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SUMMARY

We report the immediate effects of estrogen signaling
on the transcriptome of breast cancer cells using
global run-on and sequencing (GRO-seq). The data
were analyzed using a new bioinformatic approach
that allowed us to identify transcripts directly from
the GRO-seq data. We found that estrogen signaling
directly regulatesastrikingly large fractionof the tran-
scriptome in a rapid, robust, and unexpectedly tran-
sient manner. In addition to protein-coding genes,
estrogen regulates the distribution and activity of all
three RNA polymerases and virtually every class of
noncoding RNA that has been described to date.
We also identified a large number of previously unde-
tected estrogen-regulated intergenic transcripts,
many of which are found proximal to estrogen
receptor binding sites. Collectively, our results
provide the most comprehensive measurement of
the primary and immediate estrogen effects to date
anda resource for understanding rapid signal-depen-
dent transcription in other systems.

INTRODUCTION

The steroid hormone estrogen, acting through estrogen recep-

tors (ERs), plays key roles in a variety of fundamental develop-

mental and physiological processes, as well as many disease

states (Deroo and Korach, 2006). Mammals express two ER iso-

forms, ERa and ERb, which exhibit distinct tissue-specific

expression patterns and biological roles (Deroo and Korach,

2006;Warner et al., 1999). ERs function primarily as nuclear tran-

scription factors, which dimerize upon binding of the natural

ligand, 17b-estradiol (E2), and act as potent regulators of gene

expression. ERa binds to > 10,000 sites across the genome

and acts to (1) promote the recruitment of coregulators that
622 Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc.
mediate posttranslational modification of histones or other tran-

scription factors and (2) regulate the binding or activity of the

RNA polymerase II (Pol II) transcriptional machinery, ultimately

altering the transcriptome in estrogen-responsive cells (Acevedo

and Kraus, 2004; Cheung and Kraus, 2010; Ruhl and Kraus,

2009).

Previous studies analyzing steady-state gene expression

patterns in the presence and absence of E2 have failed to reveal

a consistent view of the estrogen-regulated gene set. In partic-

ular, the use of expression microarrays has produced discrep-

ancies in the numbers of estrogen-regulated genes in the widely

used ERa-positive MCF-7 human breast cancer cell line, ranging

from 100 to 1500 (Cheung and Kraus, 2010; Kininis and Kraus,

2008). In addition, genomic ChIP analyses of ERa and Pol II

have not produced a clear picture of the estrogen-regulated

gene set either. This is due, in part, to the difficulty in assigning

ERa binding events to specific gene regulatory outcomes

(Carroll et al., 2006; Welboren et al., 2009). Another limitation

of these analyses is that they have focused on the effects of

estrogen signaling on Pol II transcription, without considering

potential effects on Pol I and Pol III.

A fundamental weakness that is inherent in monitoring

estrogen-dependent gene expression by assessing changes in

mature mRNA is that longer treatments are required to allow

time for mRNA accumulation (�3–24 hr). This time allows the

accumulation of transcripts from primary ERa target genes but

also leads to a host of secondary transcriptional effects that are

not directly mediated by ERa. To address these concerns,

preliminary attempts to define the immediate transcriptional

effects of estrogen signaling using the translation inhibitor cyclo-

heximide indicated that only 20%– 30% of the genes showing

changes in expression are primary targets (Lin et al., 2004). Using

cycloheximide to infer primary estrogen target genes is problem-

atic, however, because (1) cycloheximide does not inhibit the

effects of noncoding regulatory RNAs on gene expression, which

is becoming widely recognized as an important mechanism

underlying the regulation of many genes (Krol et al., 2010), and

(2) the levels of steady-state mRNA depend not only on

https://core.ac.uk/display/82593128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lee.kraus@utsouthwestern.edu
http://dx.doi.org/10.1016/j.cell.2011.03.042


A C

B

D

Figure 1. GRO-Seq Provides a Detailed View of the E2-Regulated Transcriptome in MCF-7 Cells

(A) Overview of the experimental set-up for GRO-seq analysis using MCF-7 cells.

(B) Genome browser view for a specific locus showing GRO-seq (top) and Pol II ChIP-seq (bottom) data illustrating the features of transcription and the effects

of estrogen treatment.

(C) De novo detection of transcripts using GRO-seq data (top) and an HMM (inset). Called transcripts (middle) match well to RefSeq annotations (bottom).

(D) Classification of transcripts based on the annotation filter (Figures S1E and S1F).

See also Figure S1.
transcriptional regulation by E2, but also on the rates of elonga-

tion, pre-mRNA processing, and mRNA degradation (Widelitz

et al., 1987). Due to these factors, it is clear that a new approach

is required to conclusively identify primary estrogen target genes.

Here, we used global nuclear run-on and sequencing

(GRO-seq) (Core et al., 2008) to identify the immediate effects

of estrogen signaling on the entire transcriptome in MCF-7 cells.

GRO-seq is a direct sequencing method that provides a ‘‘map’’

of the position and orientation of all engaged RNA polymerases

across the genome at extremely high resolution, providing

a directmeasure of transcription. UsingGRO-seq in combination

with a bioinformatic approach based on hidden Markov models

(HMMs), we determined all (i.e., both annotated and unanno-

tated) genomic regions in MCF-7 cells that are transcribed by

Pols I, II, and III. In addition, we identified the primary transcrip-

tional targets of E2 signaling by focusing on short treatments

(i.e., 0, 10, and 40 min) prior to the activation of secondary

targets. Our unique approach has revealed many unexpected

features of E2-regulation, providing the most comprehensive
measurement of the primary and immediate effects of E2

signaling to date. Our results provide a model and resource for

understanding rapid signal-dependent transcription in other

systems.

RESULTS AND DISCUSSION

Generation of GRO-Seq Libraries from Estrogen-
Treated MCF-7 Cells
To investigate the immediate effects of estrogen on the tran-

scriptome of human cells, we treated estrogen-deprived

ERa-positive MCF-7 human breast cancer cells with a short

time course of 17b-estradiol (E2) (0, 10, 40, and 160 min) (Fig-

ure 1A). The estrogen-deprived MCF-7 cells continued to grow

actively (Figure S1A available online), and the population of cells

showed a normal distribution through the cell cycle (Figure S1B).

Nuclei were isolated from two biological replicates of the

E2-treated MCF-7 cells and subjected to the GRO-seq proce-

dure to generate �100 bp libraries representing nascent RNAs,
Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc. 623



which were sequenced using an Illumina Genome Analyzer (Fig-

ure 1A). Short-reads were aligned to the human reference

genome (hg18, NCBI36), including autosomes, the X chromo-

some, and one complete copy of an rDNA repeat (GenBank ID:

U13369.1). Approximately 13 to 17 million reads were uniquely

mapped to the genome for each treatment condition, and the

biological replicates for each time point were highly correlated

(average correlation coefficient = 0.98) (Figure S1C). GRO-seq

returns data from all three RNA polymerases (Pols I, II, and III).

To validate whether the reads mapping to the supposed loci

transcribed by Pols I, II, and III were correlated with the activities

of each individual RNA polymerase, we carried out filter binding

assays with combinations of polymerase inhibitors to isolate

each polymerase. As expected, the activities detected by the

filter binding assays were comparable to GRO-seq product frac-

tion, with a slight underrepresentation of the apparent fraction of

Pol I transcripts by GRO-seq due to an enrichment of positions

that are not mappable in the repetitive rDNA sequences

(Figure S1D).

Figure 1B (top) shows a representative histogram of read

counts versus genomic position for a locus containing the

LHX4 and ACBD6 genes. Key features of the data set are illus-

trated in this representation, including strand-specific transcrip-

tion, divergent transcription near transcription start sites (TSSs),

and robust E2-dependent induction for some genes (e.g., LHX4).

These features are not readily apparent in ChIP-seq data from

the same region (Figure 1B, bottom).

Unbiased Assignment of GRO-Seq Reads to Specific
Transcripts
To determine the effects of E2 on the entire transcriptome (i.e.,

annotated and unannotated; coding and noncoding), we devel-

oped an unbiased approach for calling transcripts using a two-

state HMM. The model takes as input information about read

counts across the genome and subsequently divides the

genome into two states representing ‘‘transcribed’’ and ‘‘non-

transcribed’’ regions (Figure 1C, inset; see Supplemental

Information for additional details). An example of the input and

output of this algorithm for a gene-rich region of the genome is

shown in Figure 1C. The top panel shows the raw sequence

read counts for the GRO-seq data, the middle panel shows the

predicted transcripts, and the bottom panel shows the RefSeq

annotations.

To evaluate the robustness of our approach, we compared our

predicted transcript calls to existing annotations when these

were available (see Supplemental Information for details). First,

we determined whether our predictions reflect entire transcripts,

as opposed to breaking each gene up into a series of smaller

units. Then, we determined whether our approach can accu-

rately identify nontranscribed intervals between neighboring

but distinct gene annotations. We found that 90% of transcribed

annotated genes overlap with exactly one transcript and that

82% of called transcripts overlapping an annotated gene do so

with exactly one annotation. Together, these results suggest

that our HMM-based transcript calls largely recapitulate public

annotations. In many cases, our transcript calls provided new

or more refined information about TSSs, 50 exons, and transcrip-

tion termination sites than was available in existing databases.
624 Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc.
Using our algorithm, we assigned the genomic reads into

22,893 transcripts at one or more points during the E2 treatment

time course, covering �27% of the MCF-7 genome.

Transcripts called by the HMM were divided using a heuristic

approach into six distinct, nonoverlapping classes, which

describe the best classification of each transcript given currently

available annotations and other information (Figures S1E and

S1F; see Extended Experimental Procedures for additional

details). The six classes of transcripts that we defined are illus-

trated in Figure 1D and include: (1) annotated genic and noncod-

ing RNA transcripts, (2) antisense (genic) transcripts, (3) diver-

gent transcripts, (4) ERa enhancer transcripts, which likely

correspond to the recently described enhancer RNAs (Kim

et al., 2010), (5) other transcripts falling into annotated regions

but poorly matching the annotation, and (6) completely unanno-

tated, intergenic transcription. Although each transcript is as-

signed to only one of these six classes, within each class,

multiple annotations could be applied, allowing the accurate

annotation of miRNA genes that fall inside of the introns of

protein-coding genes. We found that 50.1% of the called tran-

scripts map to previously annotated genes or noncoding

RNAs, 5.2% map to antisense transcripts, 16.4% map to diver-

gent transcripts, 6.8% map to ERa binding enhancers,

and 12.1% are entirely unannotated intergenic transcripts

(Figure 1D).

Extensive Estrogen-Dependent Changes in the MCF-7
Transcriptome
We determined which of the 22,893 transcripts change in

response to E2 using a recently described model-based

approach (Robinson et al., 2010) that detects changes beyond

the global level of variation (Figure S2A; see Experimental

Procedures for details). We focused our analysis on a 12 kb

window at the 50 end of each transcript, as we expect to observe

changes during the first 10 min in this window that will not yet

have spread to the 30 end of longer transcripts. Surprisingly,

we found that transcription of an unexpectedly large fraction

(�26%) of the MCF-7 transcriptome is altered (up- or downregu-

lated relative to the control/untreated condition) upon E2

treatment for at least one point in the time course (Figure 2A;

comparisons are relative to the untreated condition). Large frac-

tions of the genome are regulated even for the short treatments

used in our experiments, strongly suggesting that these are

direct actions of ERa. For example, at 10 min of E2 treatment,

almost 10% of the MCF-7 cell transcriptome was significantly

regulated at a false discovery rate of 0.1% (Figure 2B). Another

surprising finding concerns the dynamics of regulation for up-

and downregulated transcripts. Through 40 min of E2 treatment,

the time point at which the largest number of transcripts were

regulated in our analyses, roughly equal numbers were upregu-

lated and downregulated, but by 160 min �75% of the tran-

scripts were downregulated (Figure 2B). Those transcripts

showing regulation at 10 or 40 min represent the most compre-

hensive and accurate definition of the immediate transcriptional

targets of the estrogen-signaling pathway described to date.

Next, we examined the regulation of the different classes of

transcripts in greater detail. Annotated protein-coding and func-

tional RNA transcripts as a group, as well as those unannotated
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C Figure 2. A Large Fraction of the MCF-7

Transcriptome Is Regulated by Estrogen

(A) The fraction of all transcripts that are regulated

by E2 at any time point.

(B) The fraction of all transcripts that are up- or

downregulated by E2 at the time point shown.

(C) Heatmap representations of time-dependent

regulation by E2 for each transcript class. Values

are centered and scaled to the 0 min time point.

(D) The fraction of each class of transcript that is

up- or downregulated by E2 at each time point.

See also Figure S2.
transcripts with possible roles in gene regulation (e.g., divergent

and antisense), had approximately equal numbers of upregu-

lated and downregulated transcripts at 40 min (Figures 2C and

2D). In contrast, the ERa enhancer transcripts were predomi-

nately upregulated, whereas the intergenic transcripts were

predominantly downregulated. Together, these results suggest

a coordinated transcriptional response in which E2 signaling

directs the transcriptional machinery from intergenic regions to

those more critical to the estrogen response. In addition, they

give a fundamentally different view of estrogen-regulated gene

expression than has been obtained using expression microar-

rays, especially with respect to the timing,magnitude, and extent

of regulation.

Regulation of Unannotated Noncoding Transcripts
by Estrogen: Divergent, Antisense, and Intergenic
Transcripts
Our GRO-seq data revealed extensive estrogen regulation of

a large set of unannotated noncoding transcripts, including

divergent, antisense, and intergenic transcripts. Although the
Cell 145, 622–
functions of these transcripts are largely

unknown, their regulation by E2 suggests

a role in estrogen-dependent transcrip-

tional responses. The production and

accumulation of divergent transcripts

were first documented in recent studies

using high-throughput genome-wide

sequencing approaches with human

fibroblasts (Core et al., 2008) and mouse

embryonic stem cells (Seila et al., 2008).

Divergent transcripts are transcribed in

the opposite direction from primary tran-

scripts at the promoters of transcribed

genes and are also produced at

enhancers (e.g., eRNAs; Kim et al.,

2010) and other unannotated regions

that are transcribed. The function of

divergent transcripts is unknown, but

their production has been suggested to

promote an open chromatin architecture

at promoters through the generation of

a nucleosome-free region or negative

superhelical tension (Core et al., 2008;

Seila et al., 2008, 2009). We identified
518 divergent transcripts associated with the promoters of

protein-coding genes, enhancers, and other unannotated tran-

scribed regions that are regulated by E2 for at least one time

point (FDR q value < 0.001). Using these annotations, we tested

whether production of a given E2-regulated divergent transcript

correlates with the synthesis of the corresponding primary tran-

script. To do so, we tested 844 primary/divergent transcript pairs

for which either the divergent, primary, or both transcripts were

regulated by E2 for at least one time point. As shown in Fig-

ure S2B (left), E2-dependent changes in divergent transcription

were strongly correlated with E2-dependent changes in the cor-

responding primary transcripts (Pearson correlation: 0.744; p <

2.2 3 10�16). This result is consistent with a role for divergent

transcription in facilitating E2-dependent transcription of the cor-

responding primary transcript.

Although not well characterized, antisense transcription has

been shown to have roles in the degradation of corresponding

sense transcripts (Katayama et al., 2005; Werner et al., 2009),

as well as gene silencing at the chromatin level (Liu et al.,

2010; Morris et al., 2008). Of 1197 transcripts annotated as
634, May 13, 2011 ª2011 Elsevier Inc. 625



antisense to a protein-coding transcript, we identified 429 that

are regulated by E2 (FDR q value < 0.001) (Figure S2C). As

with the divergent transcripts, we determined whether produc-

tion of a given E2-regulated antisense transcript correlates with

the synthesis of the corresponding primary transcript. Based

on 582 sense/antisense transcript pairs, we found a remarkably

high correlation between genes and their antisense transcripts

(Pearson correlation: 0.654; p < 2.2 3 10�16) (Figure S2B, right).

This is particularly surprising given that, unlike divergent tran-

scripts, antisense transcripts do not share a proximal promoter

with the sense transcript, although promoter-promoter contact

through genomic looping might allow for coordinated transcrip-

tional responses. If antisense transcripts play a role in the degra-

dation of the sense transcript, as has been suggested previously,

then their E2-dependent production may provide a ‘‘built-in’’

means of attenuating the steady-state levels of a select set of

estrogen-regulated transcripts.

We also identified 2761 transcripts that have no specific rela-

tion to previous genome annotations. Of these, 686 were regu-

lated by E2 for at least one time point. Interestingly, the vast

majority of these E2-regulated intergenic transcripts are downre-

gulated by E2 treatment (Figure 2D). The function of these tran-

scripts is unknown. Some may represent currently unannotated

protein-coding transcripts or functional RNAs. Ascribing a func-

tion to these RNAs and determining their relative stability in the

steady-state cellular RNA pool will require additional studies.

Their downregulation by E2, however, suggests a link to the

estrogen signaling program. Perhaps they act to antagonize

E2-dependent transcriptional responses and must be shut

down to achieve a full estrogen response. Alternatively, their

antagonism by E2 may be a passive effect of RNA polymerases

being diverted to bona fide transcriptional targets of the

estrogen-signaling pathway, as suggested previously (Carroll

et al., 2006).

Rapid, Extensive, and Transient Regulation of Protein-
Coding Transcripts by Estrogen
Numerous studies have examined the steady-state regulation of

protein-coding transcripts by E2 using expression microarrays

(Cheung and Kraus, 2010; Kininis and Kraus, 2008). Given the

sensitivity of our approach for detecting immediate transcrip-

tional changes in response to short E2 treatments, we extracted

and examined the protein-coding transcripts in our GRO-seq

data for comparison. We focused on annotations in the RefSeq

database because this set is among the most comprehensive

collection of transcripts and has extensive andwell-documented

overlap with expression microarrays. As noted above, we used

read counts in a 12 kb window at the 50 end of each annotation

and determined regulation by E2 using the edgeR package,

filtering for a false discovery rate of 0.1%.

Using this approach, we detected a total of 3098 protein-

coding transcripts whose levels changed relative to the control

(untreated) condition at one or more of the points in the E2 treat-

ment time course. In total, these transcripts represent �15% of

all genes annotated in RefSeq (�33% of 9337 expressed genes)

that are responsive to E2. This is a considerably larger number of

genes than was detected previously at 1 or 3 hr of E2 treatment

using expression microarrays (Cheung and Kraus, 2010; Kininis
626 Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc.
and Kraus, 2008; Figure S3A). Surprisingly, we found �1000

genes total to be up- or downregulated after only 10 min of E2

treatment. We used hierarchical clustering to define four classes

of genes sharing similar patterns of regulation, including a class

of rapidly downregulated genes and three classes of genes with

maximal transcription at the three E2 treatment time points (10,

40, or 160 min) (Figures 3A and 3B). The downregulated class

was the largest, comprising �50% of the E2-regulated protein-

coding transcripts. The majority of genes in this class were

rapidly downregulated (by 10 min, on average) and tended

(with a few exceptions) to stay downregulated throughout the

time course. Upregulated genes with maximal transcription at

40 min were the second largest class, comprising �34% of the

E2-regulated protein-coding transcripts. Although the time

course of induction or repression varied among the four classes,

the magnitude of response did not differ between the classes

(Figure 3C). Interestingly, the genes in the ‘‘10 minute max’’

and ‘‘40 minute max’’ classes returned, on average, to the basal

levels of transcription by the end of the E2 treatment time course

(Figure 3B), highlighting the rapid and transient nature of the tran-

scriptional response for the majority of the upregulated genes.

Biologically relevant changes in transcription should be

accompanied, in most cases, by similar changes in the steady-

state level of the corresponding mRNA. We tested this expecta-

tion using both genomic and gene-specific comparisons. First,

we compared fold changes in primary transcription that were de-

tected using our GRO-seq data to fold changes at the level of

steady-state mRNA (3 or 12 hr of E2 treatment) from published

expression microarray data for MCF-7 cells. For the subset of

genes that we observed to be regulated by GRO-seq, we found

that the strongest correlations were between either the 40 or

160 min GRO-seq time points and the 3 hr microarray time point

(Figures S3B and S3C). Note, however, that there aremanymore

genes detected as E2 regulated by GRO-seq than by expression

microarray analyses (Figure S3A). If we limited the analysis to

only genes that change in the microarray analysis (FDR cor-

rected q value < 0.05), we see an even higher correlation

between GRO-seq and microarray data (Figure 3D; Spearman’s

correlation: 0.75). This analysis suggests that the early actions of

E2 are almost all mediated at the level of transcription and that E2

does not affect RNA stability or degradation rate directly. These

results provide a first indication that transcription, as determined

byGRO-seq, is propagated to changes in the steady-state levels

of the corresponding mRNAs.

Next, we randomly selected a set of 10 to 20 genes for each of

the four classes (54 genes total) and measured the relative

steady-state levels of mRNA from each gene over a 6 hr time

course of E2 treatment using RT-qPCR. In general, the changes

in transcription measured by GRO-seq were reflected in corre-

sponding changes in the steady-state mRNA levels measured

by RT-qPCR (Figure 3E and Figure S4). In almost all cases, we

observed a delay of �1–3 hr between the peak fold changes

measured by GRO-seq and RT-qPCR. This delay reflects the

time necessary for changes in Pol II (measured at the 50 end in

GRO-seq) to reach the 30 end of the gene and for mRNA to accu-

mulate (or degrade) by a detectable level. As with the compari-

sons to the microarray expression data, these results indicate

that changes in transcription are efficiently translated into
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Figure 3. GRO-Seq Identifies Four Distinct Classes of E2-Regulated RefSeq Genes

(A) Heatmap of the time course of E2-dependent regulation of RefSeq genes. Red numbers indicate the four different classes of regulation.

(B) Centered-scaled traces showing the regulation of the four distinct classes of E2 regulation. Gray lines represent GRO-seq data for individual genes, and blue

lines represent the mean of the individual traces.

(C) Box and whiskers plot showing the E2-dependent fold change for genes in each of the four classes.

(D) Correlation between fold changes measured by GRO-seq and expression microarrays for genes that show a change in the microarray analyses.

(E) Comparison of GRO-seq data to mRNA expression measured by RT-qPCR. Blue lines represent the mean of the GRO-seq data for the genes analyzed. Gray

lines represent RT-qPCR data for individual genes, and red lines indicate the mean.

See also Figure S3 and Table S1.
changes in the steady-state levels of the corresponding mRNAs.

The correspondence was strongest for the downregulated and

the 40 min max GRO-seq classes (>80% of genes assayed

showed corresponding changes) and weaker for the 10 min

max and 160 min max classes (�50% of genes assayed showed

corresponding changes). The discrepancies between transcrip-

tion and steady-state mRNA levels may be due to inherent insta-
bility of certain nascent transcripts, which prevents them from

generating mature transcripts. Alternatively, they may reflect

active posttranscriptional regulation of specific transcripts

(e.g., by miRNAs; see below). Interestingly, we identified

a number of cases for each GRO-seq time point in which

E2-dependent changes in transcription were accompanied by

corresponding changes in the levels of the cognate protein,
Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc. 627



including the 10 min max group (e.g., KRT19, MYC, and VDR;

Figures S3D and S3E).

Gene ontology (GO) analyses of the four classes of genes re-

vealed a similar pattern of enrichment in gene ontological cate-

gories for the downregulated and 40 min max classes (Tables

S1AandS1C),whichdiffer fromoradd to thosederivedpreviously

from microarray expression analyses (Carroll et al., 2006; Frasor

et al., 2003). Specifically, there was a significant enrichment in

GO terms related to transcription, nucleic acid metabolism, cell

surface receptor, and G protein-coupled signaling. The fact that

the same GO terms but different genes are regulated in both the

major up- and downregulated classes suggests a switch from

one cellular signaling program (e.g., serum response) to another

(i.e., estrogen signaling); each pathway may require the same

functional categories of genes but use a distinct set of genes

within each category. Interestingly, the 160 min max class was

significantly enriched inGO terms related to ribosomebiogenesis,

translation, and protein synthesis (discussed and elaborated

below) (Table S1D), whereas a very modest enrichment of GO

terms was observed for the 10 min max class (Table S1B).

Together, our results show that the transcriptional response to

estrogen signaling for protein-coding genes (and other classes

of transcripts, as well; see below) is rapid, extensive, and tran-

sient. This represents a different view of the estrogen response

than has been provided bymicroarray expression studies, which

have suggested a continually increasing set of regulated genes

in response to E2 treatment, many of which are likely to be

secondary or tertiary effects (Figure S3A).

Pol II Dynamics in Response to E2
Because the transcriptional response for protein-coding genes

to estrogen signaling was rapid and transient, we explored the

dynamics of Pol II at the promoters of the four classes defined

in the hierarchical clustering analysis. We performed metagene

analyses across the promoter regions of each class from

�4 kb to +4 kb for each treatment time point (Figure 4A). The

peak of reads in the immediate vicinity of TSS indicates the pres-

ence, on average, of engaged Pol II before and after E2 treat-

ment. The decrease (or increase) of reads in the downstream

region indicates the downregulation (or upregulation) of tran-

scription in response to E2. This presentation of the GRO-seq

results highlights the following: on average, (1) loading of Pol II

at the TSSs of upregulated genes increases in response to E2

treatment, (2) divergent transcription of the upregulated genes

increases in response to E2 treatment, (3) downregulation

affects primarily Pol II in the gene bodies, and (4) loading of

Pol II at the TSSs and divergent transcription largely follow the

Pol II response in the body of the gene.

The increase in Pol II loading at the TSS in response to E2

suggests that Pol II loads more rapidly than it escapes into the

body of the gene for these classes of E2-regulated genes. This

is especially evident between the 10 and 40 min time points for

the 40 min max genes and between the 40 and 160 min time

points for the 160 min max genes, for which we see increased

Pol II loading at the earlier time point followed by an appreciable

increase in Pol II in the body of the gene at the later time point.

This ‘‘delayed’’ pattern of loading and escape is perhaps unex-

pected for the 160 min max genes, as the pausing of Pol II in
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the promoter proximal region is thought to allow rapid activation

of transcription in response to cellular signaling (Lis, 1998). Alter-

natively, such a response fits well with a recent suggestion that

pausing of Pol II in the promoter proximal region allows synchro-

nous gene activation (Boettiger and Levine, 2009).

ThedynamicsofPol II canalsobeclearly observed in examples

from specific up- and downregulated genes (Figures 4B and 4C

and Figure S4). With E2 upregulated genes, the leading edge of

a Pol II wave was observed traveling into the gene body upon

E2 treatment (Figure 4B). In contrast, with E2 downregulated

genes, the lagging edge of a Pol II wave was observed as the

polymerases were cleared from the TSS (Figure 4C). The results

from our GRO-seq analysis have provided an unprecedented

view of the Pol II dynamics in response to a sustained signal.

Regulation of miRNA Gene Transcription by Estrogen:
Parallels to the Regulation of Protein-Coding Genes
Our GRO-seq approach also provides considerable information

regarding the transcriptional regulationofprimarymicroRNA tran-

scripts. MicroRNAs (miRNAs) are �22 nt noncoding regulatory

RNAs thatmediate posttranscriptional regulation of gene expres-

sion by inhibiting the translation or promoting the degradation of

target mRNAs. miRNA precursor transcripts (pri-miRNAs) are

generated by Pol II, or in some cases Pol III, either as part of

a ‘‘host’’ gene in which they are embedded or from an intergenic

region using their own promoter (Krol et al., 2010). Using our

GRO-seq data set, we explored the regulation of pri-miRNA

gene transcription by E2. We unambiguously identified 322 ex-

pressed miRNA-containing transcripts in our data set based on

miRBase ver. 14. Of these, 119 (�37%) were regulated by E2

during at least one time point (FDR q value < 0.001). Regulated

pri-miRNAs included some previously published estrogen-regu-

latedmiRNAs, includingmir-181a,mir-181b, andmir-21. Overall,

the pattern of regulation depicted in the heatmap shown in Fig-

ure 5A mirrors that observed for the protein-coding transcripts

(i.e., approximately half upregulated and half downregulated),

which is consistent with a large fraction being processed from

protein-coding transcripts. Examples of the transcriptional

response of specific pri-miRNAs are shown in Figure 5B. The

primary transcript of both examples is considerably larger than

the processed miRNA. Therefore, as with the protein-coding

genes, the leading (or lagging) edge of the polymerase wave

can be seen during the transcriptional response of the upregu-

lated (or downregulated) genes. Together, these results suggest

that the transcription of pri-miRNA genes is regulated by E2 in

asimilar pattern andwithsimilar kineticsasprotein-codinggenes.

Next, we determined whether estrogen stimulation involves

a coordinated response between pri-miRNA transcripts and

the protein-coding genes that they ultimately regulate. For this

analysis, we reasoned that the subset pri-miRNAs undergoing

long-lasting and relatively large regulatory changes are the

most likely to be reflected as changes in processed, mature

miRNA. Therefore, we focused on 47 of the 119 (�40%) regu-

lated pri-miRNA transcripts that show more than 3-fold up- or

downregulation. These 47 robustly E2-regulated pri-miRNAs

potentially target �2700 mRNAs according to the TargetScan

database (Grimson et al., 2007; Lewis et al., 2005), or �12.8%

of RefSeq annotated mRNAs.
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Figure 4. GRO-Seq Reveals the Dynamics of E2-Dependent Transcription

(A) Metagene representations showing the average profile of GRO-seq sequence reads near and at the TSSs of RefSeq genes in each of the four classes during

the E2 treatment time course.

(B and C) Gene-specific views of the leading (B) and lagging (C) edges of a Pol II ‘‘wave’’ shown for the upregulated gene JARID2 (B) and the downregulated gene

ESR1 (C), respectively, during the E2 treatment time course.

See also Figure S4.
Interestingly, as shown in Figure 5C, MCF-7 cells express

a larger fraction of the �2700 target mRNAs than expected,

such that 16.6% of expressed genes are targets of these

miRNAs (p = 3.7 3 10�14; Fisher’s exact test). This enrichment

is consistent with an integrated regulatory program between

the miRNAs expressed in a cell and the corresponding

mRNA targets, consistent with previous suggestions (Farh
et al., 2005). Importantly, the subset of genes regulated by

E2 is enriched even further over those genes that are ex-

pressed by the cell, such that 18.6% of E2-regulated mRNAs

are targets of E2-regulated pri-miRNAs (p = 0.03) (Figure 5C).

Moreover, this pattern of enrichment was also discovered

when selecting a smaller set of miRNAs that are > 5-fold regu-

lated by E2 (p = 0.02) or taking all miRNA transcripts
Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc. 629
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Figure 5. E2 Regulates the Transcription of Primary miRNA Genes

(A) Heatmap of the time course of E2-dependent regulation of primary miRNA transcripts.

(B) Gene-specific examples of downregulated (left) and upregulated (right) primarymiRNA genes. Called transcripts and annotations are shown. In the right panel,

the ‘‘+ strand’’ called transcript (red) is actually the number of smaller called transcripts that, at the resolution used to represent this region, appear as one transcript.

(C) Fraction of the specified subset of annotated genes that are predicted to be targets of an E2-regulated miRNA based on TargetScan. Bars with different

superscripts are significantly different by Fisher’s exact test (p = 3.7 3 10�14 for a/b; p = 0.03 for b/c; p = 1.8 3 10�13 for a/c).

(D) (Left) GRO-seq data for pri-miRNA transcripts that are upregulated (bottom) or downregulated (top)R 3-fold by E2. Gray lines, data for individual genes; blue

lines, average for all genes. (Middle and right) GRO-seq (middle) and expression microarray (right) data for all of the potential targets of miRNAs encoded by the

pri-miRNA transcripts shown in the left panels. Faded red, black, and blue lines, data for individual upregulated, unregulated, and downregulated genes,

respectively (the counts for each type are listed). Bold red, black, and blue lines, averages for all upregulated, unregulated, and downregulated genes,

respectively.

See also Figure S5.
regardless of their fold change (p = 0.003), indicating that our

results are robust to the threshold chosen for the analysis. We

found no evidence that E2 specifically coordinates the tran-

scriptional regulation of pri-miRNAs with the direction (i.e.,

up or down) of regulation of their potential target mRNAs,

either by GRO-seq (Figure 5D, middle) or by expression micro-

arrays (Figure 5D, right). In fact, we found evidence for both

coordinated and compensatory regulation (Figure 5D; see Fig-

ure S5 for a detailed explanation). Together, these results

suggest an integrated regulatory program for E2-regulated

transcription of pri-miRNA transcripts and the mRNAs targeted

by the mature miRNAs.
630 Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc.
Dramatic Upregulation of the Protein Biosynthetic
Machinery by Estrogen Signaling
Because our GO analyses showed enrichment in genes with

a primary biological function in protein biosynthesis, we asked

whether E2 signaling has a broader effect on the protein biosyn-

thetic machinery. GRO-seq provides a measure of all three

eukaryotic polymerases; we therefore extracted and analyzed

the data for changes in the 45S rRNA (RNA Pol I) and tRNAs

(Pol III) annotated in the rnaGene track in the UCSC genome

browser. Our analysis revealed that the transcription of Pol I

and Pol III transcripts shows a similar pattern of regulation by

E2: (1) an initial burst at 10 min, (2) a slight decrease at 40 min,
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Figure 6. E2 Regulates Transcription by Pol I and Pol III

(A) E2-dependent fold change in the transcription of the 45S rDNA (Pol I) and

tRNA (Pol III) genes.

(B and C) Heatmap of the time course of E2-dependent regulation of tRNA
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function of mature tRNAs or rRNAs (C).
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shown in 1 kb bins relative to the genome location during the time course of E2

treatment.

See also Figure S6.
and (3) amaximal increase at 160min (Figures 6A and 6D). These

rapid effects are indicative of a primary, rather than secondary,

transcriptional response to estrogen signaling.
For individual tRNA genes, changes were strongly biased

toward upregulation, with the transcription of > 90% of the

tRNA genes showing upregulation (Figure 6B). Furthermore,

this regulation unambiguously affects 158 of the 486 functional

annotated tRNA genes (32%) in at least one of the time points.

If the cell is indeed regulating tRNA genes in order to facilitate

an increase in translation, onemay expect that all 20 amino acids

will be upregulated. Indeed, we found that, of the 158 upregu-

lated tRNA genes, at least one tRNA gene coding for each of

the 20 amino acids is represented (p = 0.0012; Fisher’s exact

test) (Figure S6A). In addition to the 20 primary amino acids,

we also found the tRNA coding for the amino acid variant seleno-

cysteine, which is thought to play a role in antioxidant activity and

hormone biosynthesis (Stadtman, 1996), to be regulated by E2.

Because each three-letter combination of codons is represented

multiple times in the 486 annotated tRNA genes, we also asked

whether E2 regulates a larger fraction of the 64 possible codon

combinations than expected by chance. Indeed, we find that

64%of the 64 codon combinations are unambiguously regulated

by E2, which is more than expected based on our ability to call

32% of tRNA genes as regulated (p = 0.0027; Fisher’s exact

test). These results demonstrate that the observed changes in

the protein biosynthetic machinery are applied in a robust and

coordinated manner across amino acid and codon variations.

We also conducted amore focused analysis of protein-coding

genes with functions or cellular localization suggesting a role in

protein biosynthesis (e.g., ribosome biogenesis, tRNA aminoa-

cetylation, etc.; see Figure S6B for all GO terms used). As we

observed for tRNA genes, protein-coding genes represented in

these groups are strongly biased toward upregulation (Fig-

ure 6C). As suggested by the GO analysis above, these genes

are strongly enriched in the 160 min max class (p = 6.7 3

10�13; Fisher’s exact test), suggesting that these are sustained

effects that translate the widespread changes observed in the

cellular transcriptome to the proteome.

Taken together, these results demonstrate a potent effect of

estrogen signaling on the protein biosynthetic machinery, which

fitswell with the knownmitogenic effects of E2 onMCF-7 cells. In

addition, they highlight the fact that estrogen signaling has

strong, immediate, and likely direct effects on transcription by

all three RNA polymerases, not just Pol II. Upregulation of the

protein biosynthetic machinery is likely a means by which the

estrogen-signaling pathway prepares the cell for translation of

the protein-coding transcripts that are newly synthesized in

response to estrogen signaling.

Relationship of ERa-Binding Sites to Primary Estrogen
Target Genes
Although most ERa-binding sites are located distal to the

promoters of protein-coding genes, a small but highly significant

enrichment of ERa-binding sites has been observed in the prox-

imal promoters of upregulated genes (Carroll et al., 2005, 2006),

consistent with a direct role of ERa in mediating their regulation.

Because our GRO-seq data reflect the direct transcriptional

output of the cell and because our shorter treatment times

make it unlikely that we will detect secondary changes in tran-

scription, we reasoned that we should observe that a larger frac-

tion of the genes that are regulated by GRO-seq are near
Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc. 631
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Figure 7. ERa-Binding Sites Are Enriched in

the Promoters of Primary E2 Target Genes

(A) The fraction of the specified subset of

RefSeq genes with an ERa-binding site found

within 10 kb of the TSS. Bars with different

superscripts are significantly different by Fisher’s

exact test (p < 1.2 3 10�12).

(B) The fraction of the specified transcript class

defined at 40 min. E2 treatment that initiates near

an ERa-binding site or an ERE.

(C) The fraction of ERa-binding sites found within

1 kb of either all well-annotated RefSeq genes or

the specified subset of de novo transcript anno-

tations determined by GRO-seq analysis.
ERa-binding sites. To test this hypothesis, we used existing ERa

ChIP-seq data (Welboren et al., 2009) to determine the fraction of

E2-regulated RefSeq genes with a proximal ERa-binding site

(<10 kb to the transcription start site). Indeed, we found that

46% of genes upregulated by E2 at shorter time points (i.e., 10

and 40 min) contain an ERa-binding site within 10 kb of the tran-

scription start site.

Interestingly, when we analyzed the four classes of RefSeq

genes (i.e., 10, 40, 160 min max, and downregulated) separately,

we found striking differences in binding site enrichment between

these classes (Figure 7A). In particular, almost half of the genes in

the 40 min max class are located within 10 kb of an ERa-binding

site, a striking enrichment over the �10% found for RefSeq

genes in general (p < 2.2 3 10�16; Fisher’s exact test). Genes

in the 10 min max class are also substantially enriched for prox-

imal ERa-binding sites (33%; p = 1.2 3 10�12). Upregulated

genes that peak after 160 min have a lower level of enrichment

that is not statistically significant (12%; p = 0.24), suggesting

that a substantial fraction of this subset of genes reflects

secondary effects. Conversely, downregulated genes were

slightly less likely than average to be located within 10 kb of an

ERa-binding site (8%; p = 0.01). This observation strongly

suggests that E2 mediates up- and downregulation by different

mechanisms and that immediate upregulated genes tend to be

the direct genomic targets of ERa. Those E2-regulated genes

that do not have a proximal ERa-binding site may be regulated

by (1) other promoter-proximally bound transcription factors

acting as endpoints of membrane-initiated E2-signaling path-

ways or (2) looping from distal ERa enhancers to the promoters.

Looking more broadly across the transcript classes, we found

that the sets defined at 40 min of E2 treatment show a greater

enrichment of both ERa-binding sites and EREs than the sets
632 Cell 145, 622–634, May 13, 2011 ª2011 Elsevier Inc.
defined at the other time points. Interest-

ingly, whereas the percentage of tran-

scripts initiating near a bioinformatically

defined estrogen response element

(ERE) is not greatly enriched compared

to all RefSeq transcripts and is relatively

constant across the transcript classes

(i.e., �30%–50%), the percentage of

transcripts initiating near an experimen-

tally defined ERa-binding site varies

considerably (Figure 7B). We observed
the greatest enrichment of ERa-binding sites, compared to all

RefSeq, near the initiation sites for annotated, antisense, diver-

gent, and enhancer transcripts, suggesting similar modes of

E2-dependent regulation as were observed for the protein-

coding transcripts (Figure 7B).

We next determined the fraction of all ERa-binding sites that

map within the proximal promoter (<1 kb) for each class of tran-

script defined in our GRO-seq analysis (i.e., looking from an

ERa-binding site-centric view, as opposed to the transcript-

centric view above). We found that �18% of all ERa-binding

sites fall near transcripts detected using our HMM inMCF-7 cells

(Figure 7C). This includes �5%–6% of ERa-binding sites near

transcripts matching annotated genes that were specifically

found to be expressed in MCF-7 cells using our approach (Fig-

ure 7C, orange bar), as well as an additional �12% of ERa-bind-

ing sites found in the proximal promoters of genes producing

transcripts that are not currently annotated in public databases

(i.e., antisense, divergent, and enhancer transcripts). Though

this finding still suggests that long-range enhancer-promoter

interactions play a pivotal role in actions of ERa, as suggested

previously (Fullwood et al., 2009; Pan et al., 2008; Theodorou

and Carroll, 2010), it demonstrates a 3- to 4-fold increase in

the fraction of ERa-binding sites that are located near TSSs.

Collectively, our results provide a new view of signal-depen-

dent transcription events that suggest new questions and new

ways of thinking about specific aspects of the transcriptional

response.
EXPERIMENTAL PROCEDURES

Additional details about the experimental procedures can be found in the

Supplemental Information.



Cell Culture

MCF-7 cells were maintained and propagated as described previously (Kininis

et al., 2009).

Generation and Analysis of GRO-Seq Libraries

GRO-seq was performed as described previously (Core et al., 2008), with

limited modifications. The data are available from the NCBI’s Gene Expression

Omnibus (accession number GSE27463), and the scripts are available upon

request from the corresponding author.

Generation of GRO-Seq Libraries

Libraries were generated from two biological replicates of MCF-7 cells grown

in estrogen-freemedium and treatedwith 100 nME2 as indicated. The libraries

were sequenced using an Illumina Genome Analyzer.

Transcript Calling and Annotation

Short-reads were aligned to the human reference genome (hg18, NCBI36),

including autosomes, X chromosome, and one complete copy of an rDNA

repeat (GenBank ID: U13369.1) using SOAP2 (Li et al., 2009). A two-state

hidden Markov model (HMM) (Durbin et al., 1998) was used to call transcripts,

which were then divided into six distinct, nonoverlapping classes, which are

intended to describe the function of each transcript. Annotations were made

using the decision tree outlined in Figure S1E and based on a set of definitions

(Figure S1F).

Determining Estrogen Regulation of Called Transcripts

E2-dependent changes in gene expression were detected using the edgeR

package (v.1.4.1) (Robinson et al., 2010). For each GRO-seq time point, reads

were counted in a window at the 50 end of each transcript (+1 to +13 kb). Tran-

scripts that change between the vehicle control and the 10, 40, or 160min time

points were collected for analysis if they met a false discovery rate (FDR) cor-

rected q value threshold (q < 0.001), corresponding to an �0.1% false

discovery rate under the edgeR modeling assumptions.

Clustering, Time Course, and Classification of Temporal Profiles

We selected all genes with an FDR corrected q value of 0.001 at any point

during the time course for inclusion in the temporal analysis. Computations

were performed in the statistical package R, using the same pipeline that we

described previously (Danko and Pertsov, 2009).

Additional Genomic Analyses

In addition to the analyses described above, we performed a set of more

focused analyses, as described below. Unless otherwise noted, all computa-

tions were performed in R.

Gene Ontology Analyses

Gene ontology analyses were performed usingGoStat (http://gostat.wehi.edu.

au/; Beissbarth and Speed, 2004). All expressed genes were used as a back-

ground set to analyze GO terms for each class (p < 0.05).

Protein Biosynthesis-Associated Protein-Coding Genes

Protein-coding genes with a primary biological function or cellular compart-

ment associated with the ribosome were identified using the Gene Ontology

(GO) website (http://www.geneontology.org/) (Figure S6B).

Comparing E2-Induced Changes in Transcripts Called by GRO-Seq

to Changes Observed by ExpressionMicroarrays and Pol II ChIP-Seq

RawCEL files from existingmicroarray data sets collected using the Affymetrix

U133 platform were analyzed together using a previously described pipeline

(Danko and Pertsov, 2009). Normalized microarray data were compared to

read counts mapping to the +1 to +13 kb window of genes regulated by E2

during at least one point in the GRO-seq time course.

MicroRNA Analyses

We identified E2-regulated primary transcripts from our HMM transcript

prediction algorithm that contain known miRNAs as described above. Each

of these E2-regulated pri-miRNAs was associated with its regulatory targets

using the TargetScan database (Lewis et al., 2005). Additional analyses were

performed as described in the Supplemental Information.

Comparing the GRO-Seq Results to Known ERa-Binding Sites

For the 10,205 ERa-binding sites defined by Welboren et al. (2009), we calcu-

lated: (1) the fraction of genes in a particular class that are found within 10 kb of

an ERa-binding site (Figure 7A) or (2) the fraction of ERa-binding sitesmapping

to within 1 kb, 5 kb, or 10 kb from the 50 end of the nearest transcript identified

de novo using the HMM described above or in a public database (Figure 7B).
Correlations between Primary Transcripts and Antisense/Divergent

Transcripts

Transcripts corresponding to sense/antisense or sense/divergent pairs were

collected, and the reads were counted and analyzed using R.

Metagene Analyses

We used metagene representations to illustrate the distribution of reads near

a ‘‘typical’’ transcription start site. Mathematically, we defined a metagene

as specified in the Supplemental Information.
RT-qPCR Gene Expression Analyses

Changes in the steady-state levels of the E2-regulated geneswere analyzed by

RT-qPCR, as previously described (Kininis et al., 2009). The fold expression

changes were normalized to GAPDH as an internal standard.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and two tables and can be found with this article online at doi:10.

1016/j.cell.2011.03.042.
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