to the cell inte-
ior (Meyers et al., 2006). The dose response curves of the yeast
itogen Activated Protein Kinase (MAPK) cascade differ depend-

ng upon both the geometry of the cell and the subtle change in
eedback parameters (Zhao et al., 2011).

.2. Examples of spatially sensitive systems

Spatially dependent behaviours, including pathway dynamics,
ave been documented in both computational and experimental
tudies. Flourescence resonance energy transfer-based technolo-
ies have been used to find concentration gradients and have
iven experimental proof of spatially sensitive processes (Meyers,
012). Concentration gradients have been found to exist in a num-
er of systems including phosphorylated stathmin/oncoprotein 18
Niethammer et al., 2004), MAPK Fus3 (Maeder et al., 2007), and
urora B kinase (Fuller et al., 2008).

Some cellular processes cannot take place without the existence

f concentration gradients. The propagation of an action potential
long the axon is an extreme example of a system dependent on
oncentration gradients. As the potential moves along the axon,
patial gradients in membrane potential and currents are formed.
ems 145 (2016) 53–66

The interaction between the gradients and the ion channels con-
tinue to force the wave along the axon. The behaviour of this system
is intrinsically spatially dependant, and nonspatial models might
fail to capture the propagation.

Calcium wave and spark models are another example of a sys-
tem that is spatially sensitive. Calcium waves are necessary for
the continuation of development in some eggs after fertilization.
Recent experimental and theoretical work suggests that calcium
wave propagation may  be affected by the positioning of intracel-
lular calcium release channels (Chen et al., 2014). In silico Myocyte
behaviour has also been demonstrated to depend on spatial orga-
nisation (Weng et al., 1999). Spatial models have given us the first
mechanistic insights, showing micro-domain dynamics to be a sys-
tem level property arising from the complex interacting behaviour
of the cell (Neves and Iyengar, 2009).

The translocation of Nuclear Factor �B (or NF-�B) in tumor
cells is also spatially sensitive. It has been demonstrated experi-
mentally that cell shape and micro-environmental factors regulate
the translocation of NF-�B, which may  in turn play a key role in
the development and therefore potentially the treatment of some
forms of cancer (Dolcet et al., 2005).

2.3. Mechanisms for spatial sensitivity

It is established in Section 2.2 that many cellular processes
are spatially sensitive. In order to model these spatially sensitive
systems in an appropriate way we  review which major physical
properties of the cell environment cause this sensitivity.

2.3.1. Concentration gradients
Some models of cell biology implicitly assume that chemi-

cal species concentrations are homogeneously distributed across
space (Orton et al., 2005; Gong et al., 2010; den Breems et al.,
2014). However when the reaction space becomes relatively large
and chemically connected to other systems, concentrations may
become heterogeneous, giving rise to concentration gradients. It
has become clear that these spatial gradients exist in a wide range
of cellular processes (Howard, 2006).

In addition to reactant locality, reaction locality, such as activa-
tion at the membrane and deactivation in the cytoplasm, gives rise
to concentration gradients. If one reaction depends on chemicals
produced at two  different locations then those two chemicals must
diffuse to the reaction site for the reaction to occur. As the concen-
tration of the diffusing chemical is less at the reaction site than at
the production site, a gradient is formed. In some cases concentra-
tion gradients can be attributed to the different diffusivities of the
same protein in active and inactive forms (Kholodenko, 2009). Con-
centration gradients change reaction system dynamics. Nonspatial
models make the simplifying assumption that concentration is uni-
form through the cell and therefore might predict incorrect values
of the diffusing chemical.

2.3.2. Cell shape
Living cells take on a variety of different sizes and shapes leading

to different surface-to-volume ratios and intracellular distances.
The shape of the cell has been found to affect cellular process
dynamics (Soh et al., 2010). Cells without uniform shape have been
shown to alter reaction pathways in interesting ways; the neuron
axon is an extreme example, dendrites and soma all exhibit geom-
etry that can lead to chemical reactions preferentially occurring
in different parts of the cell (Meyers et al., 2006; Kholodenko and

Kolch, 2008). This may  cause different travel times for the same
chemical at different phases in the cell’s life cycle, as the cell grows.
If a change in travel time for a particular chemical is not accounted
for, chemical gradients predicted by the model may  be incorrect.
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.3.3. Cellular sub-structure
The geometry and position of substructures within the cell can

lay an important role in the spatial restriction of chemical reac-
ions and hence physiological processes. Some chemical processes
re only able to take place within specific organelles. For example,
rganelles such as endosomes and the Golgi apparatus play a crit-
cal role in regulating signal transmission to the nucleus (Hwang
t al., 2014). Precise positioning of these organelles within the cell
s of central importance to effective cell regulation (Hwang et al.,
014). It follows that accurate representation of organelle posi-
ion and geometry is necessary for the correctness of an in silico
xperiment.

. Spatial mathematical models of cellular systems

Having established the importance of spatial organisation in
ellular systems we now review mathematical models capable of
epresenting the heterogeneous nature of the cell environment.

.1. Reaction–diffusion models

Reactions have been modelled by various techniques includ-
ng ordinary differential equations (ODE) and stochastic processes.
owever diffusion, an intrinsic physical phenomenon some-

imes remains neglected. The aforementioned spatial factors
Section 2) would not be important if chemicals did not move.
eaction–diffusion models extend the basic reaction model by
dding a diffusive transport system that represents the movement
f chemicals.

Some cells have evolved to take advantage of diffusion’s low
nergy requirement for chemical transport (Soh et al., 2010). It is
mportant to note that when the diffusion process is much faster
han the reaction process the effect of diffusion on the dynamics of
he system is decreased. In these cases reaction-only systems may
e sufficient. We  therefore limit discussions of reaction–diffusion
ystems to those in which both reaction and diffusion have a signif-
cant impact on the dynamics of the system. Due to high chemical
oncentrations, metabolic pathways such as glycolysis rely on dif-
usion as a means of transport across the cytoplasm. In addition,
ny process involving cytoplasmic/nuclear shuttling may  also be
ffected by diffusion.

Reaction–diffusion systems can model complex chemical con-
gurations which are impossible with reaction-only systems. A
ystem of reacting and diffusing chemicals can thus evolve from an
nitial, relatively uniform state to a complex state (Turing, 1990).
or example, Gray–Scott systems have been shown to be capable
f mimicking biological pattern formation (Maini et al., 1997).

Such studies demonstrate that reaction–diffusion systems are
ntrinsically spatial and so they are well suited to modelling the
rbitrarily shaped boundaries of in silico representations of cells.
he ability to vary the diffusion coefficients in reaction–diffusion
odels can be used to computationally identify parameters that

re likely to reproduce experimentally observed microdomain
ehaviour.

There are many different ways to construct a reaction–diffusion
ystem. A reaction–diffusion model can be formulated by adding

 diffusive component to an already tested reaction model. The
hree most common reaction systems are the Stochastic Simula-
ion Algorithm (SSA), the Chemical Langevine Equation (CLE) and
he Reaction Rate Equation (RRE). The SSA can be made spatial by
iscretising the reacting space and treating a diffusive event, from

ne spatial quanta to another, as a reaction (Erban et al., 2016). The
LE can be modified by adding a term for white Gaussian noise to
imulate diffusion (Andrews et al., 2009). The RRE is subject to per-
aps the most recognisable modification; by incorporating Fick’s
ems 145 (2016) 53–66 55

law of diffusion RRE systems become Partial Differential Equation-
Ordinary Differential Equation (PDE-ODE) hybrid systems.

Finally, there exist particle based reaction–diffusion models.
These systems represent particles explicitly, with physical laws,
such as Molecular Dynamics (MD) or Brownian Dynamics (BD)
(Plimpton and Slepoy, 2005) (or approximations thereof) dictating
the evolution of the system.

3.2. PDE based reaction–diffusion models

PDE-ODE based reaction–diffusion systems are a suitable tech-
nique to simulate reaction–diffusion models inside cells (Neves
and Iyengar, 2009). PDE-ODE reaction–diffusion models allow the
formation of spatial gradients by permitting the localisation of
chemical species and the description of cell substructure morphol-
ogy within easily expressible boundary conditions.

As the PDE-ODE model extends the ODE model, comparisons
are often made between the two; ODEs describe the change in con-
centration of a set of species over time, whereas PDE-ODE models
describe the change in concentration of a set of species over time
and space (Eungdamrong and Iyengar, 2004). PDE-ODE models take
account of the diffusive processes that occur within a system as
well as changes in concentration due to reaction. Mathematically,
we describe a PDE-ODE reaction–diffusion system as:

∂u

∂t
= D∇2u + R(u) (1)

or alternatively:

∂u

∂t
= D

(
∂2

u

∂x2
+ ∂2

u

∂y2
+ ∂2

u

∂z2

)
+ R(u) (2)

where u is the concentration, D is the diffusion coefficient and R is
a system of reactions described by a set of ODEs. The PDEs (∇u) and
ODEs (R(u)) require different solving techniques.

In real systems there can be many different chemical species.
As the number of species and the number of reactions increases
the computational cost for solving the PDE-ODE reaction–diffusion
equation also increases. This is due to the increase in the
number of terms in R(u) and the number of times the PDE  equa-
tion is solved. PDE reaction–diffusion simulations (like all other
reaction–diffusion simulation techniques) are not without their
drawbacks, requiring diffusion coefficients and initial reactant
concentrations, and locations, which are sometimes unknown. The-
oretical diffusion coefficients can be calculated from molecular
weights and, with the advent of fluorescence recovery after pho-
tobleaching experiments, it is possible to directly measure the
diffusion coefficients of cellular components.

3.3. Solving PDE-ODE reaction–diffusion models

Eq. (1) has both an ODE component and a PDE component. In this
section we describe methods for computationally solving these two
types of differential equation. Hyperbolic PDEs such as the diffusion
equation can be solved in many different ways. Two of the most
common are the explicit finite difference method (FDM) and the
implicit Crank–Nicholson method. FDM is bound by the condition
that �t/�x2 < 0.5 (Smith, 1985); that is, the size of the time step
(�t) divided by the square of the smallest measurable distance (�x)
must be less than 0.5.

The choice of �x  is important as it dictates the level of detail that
can be extracted from our simulation. If one wanted to model a cel-

lular process at the level of an organelle, then dx would need to be
at least as small as the smallest dimension of the organelle in ques-
tion. The explicit condition would then require that the time step
be made even smaller, which increases runtime of the simulation.
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The alternative to using an explicit scheme is an implicit scheme,
here the reaction–diffusion system is solved as a set of simulta-
eous equations by a linear solver. Implicit methods do not have to
bserve the same time/space ratio requirement, however it is more
hallenging to implement boundary conditions (such as complex
ell and organelle shapes) in an implicit regime.

ODE systems, such as the RRE component of the
eaction–diffusion equation, have enjoyed utility across a range of
isciplines and as such many robust solving techniques exist. Most
umerical methods for solving ODEs approximate the solution
y numerical integration. Reaction–diffusion systems generally
ake the form of first-order initial value problems (IVP). These can
eadily be solved using Runge–Kutta (RK) methods.

.4. Summary

We  have seen in the literature that a wide variety of cel-
ular processes are affected by cell shape, organelle placement
nd initial concentration of chemical species. It is also seen that
eaction–diffusion systems can accurately model these processes’
patial dynamics.

. A representative abstraction for cellular pathways

Cellular pathways can involve large numbers of chemical species
aking part in complex networks of chemical reactions. Often, ini-
ial conditions and parameters in these networks are unknown. In
his work we are not interested in a specific reaction system, only
he effect of the cell environment on a general reaction system.
undamentally all cell processes are chemical, therefore we can
odel any physiological process (at an abstract level) with a gen-

ral reaction system coupled with diffusion. Therefore we simulate
bstracted cellular pathways that obviate the need for unknown
arameters, yet are representative of a simple cellular pathway. We
elect the Lotka–Volterra (Lotka, 1925; Volterra, 1927) (LV) reaction
odel as the abstraction.
The LV model was independently proposed to explain two

ifferent behaviours; the increase in the number of predatory
sh in the Adriatic and a theoretical, oscillating, chemical reac-
ion. The model is the simplest example of a predator-prey
ystem (McLaughlin and Roughgarden, 1991) and its properties
ave been widely studied in the literature. In a predator-prey
ystem, agents compete with each other and the environment
o survive. In general, predator-prey systems describe competitive
nteractions. The nature of the agents vary by application but com-

only take the form of carnivores and herbivores, or as in this case
hemical species.

The LV system is described as:

dx

dt
= x(  ̨ −  ̌ ∗ y) (3)

dy

dt
= −y(� − ı ∗ x) (4)

here x is the number of prey, y is the number of predators, dx/dt
nd dy/dt are the rates of growth of the populations. ˛, ˇ, � , ı are
arameters describing the interactions of the two species.

LV systems have previously been coupled with diffusion (LVD)
Hastings, 1978). Such investigations are normally concerned with
he mathematical properties of the system, such as existence of
olutions or stability analysis, rather than simulation or application.
VD simulations have occasionally been used to model ecological

igration; putting the LV system back in its traditional setting. An

xample of such a study can be seen in (Modelica, 2014).
If it is found that the spatial organisation of the virtual cell alters

he dynamics of a simple model cellular pathway (LVD), then it
Fig. 1. Common bacterial shapes reproduced from (Bacterial Shapes, 2014).

is highly likely that more complex pathways will have more pro-
nounced effects.

5. ReDi-Cell

In Section 2 we saw that the cells display heterogeneous inter-
nal and external geometries, and that accurate representation of
cell structure is crucial to simulation. Section 3 demonstrates that
whilst computationally expensive, reaction–diffusion systems are
highly suited to modelling cellular pathways in complex geome-
tries. Finally Section 4 demonstrates that if we are interested in
the effect of cell geometry on a general reaction system that com-
plex pathways can be replaced with abstractions, such as the LVD
system.

These conclusions suggest that cellular pathways simu-
lations should be capable of representing abstractions of
reaction–diffusion systems inside complex cell geometry in a per-
formant manner. In this section we  present ReDi-Cell, a novel
simulation package that fulfils these requirements. The software
is available at http://github.com/FaizSayyid/ReDi-Cell.

5.1. Description

ReDi-Cell is a 3D high performance GPGPU reaction–diffusion
simulation of arbitrary cellular geometry. It is the first GPGPU
PDE-ODE cell simulation infrastructure specifically designed for
investigating the effect of realistic cell shapes and internal
components. ReDi-Cell is designed to take cellular morphol-
ogy information, store it as voxels, and numerically solve a
reaction–diffusion system representing a physiological processes.
Each voxel represents a quanta on a regularly spaced, three-
dimensional grid.

Systems incorporating PDEs are more challenging to imple-
ment, with few large scale projects available for use (Neves and
Iyengar, 2009). VCell (Loew and Schaff, 2001) is one such simu-
lation package. VCell includes a variety of simulation techniques
not limited to PDE simulation and has been used in a variety of
published models.

ReDi-Cell, as a high performance GPGPU solver tailor made for
PDE-ODE systems, scales to far more detailed problems over more
time steps than are feasible with the available VCell interface. The
user may  dedicate as many GPUs as they have available to the task;
spatial decomposition occurs over all available GPUs.

5.2. Realistic cell shapes

Cells and organelles appear in nature in a variety of shapes, as
shown in Fig. 1. ReDi-Cell simulates these bacterial shapes by dis-
cretising arbitrary cellular morphology, described as 3D models,
into voxels. Fig. 2 demonstrates how geometric primitives have
been used to create 3D models to approximate three of the common

cell shapes in Fig. 1. Where shapes cannot be described exactly by
a single primitive, composites are formed. For example, Bacilli are
best approximated by capsules; they can be built as a composite of
a cylinder and two hemispheres.

http://github.com/FaizSayyid/ReDi-Cell
http://github.com/FaizSayyid/ReDi-Cell
http://github.com/FaizSayyid/ReDi-Cell
http://github.com/FaizSayyid/ReDi-Cell
http://github.com/FaizSayyid/ReDi-Cell
http://github.com/FaizSayyid/ReDi-Cell
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Fig. 2. Approximations to cell shapes in Fig. 1 using the ViSiT software toolkit.

Fig. 3. Cutaway of a ReDi-Cell model Coccus showing the membrane, cytoplasm
and nucleus produced using VisIt. The different colours represent different biolog-
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Fig. 4. 2D slice through the centre of the ReDi-Cell model of a Coccus depicted in
cal  material types which have different simulation properties. These simulation
roperties allow for differing rates of reaction and diffusion in those areas of the
ell.

.3. Cellular sub-components

ReDi-Cell allows internal cell components, such as organelles, to
e represented. Each component’s permeability can be altered by
hanging the diffusion parameter in that location in the cell. This
llows ReDi-Cell components to mimic  their biological analogues
n the cell, with different reagents having different responses to dif-
erent cell materials. For instance, some reagents are confined to the
lasma membrane, where as others might be able to pass through.

n Fig. 5 we see a chemical diffusing in a crowded cellular envi-
onment with cellular sub-components. The chemical, incapable of
iffusing through the impermeable membrane of the cell nucleus

s forced to diffuse around the clutter that represents an organelle.
ig. 3 shows an “onion-peel” decomposition of an example simu-
ation environment. This illustrates the way ReDi-Cell components
re capable of capturing the internal structure of the cell. Fig. 4
hows an example of a 2D slice through the same ReDi-Cell envi-
onment. Fig. 4 includes grid lines to show the way  in which space
as been discretised. The level of discretisation is configurable.

It is unlikely that all sub-cellular structures will have homoge-
eous morphology; organelles are of many different shapes and
izes. ReDi-Cell allows internal cell component shapes to be repre-
ented as accurately as the external cell shape. We  see an example
f this capability in Fig. 6, which shows spherical and cylindrical
haped organelles inside a Spirillum.
.4. Simulation

Simulation execution in ReDi-Cell is divided into time steps.
 single time step consists of a diffusion process and a
Fig. 3. This figure illustrates the way  in which VisIt can change perspective to show
specific regions of interest. 2D slice results are used extensively in this work.

reaction process. First, the ODEs representing the reactions are
solved. This process occurs over each part of the cell in which dif-
fusion is allowed to take place. Then the 3D PDE diffusion equation
is solved for each reagent, again in the appropriate parts of the
cell.

There are many different ways of solving PDEs and ODEs, as dis-
cussed in Section 3.3. We choose to solve PDEs using an explicit
FDM algorithm (Smith, 1985) and ODEs using a Runge–Kutta 4
(RK4) algorithm (Press et al., 2002). The FDM algorithm is a com-
mon  method of simulating reaction–diffusion and is used in many
modern studies of such systems (Blagodatski et al., 2015). RK4 is an
equally popular method of solving ODEs and despite enjoying less
success on stiff systems is suitable for all of the systems that we
use in this work. We  show this to be true by verifying all simulated
reaction systems against MATLAB’s explicit ode45 solver. Matlab
documentation suggests that if ode45 solves the system promptly
then the system is not stiff (Matlab, 2016). In addition to this we
verify our results against Mathematica’s Wolfram Alpha ODE solver
and it is once again demonstrated that a non-stiff solver is suitable
for the systems used in this work.

ReDi-Cell uses Visualise It (VisIt) for visualisation, a popular open
source tool for visualizing and analyzing data (Childs et al., 2012).
VisIt is capable of displaying 2D slices of 3D shapes. In Figs. 4 and 6
we see examples of such cutaway cells. ReDi-Cell has two  different
implementations of the reaction–diffusion process, a parallel algo-
rithm executed on the GPU and a serial algorithm executed on the
CPU for when a compatible GPU is not available.

5.5. Implementation

Reaction–diffusion simulation methods (including the explicit
FDM and RK4 algorithms implemented in ReDi-Cell) are extremely

resource intensive. High performance computing architectures,
such as the GPGPU targeted Nvidia CUDA (CUDA, 2014), enable the
parallelisation of simulations, allowing faster run times and more
detailed models. ReDi-Cell includes a CUDA GPU  implementation of
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Fig. 5. 2D slice, produced using VisIt, through the centre of a ReDi-Cell model of
a  Bacillus, with a model chemical diffusing around a central organelle. This image
shows how different materials can have different simulation properties and how
VisIt can render materials in different ways. Instead of the solid material represen-
tations found in Fig. 4 and Fig. 3 only the boundaries of materials are drawn allowing
both material type and chemical concentration to be rendered in the same image.
The boundaries of the different biological materials are represented by the different
coloured lines. Red represents the boundary of a central organelle, light green line
the  internal boundary of the cell and purple the external boundary of the cell. The
boundaries in the image are overlayed on to a heatmap of chemical concentration,
this is the reason that most of the image is dark blue (representing 0 concentra-
tion). The multi-coloured circle to the left of the central organelle shows the only
non-zero concentration portion of the heatmap; a reacting and diffusing circle of
chemical concentration that has not reached the internal boundary. At t = 0 this
chemical was a single point of concentration. The different materials have different
simulation properties as discussed in Fig. 3. In this case the material enclosed by
the  red boundary does not permit reaction or diffusion to occur and the chemical is
halted at the membrane. The membrane permits both reaction and diffusion but the
rate  of diffusion is halved. Beyond the purple line representing the external bound-
ary of the membrane only diffusion processes are permitted. (For interpretation of
reference to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. 2D slice through the centre of a ReDi-Cell model Spirillum produced using
VisIt. The boundaries in this image are solid as in Figs. 3 and 4 and so no concen-
trations are visible. This figure demonstrates different shaped organelles inside the
model cell. Green represents the cytoplasm in which chemicals are permitted to
r
d

t
r
i
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e
t

Table 1
Description of validation experiments. The parameters used in the experiments are
shown in the captions of the figures depicting experimental results.

System Reaction equation Initial conditions

Diffusion A:10

A  + B → C dA
dt

= −k ∗ A ∗ B A:10
dB
dt

= −k ∗ A ∗ B B:10
eact and diffuse. Red shapes represent organelles through which chemical cannot
iffuse or react inside.

he Explicit FDM-RK4 reaction–diffusion method. In the GPU algo-
ithm many reaction or diffusion events are run at the same time,

nstead of one after the other, as is the case in the CPU algorithm.
n a single time step all reaction events are run after all diffusion
vents have taken place. During the simulation, data is written to
he disk for offline analysis. Transferring data to and from the GPU is
dC
dt

= k ∗ A ∗ B C:10

expensive and thus writing to disk every time step can degrade per-
formance. Therefore we compromise, transferring data and writing
to the disk at configurably sized intervals.

The execution of time steps is “batched” together in configurably
sized intervals. Execution is paused between batches whilst results
are written to the disk. The larger the batch size the faster the sim-
ulation will run. Time step batch sizes of 100 steps are commonly
used, which provides a good trade-off between speed and output
granularity.

The GPU algorithm has two stages: The kernel launcher, and the
kernel itself. The kernel launcher runs on the CPU, it divides the
simulation into batches and writes output to the disk. The kernel
runs on the GPU and is responsible for executing the reaction pro-
cess in parallel and then the diffusion processes in parallel across
all of the GPU cores.

We  also include a CPU algorithm. A single time step consists of a
serial implementation of the explicit FDM-RK4 reaction–diffusion
method. After each time step the state of the system is written to
disk.

In terms of speed, we find that ReDi-Cell can perform faster
than VCell. Using verification experiments 1 (Figs. 7 and 10(a)), 2
(Figs. 8 and 10(b)) and 3 (Figs. 9 and 10(c)) as benchmarks we find
that ReDi-Cell is approximately 24× faster than VCell. ReDi-Cell
benchmark simulations were performed on an NVIDIA Tesla K20.

6. Experiments

In this section we detail three sets of experiments that we
run with ReDi-Cell. The first is focused on validating ReDi-Cell’s
implementation against the state of the art, VCell. The validation
experiments use two different prototypes: diffusion only and
A + B → C. A summary of the reaction systems is shown in Table 1. In
the second set we investigate the behaviour of abstracted cellular
pathways in different cell shapes. In the third set we investigate
the impact of clutter on the same pathways. For a discussion of the
choice of diffusion coefficients see Appendix C.

Experiments take place in a variety of cluttered and uncluttered
environments. The results take the form of concentration heat maps
and concentration against time graphs.

Graphs of concentration against time are used when study-
ing the dynamics of a reaction in a single volume. Heatmaps are
used when measuring the concentration in many volumes at once,
at a single point in time. We  exploit this property to measure
the effect of space on the distribution of concentration. Many
heatmaps recorded at sequential times can be stitched together
into an animation to show the same information as a concentra-
tion graph, but for multiple volumes at once. Both concentration
against time graphs and heatmaps are common in cell simula-
tion, with VCell (against which we validate our results) using these
measurements.
6.1. Uncluttered diffusion

This set of experiments investigates diffusion-only
behaviour. The diffusion-only system from Table 1 is run in an
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Fig. 7. Verification Experiment 1 – uncluttered diffusion. Heat maps of species A after 3000 time steps of diffusion. The experiment is run in both ReDi-Cell (Fig. 7(a)) and
VCell  (Fig. 7(b)). It can be seen that the heat maps are identical validating the accuracy of ReDi-Cell’s diffusion computation. k = 1 .412, �t  = 10−14 s, D = 1.0, �x = 10−6 m.
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ig. 8. Verification Experiment 2 – cluttered diffusion. Heat maps of species A after 

Fig. 8(b)). It can be seen that the heat maps are identical validating the accuracy of

ncluttered setting in ReDi-Cell. Results from this experiment
re shown in Figs. 7(a) and 10(a). This same system was  then

un again in an identical uncluttered setting in VCell. Results
rom this experiment are shown in Figs. 7(b) and 10(a). These
gures show that the results of these experiments are in good
greement.

ig. 9. Verification Experiment 3 – cluttered reaction–diffusion of the A + B → C system. Th
hat  the heat maps are identical validating the accuracy of ReDi-Cell’s cluttered reaction–
time steps of diffusion. The experiment is run in both ReDi-Cell (Fig. 8(a)) and VCell
Cell’s cluttered diffusion computation. k = 1 .412, �t = 10−14 s, D = 1.0, �x = 10−6 m.

6.2. Cluttered diffusion
This set of experiments examines how ReDi-Cell models the
interaction of chemicals with the impermeable boundaries that
model the internal cell wall and organelles. The diffusion system
from Table 1 was run in a cluttered environment, consisting of a

e experiment is run in both ReDi-Cell (Fig. 9(a)) and VCell (Fig. 9(b)). It can be seen
diffusion computation. k = 1 .412, �t  = 10−14 s, D = 1.0, �x = 10−6 m.



60 F. Sayyid, S. Kalvala / BioSystems 145 (2016) 53–66

Fig. 10. Graphs of species (A) concentration in ReDi-Cell and VCell measured in a sin-
gle  sub-volume over 3000 time steps. Concentration is measured in the sub-volume

Table 2
Description of new work experiments. The parameters used in the experiments vary
and so are shown in the captions of the figures depicting experimental results.

System Reaction equation Initial conditions
LVD dA
dt

= A(  ̨ −  ̌ ∗ B) A:10
dB
dt

= −B(� − ı ∗ A) B:10

single impermeable cube. The species are initially located next to
the cube. The experiment is first run in ReDi-Cell. Results from this
experiment are shown in Figs. 8(a) and 10(b). The same system was
run in VCell. VCell results are shown in Figs. 8(b) and 10(b). Once
again, the results from ReDi-Cell and VCell are consistent with each
other.

6.3. Cluttered A + B → C

In this set of experiments we investigate ReDi-Cell’s behaviour
when simulating reaction–diffusion next to impermeable mem-
branes. The A + B → C reaction–diffusion system from Table 1 is
run in a cluttered environment. This clutter takes the form of four
impermeable cubes, separated by narrow channels. The species are
initially located at the centre of the channels. The experiment is
first run in ReDi-Cell, the results of this experiment are shown in
Figs. 9(a) and 10(c). This experiment is run again in an identical
environment in VCell. The results of this experiment are shown in
Figs. 9(b) and 10(c). ReDi-Cell’s results are shown to be consistent
with VCell’s.

Having validated ReDi-Cell against VCell we now use ReDi-Cell
to perform novel experiments in Sections 6.5–6.7.

In all three sets of experiments run so far we  find a good
agreement between ReDi-Cell results and VCell results. The con-
centration trajectories for VCell and ReDi-Cell are nearly identical
in all three experiments. Very little variation is shown between the
two algorithms. Heat map  results also show good agreement. The
shapes of the ReDi-Cell and VCell concentration profiles in all three
experiments show good agreements between each other. The val-
ues displayed in the heat map  also show a very good agreement. In
summary, it can be seen that ReDi-Cell is an accurate simulation of
reaction–diffusion systems.

6.4. The importance of spatial simulation

Having discussed importance of spatial simulation we
show the impact that removing spatial component has on a
reaction–diffusion system. The system used in this experiment is
the LVD system detailed in Table 2. To demonstrate this we run
two experiments. In the first experiment we turn off diffusion
allowing only reaction, thus making the experiment non spatial. In
the second experiment we  allow for both reaction and diffusion in
a Coccus.  The results of this experiment are shown in Fig. 11.

6.5. LVD wavefronts in natural cell shapes

This set of experiments measures the effect of cell shape on
wavefront properties, specifically wavefront shape and wavefront

concentration. We  define the wavefront as the locus of points that
are at the interface between zero and nonzero concentrations. The
system used in this set of experiments is the LVD system detailed
in Table 2.

that the chemical was initially confined to. The lines that represent the concen-
tration in ReDi-Cell and VCell are on top of each other validating the accuracy of
ReDi-Cell’s cluttered reaction–diffusion computation. k = 1 .412, �t  = 10−14 s, D = 1.0,
�x  = 10−6 m.
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Fig. 11. A comparison of spatial and non spatial systems in ReDi-Cell. Concentration
is  measured in the sub-volume that the chemical was initially confined to. With both
reaction systems it can be seen that there is a large difference in results between
spatial and non-spatial systems. Both the final value of the concentration and the tra-
jectory of the reaction over time vary substantially. Fixed parameters: �t  = 10−14 s,
�x  = 10−6 m,  D = 0.02.

Table 3
LVD wavefronts in natural cell shapes. Concentration at the wavefront after 1000
time steps.  ̨ = 1.5,  ̌ = 1.0, � = 3.0, ı = 1.0, �t  = 10−14 s, �x  = 1.0 * 10−6 m,  reaction
rate = 1012, D = 1.0.

Shape Concentration at the wavefront

Coccus 1.06
Bacillus 1.38

T
c
T
s

Fig. 12. LVD wavefronts in natural cell shapes after 1000 time steps, simulated
using ReDi-Cell and rendered in VisIt. In this figure we  see the effect of running an
LVD system in model natural cell shapes.  ̨ = 1.5,  ̌ = 1.0, � = 3.0, ı = 1.0, �t  = 10−14 s,
�x  = 1.0 * 10−6 m,  reaction rate = 1012, D = 1.0.
Spirillum 2.61

The results of this set of experiments are shown in Fig. 12 and
able 3. The ReDi-Cell reaction vessels are approximations of real

ell shapes. Three experiments were run, one in each cell shape.
he volume, initial concentrations and initial positions of chemical
pecies are kept analogous.
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Table 4
Peak concentration after 2000 timesteps.  ̨ = 1.5,  ̌ = 1.0, � = 3.0, ı = 1.0, �t  = 10−14 s,
�x  = 1.0 * 10−6 m,  reaction rate = 1012, D = 1.0.

Shape Peak concentration of
species A after 2000
timesteps
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Coccus 2.99
Bacillus 5.49
Spirillum 7.26

First, wavefront shape was investigated. The shape of the wave-
ronts are different in all three examples in Fig. 12. The Coccus’
avefront is extremely circular, whilst the Bacillus’ wavefront is

lmost flat. The Sprillum’s wavefront, curves more steeply toward
he bottom of the cell.

Next, we examine the effect that cell shape has on average wave-
ront concentration. The results are recorded in Table 3. The average
oncentration at the wavefront in all three bacterial shapes is dif-
erent. The concentration gradients behind the wavefront are also
ifferent, for example whilst the concentration behind the wave-
ront in the Bacillus and in the Coccus are homogeneous, their values
re different.

Different surface area to volume ratios may  be responsible for
he unique patterns of reflection inside virtual cells and so cause
he difference in concentration gradients and wavefront shape
etween cell shapes seen in this section. In geometries with lines of
ymmetry, such as the Coccus and Bacillus, concentration waves are
eflected in a uniform, symmetric fashion. The Spirillum is nonuni-
orm in shape and thus reflections are not necessarily symmetric
bout the longest axis of the cell. This may  produce the asymmet-
ic wavefronts seen in the results. Changes in reflective properties
ay  alter micro dynamics in equally distinct ways and so change

he global response of the system. In addition, in cells of equivalent
olume signals in the simulated Coccus travel a greater fraction of
he cell’s length.

.6. LVD species distribution

This set of experiments examines the effect cell shape has on
nal species distribution. Species distribution is measured as fol-

ows. The 3D cell is divided into 2D slices along the cell’s longest
xis, with each slice having a thickness equal to one simulation
nit length, �x.  The total amount of a given species in each slice

s found by iterating over each sub-volume in the slice and sum-
ing the contributions. Finally the total amount of a particular

pecies in each slice is plotted against the position of that slice along
he cell.

The LVD system detailed in Table 2 is run in the three different
ell shapes. The species distribution profile is recorded after 2500
imesteps. The species distributions are shown in Fig. 13 and the
eak concentration are shown in Table 4.

We see several differences between the graphs in Fig. 13.
ifferent cellular geometries result in different concentration
rofiles and peak concentrations. The shapes of the concen-
ration profiles are different in each example. The Coccus has

 more concentrated profile with the greatest peak concentra-
ion, the Spirillum has a mostly uniform profile with a lower
eak, but the Bacillus shows the most difference. Discounting
he tapering edge, we achieve a flat profile, with a spike at the
avefront.

.7. LVD with cellular clutter
In this set of experiments we measure the effect of intra-cellular
lutter on the dynamics of the LVD system. Two experiments
ere run, the initial conditions for which are shown in Fig. 14(a)

Fig. 13. LVD concentration distribution after 1500 timesteps, simulated using
ReDi-Cell and rendered in VisIt.  ̨ = 1.5,  ̌ = 1.0, � = 3.0, ı = 1.0, �t  = 10−14 s,
�x  = 1.0 * 10−6 m,  reaction rate = 1012, D = 1.0.
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Fig. 14. LVD with cellular clutter. This figure shows the cluttered and uncluttered model cell initial conditions, rendered in VisIt. Measurement site is the small red square
at  the top.

Fig. 15. LVD with cellular clutter. Species A concentration, in cluttered and uncluttered settings, measured over 4000 timesteps at the measurement site in the model cells as
d tal pa
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etailed  in Fig. 14. This simulation was performed using ReDi-Cell. Fixed experimen
eaction  rate = 1012.

uncluttered system) and 14(b) (cluttered). The results are shown
n Fig. 15(a). The only variable changed is the interior volume, by
dding three spheres to represent clutter. The volume of the cell, the
nitial concentrations and initial positions of species A and species

 are all kept constant in each experiment. Concentration is mea-
ured at the top of the virtual cell, this is location is marked by the
ed outlined square at the top of Fig. 14(a).

Fig. 15(a) shows the difference in cluttered and uncluttered
nvironments on the arrival of species A at a location immediately
ext to the membrane and opposite to the source.

Clutter within virtual cells can change the way in which in silico
iochemical processes progress by changing the flow of a chemical
pecies through the system. Specifically, clutter has two  impacts
n this system: firstly, the time of arrival of species A is different,
nd secondly, the shape of the concentration profiles are different.

he range of concentration values taken is much smaller. The signal
as been damped by the clutter in the system. All of these factors
ontribute to the differences in concentration gradient between
amped and undamped systems.
rameters: A = 1, B = 10,  ̨ = 0.5,  ̌ = 1.0, � = 10.0, ı = 1.0, �t  = 10−14 s, �x = 1.0 * 10−6 m,

7. Conclusions and further work

We have performed simulations that show how the behaviour
of model cellular pathways changes between three common cell
shapes, and how the configuration of internal cellular clutter can
alter the way  in which signals propagate through a virtual cell. In
doing so we  show that model cellular pathways are sensitive to the
shape and the internal geometry of the cell. We  also showed which
physical properties of the model pathway change when the cell
shape changes; specifically, wavefront shape, peak concentration
and concentration distribution are all affected by the shape of the
cell. Finally, we have developed a novel GPGPU high performance
cell simulation toolkit suitable for performing these experiments.

In theory VCell could have been used to perform the experi-
ments in this work, albeit at a reduced speed. When benchmarked

using the validation experiments it was found that ReDi-Cell per-
formed approximately 24× faster than VCell. It may  be possible
to port VCell to the CUDA architecture used by ReDi-Cell, but as
VCell is closed source it is impossible for an end user to do so. In
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In this section we reproduce the heatmaps found in Fig. 12 with
normalised heatmap scales.

Fig. B.17

Fig. A.16. Concentration map of species V in a turing system after 10000 time steps.
The concentration of species V is proportional to the brightness of the blue. a = 0.08,
4 F. Sayyid, S. Kalvala / B

ontrast ReDi-Cell is open source allowing users to change the
ource code to take advantage of any future developments in com-
uting architecture. In addition the client/server nature of VCell
eans that jobs are scheduled before execution, possibly incurring

n additional delay. Finally, ReDi-Cell uses the dedicated “VisIt”
isualisation toolkit which enables results to be presented in a
ariety of ways not possible with the VCell viewer.

One issue in trying to model cellular phenomena in detail
as been the lack of experimental data to inform the search for
arameters as well as to validate the resulting simulations. Recent
evelopments, such as photo bleaching and super high resolution

maging (Ball et al., 2012) are starting to provide this data. Detailed
nformation on features such as 3D cell geometry, reactant con-
entrations, and reactant locations are providing a basis for this
arameter search.

The conversion of experimental data into simulation param-
ters can prove quite challenging in terms of setting up the in
ilico initial conditions: it is difficult to specify three-dimensional
hapes and distributions in an intuitive way. One approach is to use
mage processing algorithms to extract qualitative features from

icroscopy images and videos at the same time as noise-reduction
lgorithms are applied. As an example, PhenoPlot (Sailem et al.,
015) enables the automatic, accurate translation of high resolution
icroscopy images of cells to convenient glyph based representa-

ions of the cell in terms of features such as nuclear texture and size,
egree of roundedness, etc. These features can then be used to tailor
he characteristics of the virtual cell to be simulated using ReDi-
ell. Thus, with these combined techniques the simulation of more
ealistic systems within an integrated experimental/computational
ycle becomes feasible.

One avenue of further work would investigate how the ratio and
istribution of clutter within the cytosol changes the dynamics of
ellular pathways.

Another interesting and challenging direction for future work
s the understanding the effect of changing cell morphology on the
ynamics of a biological process. Many real cells exhibit plastic-

ty during their life cycle, changing from one shape to another
n order to best suit their environment (Yin et al., 2014). Such
hanges can be caused by a variety of environmental factors
Young, 2006) with time-scales and degrees of plasticity of vary-
ng magnitudes. For example, small shape changes can be seen
n most cells due to instabilities in cytoskeletal structure (Kueh
nd Mitchison, 2009) with larger changes occurring in scenar-
os such as stem cell differentiation. Nutritional stress is another
xample of a shape changing factor, causing cells to undergo fila-
entation (Young, 2007). As seen in Section 6.6, our experiments

ndicate that filamentation alters the time between external stim-
lus and internal state change, as the signal has further to travel.
acroscopic behaviour, such as motility, may  be altered in inter-

sting ways by this timing change. For example, we know that
scherichia coli motor direction switches between two states, for-
ard and tumble (Darnton et al., 2007), due to environmental

ues. We  are currently performing simulations using ReDi-Cell to
nswer the question of whether filamentation of E. coli alters the
ime between external stimulus and motility state change, and if
his change may  account for a widening of the bacteria’s search
rea.

We  believe that ReDi-Cell can play a role in the advanced under-
tanding of these complex cellular phenomena. ReDi-Cell can be
sed to rapidly validate models of how behaviour is modulated
y subtle spatial properties such as the shape and size of cells.
e expect that further advances in experimental techniques will

rovide a rich and extensive source of data, and simulation tech-
iques such as ours will provide the necessary tools to make sense

f this explosion of data in truly understanding the complex yet
legant functioning of cells.
ems 145 (2016) 53–66
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Appendix A. The effect of geometry on the Turing system

In this section we show the impact of introducing clutter on a
Turing system. Here the single piece of clutter causes discontinu-
ities in the generated pattern.

Fig. A.16

Appendix B. Normalised scale heatmaps
u

bu =−0.08, cu = 0.04, du = 0.03, reaction rateu = 1012, Du = 0.02, av = 0.1, bv = 0.0, cv =
−0.15, dv = 0.08, reaction ratev = 1012, Dv = 0.5
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Table C.5
Table of diffusion coefficients representative of cellular environments. Reproduced
from (Milo and Phillips, 2015).

Molecule Medium Diffusion
coefficient
(�m2/s)

H+ Water 7000
H2O Nucleus of Chicken

Erythrocyte
200

Protein (≈30 kDa GFP) eukaryotic cell (CHO)
cytoplasm

30

Protein (≈30 kDa) E. coli cytoplasm 7–8
Morphogen (bicod-GFP) D. melanogaster embryo

cytoplasm
7

Protein (≈40 kDa) E. coli cytoplasm 2–4
Protein (≈70–250 kDa) E. coli cytoplasm 0.4–0.2
Protein (≈140 kDa Tar-YFP) E. coli cytoplasm 0.2
ig. B.17. LVD wavefronts in natural cell shapes after 1000 time steps.  ̨ = 1.5,  ̌ = 1.0,
 = 3.0, ı = 1.0, �t  = 10−14 s, �x  = 1.0 * 10−6 m,  reaction rate = 1012, D = 1.0
ppendix C. Choice of diffusion coefficients

The value of the diffusion coefficient for a chemical species can
ramatically alter the behaviour of the reaction–diffusion system
Protein (≈70 kDa LacY-YFP) E. coli cytoplasm 0.03
mRNA various locations 0.005–0.001

associated with it. Despite the difficulty in measuring diffusion
coefficients some values of biologically relevant entities have been
recorded in the literature; a compilation of common cellular chem-
icals with their diffusion coefficients can be found in (Milo and
Phillips, 2015). Cellular diffusion coefficients are proportional to
both the mass of the species and to the density of the medium
through which they travel, resulting in a wide range of values.
For example in the data in (Milo and Phillips, 2015) diffusion
coefficients range from 7000 �m2/s for H+ ions to 0.001 �m2/s for
mRNA. Diffusion coefficients for protein translocation within the
cytoplasm have been measured in E. coli to be between 30 �m2/s
and 0.03 �m2/s. In this work we simulate abstracted signalling and
metabolic pathways both of which can involve proteins of varying
size; with this in mind we choose diffusion coefficients of 1 and
0.1 representing values in-between the minimum and maximum
orders of magnitude for protein diffusion. These values represent
biologically realistic diffusion coefficients for the types of systems
that we are interested in exploring. We  reproduce a portion of
the diffusion coefficients reported in (Milo and Phillips, 2015) in
Table C.5.
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