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HIGHLIGHTS

« Partial substitution of cement in UHPC with supplementary materials is studied.

« Adequate SCMs do not lead to a significant degradation of mechanical properties.

« The effect on packing density outweighs the factor of SCM’s hydraulic reactivity.

« Replacement of cement with adequate SCMs leads to better ecological properties.

« Considering material savings and enhanced durability improves the UHPC eco-balance.
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Reinforced Concrete (RC) is the predominant and most frequently used building material with a world-
wide annual material flow of approximately 20-25 billion tons. Consequently, cement as the most used
inorganic binding material is responsible for more than 5% of the total anthropogenic CO, emissions.
Ultra High Performance Concrete (UHPC) is an emerging high-tech building material that - in comparison

UHPC to normal strength concrete (NSC) - allows for more slenderness and increased durability when design-
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ing RC-structures. The ecological impact of UHPC is affected by the high cement content with more than
double the amount needed in comparison to normal strength concrete. Substitution of cement in the mix-
ture by less-energy-intensive hydraulic concrete additives is investigated regarding its influence on the

concrete properties and its environmental impact parameters calculated for the different UHPC mixtures.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Research significance: Sustainability in concrete construction

In the European Union about 40% of total energy consumption is
attributed to the building and construction sector. In central Euro-
pean countries about 70% of the total material flow is caused by the
building industry [1,2]. These figures illustrate the importance of
sustainability in the building sector. Therefore, besides the efforts
to improve construction materials, the issue of sustainability has
gained more and more attention in recent years and has become
a primary focus in the construction materials industry.

The ecological targets include the minimizing of the exploitation
of non-renewable resources, thereby ensuring the regeneration of
renewable resources and the reduction of building waste and
residues. Furthermore, the efficient use of raw materials for the pro-
duction of building materials and concepts for the reuse and the
recycling of building waste are necessary to keep up with future
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demand as laid out in the Brundtland Report of 1987, where the term
“sustainability” was first defined [3].

Reinforced Concrete (RC) is well known as the most important
construction material worldwide. Recent success in the formation
of superplasticizers has given way to the development of the
new concrete family of Ultra High Performance Concrete (UHPC),
which is reaching a level in compressive strength that was earlier
only possible with steel. Several guidelines dealing with the
material properties and design concepts for UHPC have meanwhile
been elaborated [4-6].

The world’s annual overall material flow for concrete is esti-
mated to be approximately 20-25 Gt [7,8]. This amount of concrete
would correspond to a cube with a side length of more than 2 km
filled with concrete. Cement is the most used inorganic binding
material. According to the literature its worldwide production in
2012 amounted to about 3.6 Gt [9], which has a significant ecolog-
ical impact due to its production technology. The current rate of
growth in cement production is about 3-5% per year. The cement
industry is responsible for 5-8% of the total anthropogenic CO,
emissions [10]. This high figure comes predominantly from the
de-acidification of limestone, the main raw material in cement
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production and in addition from the energy compounds necessary
to reach the calcination temperature of 1450 °C. Therefore a
considerable potential reduction of the environmental impact of
concrete lies in the partial substitution of cement by less-energy-
intensive hydraulic concrete additives. This has an even greater
significance in concrete materials like UHPC with a high cement
content.

In the first part of the present study, UHPC mixtures with steel
fibers using different supplementary cementitious materials
(SCMs) are investigated in comparison with a reference UHPC mix-
ture. The goal is to reach similar properties of fresh and hardened
concrete with a lower impact on the environment. To quantify this
effect, in a second step the primary energy input (PEI) and the
following environmental impact indicators were considered in a
quasi-life-cycle assessment (LCA) approach for UHPC:

e Global warming potential (GWP).
o Acidification potential (AP).
e Eutrophication potential (EP).

The influence of ozone in the stratosphere (ODP) and the photo-
chemical creation process (POCP) is not taken into account. Data
reflecting the energy and environmental impact indicators were ta-
ken from the literature [11-13].

2. Substitution of cement in UHPC mixtures by SCM

A main focus of this research was to develop new mixtures for
UHPC with the substitution of high-energy-intensive cement by lo-
cally available supplementary cementitious materials like granu-
lated blast furnace slag (GBS) or fly ash (FA). Due to the high
cement content of about 800 kg/m?> in its mixture proportions,
UHPC has a critical impact on the environment if compared with
NSC. By substituting the cement content with SCMs, attention
was directed to the workability of fresh concrete and the mechan-
ical properties of hardened concrete. To visualize the effect the
properties were studied in comparison with a reference mixture
using only cement as a binder. Since the highest achievable com-
pressive strength was not within the focus of this research, no heat
treatment was applied to the UHPC specimens.

2.1. Degree of substitution

The substitution of cement of >30% by weight with quartz filler
material was investigated at the Royal Institute of Technology,
Stockholm [14] for different types of high strength concrete. The
mixtures with reduced cement content had similar workability
and compressive strength. The increase in packing density by the
ultra-fine filler material and the large content of unreacted cement
due to the low water-binder ratio was discussed as being respon-
sible for this behavior.

Results of another study with a similar focus were presented by
Heinz [15], substituting Portland cement by using GBS at a
different percentage by volume. The effect on workability and
mechanical properties of the UHPC mixtures is discussed. For
non-heat-treated mixtures, the best results were obtained at a
substitution range between 35% and 55% by volume.

The degree of substitution of Portland cement by SCMs (fly ash,
granulated blast furnace slag) in UHPC mixtures was also studied
based on the concept of the particle packing density by Puntke
[16]. An optimum substitution rate for GBS and FA in this respect
was obtained at 31% by weight [17].

In the present study, Portland cement was substituted by GBS in
fine and extra fine quality, as well as by FA. The results, gained on
the basis of a substitution rate in the UHPC mix design of 45% by
weight, are discussed in Section 3.

2.2. Mixture proportions

The reference mixture is a fine grain mixture, UM-5 with a
maximum grain size of 0.5 mm. As binder material a CEM I 42.5
R, SR O (free of C3A) was used. The range of the grain sizes was
0.1-0.5 mm for quartz sand, below 40 pm for quartz powder and
for the finest grain, microsilica (97% SiO,), 0.1-0.3 pm. The steel
fibers had a length of 15 mm and a diameter of 0.20 mm. As
superplasticizer a special formulation provided by SIKA-Austria
was applied. The mix design of all mixtures (reference mixture,
mixtures with SCMs) is presented in Table 1. The mixture propor-
tion of the reference mix UM-5 was strongly based on the maximi-
zation of the packing density of the fine grain, thereby reducing the
required amount of water. The methodology used was the set-up
developed by Puntke [16], identifying the voids in a powder-filled
small container by slowly adding water until the level of the pow-
der surface drops and thus indicates the point of water saturation.
The maximum packing density corresponds to the minimum
required amount of water.

The w/ceq value in Table 1 is the equivalent water to binder ratio
and has been derived on the basis of the k-value concept according
to EN 206-1 [18]. Thereby the hydraulic activity of SCMs is taken
into account via the k-factor (k=0.4 for FA and k=0.8 for GBS).
In addition the volume based water/fines ratio, w/f is defined as
an indirect measure for the packing density. With respect to this
decisive role of the fines (particles <125 um) [6,19], the w/f ratio
was kept nearly constant in the mixture proportions (see Table 1).

2.3. Characterization of supplementary cementitious materials used

The material characterization of the SCMs was performed using
specific surface analysis (Blaine value, cm?/g), material density and
grain size distribution by laser granulometry. The material proper-
ties for the SCMs used in the UHPC mixtures are shown in Table 2.

The grain size distribution of the SCMs and the cement is shown
in Fig. 1. Due to their latent hydraulic properties, GBS and FA pro-
vide favorable properties for the substitution of cement. Both are
locally available in Austria as by-products of the blast furnace pro-
cess of steel or from caloric power stations. Therefore the environ-
mental impact of these SCMs is accounted for in the industry
where they first appear and is not taken into account for the envi-
ronmental impact balance of concrete (this approach being in line
with the recommendations in [20]).

Alternative approaches for the allocation of the environmental
impact generated by the industrial processes to main products
and by-products or waste differ between primary and secondary
process, the latter one representing the required specific treatment
of waste or by-products for further use [21,22]. Different allocation
methods, e.g. based on the mass ratio between product and

Table 1

Constituents of the different UHPC mixtures.
Components UM-5 UM-5-FA  UM-5-GBSf = UM-5-GBSef

(kg/m?)

Cement CEM [ 42.5 R 729 401 401 401
Microsilica (k = 1.0) 124 124 124 124
FA (k=0.4) - 328 - -
GBSf (k = 0.8) - - 328 -
GBSef (k = 0.8) - - - 328
Quartz powder 397 397 397 397
Quartz sand 833 833 833 833
Total water (incl. SP) 200 200 200 200
Superplasticizer (SP) 30 30 30 30
Fibers (Stratec 0.2/15) 155 155 155 155
W/Ceq 0.234 0.305 0.254 0.254
w/f 0.47 0.44 0.45 0.45
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Table 2
Material properties of cement and SCMs.
CEMI FA GBSf GBSef
Density (g/cm®) 3.24 2.51 2.74 2.90
Blaine value (cm?/g) 4387 4410 4790 5620

Ds5o:MMD (mass-median-diameter) (um) 11.05 1429 14.71 847

Cement: CEM 142.5 R, SR 0.

FA: fly ash.

GBSf: granulated blast furnace slag fine.
GBSef: granulated blast furnace slag extra fine.
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Fig. 1. Grain size distribution by laser granulometry.

by-product or related to the currently added economic value, can
lead to different and sometimes even higher environmental bur-
dens of the by-product than the replaced material; however, none
of the procedures are incontestable [21]. Moreover other advanta-
ges like resource savings should then be taken into account in the
total balance.

3. Material properties of UHPC with supplementary
cementitious materials

3.1. Fresh concrete properties of UHPC mix design with reduced
cement content

Taking into consideration the manufacturing technique, suffi-
cient time should be allowed before the UHPC stiffening process
starts. For the mixtures under investigation it was found that the
workability was appropriate approximately 20 min from the addi-
tion of water, thus enabling the casting process from placing the
concrete until release of entrapped air within this time slot. To
provide a basis for judging the workability and identifying the opti-
mum viscosity of the UHPC mix, the slump-flow test for mortars
was performed on the basis of the European Guidelines for Self-
Compacting Concrete [23]. However, with respect to the quick
stiffening process, the slump flow test was modified in terms of
measuring the spread of the fresh concrete already after 2 min
(see results in Fig. 2). Thereby a diameter of 270 mm turned out
to be the lower limit of the slump flow to enable proper handling
of the UHPC mix. The temperature of the mixture plays an impor-
tant role and should not exceed 30 °C during the mixing process.

3.2. Hardened concrete properties

Curing and storing conditions of specimens were in accordance
with the Austrian standard ONR 23303 [24] (remove from mold
after 24 h, then up to the 7th day storage under water in curing
tank, afterwards further curing in air under laboratory conditions
up to the 28th day). The compression tests were performed on
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Fig. 2. Results of slump flow test after 2 min.
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Fig. 3. Compressive strength.

Table 3

Puntke test results - packing density.
UHPC mix Ny (%) ne (%)
UM-5 39.7 60.3
UM-5-FA 39.2 60.8
UM-5-GBSf 39.1 60.9
UM-5-GBSef 38.9 61.1

100 mm cubes made of fiber reinforced UHPC on the 28th day after
preparation. As shown in Fig. 3, the compressive strength of the
reference mixture UM-5 was 166.1 MPa. A similar result with only
2.6 MPa below was obtained for the mixture UM-5-GBSef, fiber
reinforced UHPC with the substitution of 45% by weight of the
cement by extra fine GBSef. The other two substitution mixtures
reached values of 139.4 MPa (UM-5-GBSf) and 124.7 MPa (UM-5-
FA) respectively, which is 83% and 75% of the compressive strength
of the reference mixture.

The best results in terms of workability (see Fig. 2) as well as com-
pressive strength (see Fig. 3) were obtained from the substitution of
cement by GBSef with a Blaine value close to 6000 cm?/g. For the
evaluation of the packing density of the different mix proportions
Puntke tests [16] were performed. The results of these tests (repre-
senting average values of 3 tests each) are listed in Table 3. The
packing density of the fine grain (n¢) corresponds to the amount of
water (n,,) required to fill the voids (nf=1 —n,,). The packing
densities of the mixtures with SCMs are slightly above the value of
the reference mixture, the highest one with 61.1% for GBSef.

4. Comparison of the ecological properties of different UHPC
mixtures

Based on the promising mechanical properties, the developed
UHPC mixtures using SCMs were evaluated in terms of environ-
mental impact indicators. In radar charts, usually used to indicate
environmental impact categories of construction materials [25],



376 N. Randl et al./ Construction and Building Materials 67 (2014) 373-378

the results of the influence of the substitution of cement in UHPC
and the position of UHPC in relation to the concept of “green con-
crete” according to [26] are shown.

4.1. Comparison of UHPC with NSC

The main topic of this section is the comparison between the
relevant UHPC mixtures and NSC on the basis of their ecological
properties. These were calculated from the primary energy input
parameter and environmental impact indicators for the constitu-
ents of the different mixtures. The respective data have been de-
rived from sources [13,27]. The procedure applied is a simplified
LCA approach according to EN ISO 14040 [28], focusing on the
materials required for 1 m> compacted concrete. For the sake of
better comparability to NSC, for the UHPC mixtures the influence
of potential steel fibers was not considered. The environmental
impact parameters taken into account are listed in Table 4, includ-
ing the scaling factors to be applied when interpreting the graphs
in Figs. 4 and 5.

Fig. 4 shows the effect of the environmental impact indicators
in the mix design of 1 m> compacted UHPC. The ecological data
of the individual ingredients were assessed and weighted accord-
ing to their percentage in each mixture. The results were generated
for the three mixtures discussed, using the scaling factors listed in
Table 4 for illustration reasons (see Figs. 4 and 5).

In comparison to normal strength concrete C30/37, the data
show a substantial increase for UHPC in all parameters. Comparing
the two UHPC mixtures UM-5 and UM-5-GBSef, a significant
reduction in the parameters thanks to the substitution of cement
can be seen as the result: in detail a reduction of about 32% of
PEI non-renewable, 24% of PEI renewable, 42% of GWP and 20%
of AP is achieved. The results in Fig. 4 thus demonstrate clearly
the effect in the UHPC mix design towards mixtures of less ecolog-
ical impact when substituting cement with SCMs. In addition, in
order to provide a realistic evaluation and make use of the full

Table 4
Energy and environmental impact indicators.
Environmental impact indicators Unit Scaling
factor
Primary energy input - renewable, PEl.  (MJ/m>) 10?
Primary energy input - non-renewable,  (MJ/m?) 10*
PElnon-re
Global warming potential, GWP (kgCO5-eq/m?) 10°
Acidification potential, AP (kgS0,-eq/m3) 1
Eutrophication potential, EP (kgPO4-eq/m?) 1
PEI
renewable
[102 MJ/m?3]
PEI
i non renewable
kg SO2/m3
[kgiSO:/m’] [10% MJ/m?]
---UM-5
----UM-5-GBSef
\ \ —C30/37
P GWP
[kgPO4/m?] [10% kg CO,/m?]

Fig. 4. Comparison of ecological indicators in UHPC mix design.
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Fig. 5. Comparison of environmental impact parameters between 1 m* of C30/37,
UHPC reference mixture UM-5 and UHPC with GBS extra fine (considering a
reduction of the cross-section and increased durability of UHPC).

ecological potential of UHPC, the possible reduction in the amount
of material used to reach the same load bearing capacity and the
increase of the durability has to be taken into account.

4.2. Comparison of building members made of UHPC with NSC

Due to its extraordinary compressive strength and the increased
tensile strength (approximately 3 times higher than for NSC) UHPC
allows for a reduction of the cross section compared to standard RC
members, see e.g. the study presented in [1]. The reduction poten-
tial depends on the kind and the geometry of a building member,
the relevant load scenarios and the decisive failure modes. While
compression members allow for significantly increased slender-
ness when using UHPC, the reduction is rather limited when con-
sidering members subject mainly to bending. In the latter case
the amount and the properties of the reinforcing steel and the in-
ner lever arm, to some extent influenced by the compressive
strength of the concrete, are decisive for the achievable slender-
ness. By adequately reducing the width of web sections and
increasing the inner lever arm according to the shifting of the
center of the compression zone, in the case of flexural members
the cross sectional reduction potential may range from less than
10% to about 20%.

On the other hand, building columns are slender compression
members where buckling is the predominant failure mode and
cast-in reinforcement bars overtake usually substantial parts of
the compression force. In this case, when assuming standard rein-
forcement degrees between 2% and 4%, reductions of the cross sec-
tion by 30-50% can be achieved. Concerning rather compact
members under compression without risk of buckling failure, the
possible material savings are even larger and nearly proportional
to the enhancement of the concrete strength.

In order to take the optimization of the cross section into ac-
count, in the present study a reduction of one third, i.e. 33% was
considered as representative. In that context, it should be borne
in mind that also the requirements on fire resistance could lead
to a higher reduction. For the comparison with NSC, a reference
concrete C30/37 is chosen.

Another important aspect is the increased durability and
lifetime of UHPC members. Regarding experimental investigations
on durability parameters like chloride ion penetration, carbon-
ation, abrasion and freeze-thaw resistance, a substantial increase
of the durability can be deduced. Based on experimental investiga-
tions at Kassel University [29], compared to standard NSC, the
carbonation process under outdoor conditions is 3-6 times slower
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in UHPC. Several other studies report similar beneficial durability
properties of UHPC [30-32]. In general a very low level of migra-
tion of chloride ions into the UHPC can be observed. According to
[33] the chloride diffusion is retarded (based on rapid chloride
migration tests) with a time factor of larger than 4 compared to or-
dinary concrete.

In order to consider the increased lifetime of UHPC compared to
NSC structures, in the present study a factor of 2 is applied (Fig. 5).
The chosen ratio corresponds to [30] where the authors expect,
based on a variety of performed durability tests, that UHPC outper-
forms NSC by at least twice as much in service life. While the dura-
bility tests reported in the above mentioned studies [29-32] would
justify even higher durability factors (at least a ratio of 3-4 can be
argued), current codes on the other hand do not require a corre-
sponding extension of the design life of buildings and structures
so that it would be difficult to argue the actual benefit when apply-
ing such high factors.

Taking into account both cross-sectional reduction and
enlarged lifetime in the mentioned way, the generated radar chart
in Fig. 5 shows that the ecological impact is significantly reduced
and thus UHPC building members may finally cause less environ-
mental burden than NSC. Additional subsidiary factors like reduced
cross sections of foundations or savings in floor space due to the
use of, e.g., slender columns [1] are thereby not taken into account.

In addition the consideration of reinforcing steel and/or steel fi-
bers is another important aspect when evaluating the ecological
impact of building members. RC-structures usually contain at least
a minimum amount of steel reinforcement bars while UHPC due to
its brittleness is preferably equipped with a certain amount of steel
fibers. Based on tensile tests with Ultra High Performance Fiber
Reinforced Concrete (UHPFRC), a steel fiber amount of at least 2%
by volume may lead to a strain-hardening tensile behavior of the
UHPFRC rather than strain-softening [34]. However, in many cases
for structural applications a fiber amount of 0.5-1% by volume may
already be sufficient to avoid brittle failure. In addition UHPFRC
members will usually also contain a reduced amount of steel rein-
forcement bars. The incorporation of both fibers and steel rebars
will increase the environmental impact factors substantially due
to the energy-consuming production process and may thus be-
come one of the most dominant factors when considering all
UHPFRC ingredients [35]. However, considering the environmental
impact of the steel ingredients makes only sense with reference to
real building members with a given reinforcement layout and is
therefore not taken into account in the present study.

5. Conclusions

The present study investigates the substitution of cement in
UHPC by less energy-intensive latent hydraulic concrete additives,
focusing on its effect on the mechanical properties and the envi-
ronmental impact categories. The production-related CO, emis-
sions of such alternative additives are not considered in this
context, as they are by-products of industrial processes, in which
their environmental impact is accounted for. The outcome of the
investigations can be summarized as follows:

1. The substitution of cement by appropriate less energy intensive
cementitious materials is possible up to about 45% by weight
without significant degradation of mechanical properties and
workability parameters.

2. The results indicate that achieving an adequate packing density
when using ultra-fine materials like extra-fine granulated blast
furnace slag (GBSef) is even more decisive for the UHPC proper-
ties than the hydraulic reactivity of such materials.

3. Comparing the environmental impact categories of UHPC with
that of NSC, the substitution of cement by SCMs is only a first
step towards improving the sustainability of UHPC from the
ecological point of view. However, when considering building
members and also taking into account the reduction of material
consumption and the increased durability and lifetime, the
overall picture improves substantially.

4, Further optimization of the partial substitution of the cement
and the use of alternative fiber materials are required to
increase the acceptance and competitiveness of UHPFRC from
the environmental point of view.
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