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Secondary,  so-called  costimulatory,  signals  are  critically  required  for the  process  of  T cell activation.
Since  landmark  studies  defined  that  T  cells  receiving  a T cell  receptor  signal  without  a  costimulatory
signal,  are  tolerized  in  vitro,  the investigation  of T cell  costimulation  has  attracted  intense  interest.  Early
studies  demonstrated  that  interrupting  T cell  costimulation  allows  attenuation  of the  alloresponse,  which
is particularly  difficult  to  modulate  due  to  the  clone  size  of alloreactive  T cells.  The  understanding  of
costimulation  has  since  evolved  substantially  and  now  encompasses  not  only  positive  signals  involved
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in T cell  activation  but  also  negative  signals  inhibiting  T cell  activation  and  promoting  T cell  tolerance.
Costimulation  blockade  has been  used  effectively  for the induction  of  tolerance  in rodent  models  of
transplantation,  but  turned  out  to be less  potent  in  large  animals  and  humans.  In  this  overview  we
will  discuss  the  evolution  of the  concept  of  T  cell costimulation,  the  potential  of  ‘classical’  and  newly
identified  costimulation  pathways  as therapeutic  targets  for  organ  transplantation  as  well  as  progress

on  of
towards  clinical  applicati

. Introduction

The development of new immunosuppressive drugs together
ith other innovations has lowered acute rejection rates and has

mproved short-term graft survival after organ transplantation, but
ong-term graft survival improved much less [1].  T cells play a cen-
ral role in the immune response towards allografts [2]. Therefore,
nterfering with T cell activation offers the potential of prolonging
raft survival through modulation of the alloresponse. The process
f T cell activation is now recognized to involve multiple signals and
istinctly regulated pathways. A 2-signal model was initially pro-
osed by Lafferty and Cunningham in 1975 [3].  Signal 1 is delivered
hrough the T-cell receptor (TCR) interacting with cognate antigen
n the context of MHC  and initiates the T cell activation process.
ignal 1 alone is, however, insufficient for full T cell activation but
ather leads to T cell anergy [4].  An additional signal 2 – the so-
alled costimulatory signal – provided by a number of specialised
ell surface receptors is required for survival, clonal expansion and
ifferentiation of activated T cells.
The paradigm of T cell costimulation originally implicated that
locking costimulatory signals at the time of antigen encounter
brogates a T cell response and induces T cell anergy, an
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antigen-specific state of tolerance. Consequently great interest was
triggered in exploiting the concept of T cell costimulation ther-
apeutically with the goal of more selectively targeting the T cell
allo-responses [5] and possibly even inducing immunologic toler-
ance [6].  Over the last two  decades, noticable progress has indeed
been made in the development of ‘costimulation blockers’ for the
use in transplant recipients (which is discussed in more detail later)
[6,7]. In the meantime, our understanding of T cell costimulation at
the molecular level has evolved considerably, too. It is now recog-
nized that the spectrum of mechanisms triggered by costimulation
blockade involves not only anergy, but also clonal deletion and reg-
ulation [8,9]. Moreover, while costimulation blockade effectively
induces allograft tolerance in selected rodent models [10,11], it
has become evident that it is insufficient to do so in non-human
primates (NHP) [12–15].  Memory T cells – whose frequency is
markedly higher in NHP than in laboratory rodents and which are
less dependent on conventional costimulation signals – have been
identified as a major factor in costimulation blockade-resistant
rejection [16,17]. Finally, with the identification of numerous addi-
tional costimulation pathways, including those that negatively
regulate T cell activation, the concept of T cell costimulation is now
much more complex and its therapeutic exploitation less straight-
forward than originally anticipated [18].

2. Costimulatory pathways

Open access under CC BY-NC-ND license.
Costimulatory molecules can be categorized based either on
their functional attributes or on their structure. The costimulatory
molecules discussed in this review will be divided into (1) positive

https://core.ac.uk/display/82593049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.smim.2011.04.002
http://www.sciencedirect.com/science/journal/10445323
http://www.elsevier.com/locate/ysmim
mailto:Thomas.Wekerle@meduniwien.ac.at
dx.doi.org/10.1016/j.smim.2011.04.002
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


294 N. Pilat et al. / Seminars in Immunology 23 (2011) 293– 303

F s of c
t  (b) C
S

c
a
o
g
f
d
l
t
t
a
d
C
w

2

2
2
o

ig. 1. Costimulatory pathways relevant in transplantation. (a) Expression pattern
o  structure and function as positive or negative signalling pathway are indicated.
ignals  inhibited by these compounds are shown in grey.

ostimulatory pathways: promoting T cell activation, survival
nd/or differentiation; (2) negative costimulatory pathways: antag-
nizing TCR signalling and suppressing T cell activation; (3) as third
roup we will discuss the members of the TIM family,  a rather “new”
amily of cell surface molecules involved in the regulation of T cell
ifferentiation and Treg function. According to structure, costimu-

atory molecules can be broadly divided into 4 distinct groups: (i)
he immunoglobulin (Ig) family (e.g. CD28, CTLA4, PD-1, ICOS), (ii)
he TNF–TNFR family (e.g. CD40, CD137, OX40), (iii) the TIM family
nd (iv) cell adhesion molecules (e.g. CD2, LFA-1). In addition to
iscussing the “classical” targets of costimulation blockade (CD28,
D154), we will focus on selected other costimulation pathways
ith therapeutic potential in organ transplantation (Fig. 1).

.1. Positive costimulatory pathways
.1.1. Costimulatory molecules of the Ig family

.1.1.1. CD28/B7 pathway. The CD28 costimulation pathway is one
f the best characterized and probably the most important one for
ostimulatory molecules on T cells and APC are depicted. Categorization according
ostimulation blockers in (pre)clinical development and their ligands are depicted.

naïve T cell activation in both mouse and humans. CD28 is a homod-
imeric transmembrane protein which is constitutively expressed
on all T cell subsets in mice, and on 95% of CD4 and 50% of CD8 T
cells in humans [19]. CD28 binds to B7.1 (CD80) which is inducibly
expressed and B7.2 (CD86), which is constitutively expressed on
the surface of APCs [20,21]. B7.1 and B7.2 expression is also found
on T cells [21]. Upon engagement with its ligands, CD28 pro-
vides a costimulatory signal triggering survival, proliferation and
cytokine production of T cells. CD28/B7 ligation in the presence
of TCR stimulation increases the expression of the IL2 receptor �-
chain (CD25) and of CD40 ligand (CD40L and CD154), and induces
cytokine production, including IL2 and interferon-� (IFN�). Fur-
thermore, expression of anti-apoptotic molecules (e.g. Bcl-xL) is
enhanced and IL2/CD25 binding activates the mammalian target of
rapamycin (mTOR) pathway initiating T cell proliferation [22]. TCR

stimulation in the absence of CD28 signalling induces classical T
cell anergy in vitro [23]. Anergic T cells are functionally inactivated
with reduced proliferation, differentiation and cytokine production
[24].
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Upon activation, T cells up-regulate the negative costimulatory
olecule cytotoxic T-lymphocyte-associated-antigen 4 (CTLA4 and

D152), which shares ∼20% homology with CD28 and binds the
ame ligands as CD28, i.e. B7.1 and B7.2. Notably, CTLA4 binds B7
olecules with higher avidity and affinity, thereby outcompeting

D28 and preventing its ligation. Moreover, the intracellular CTLA4
ignal directly antagonizes CD28 signalling by inhibiting AKT [19].
hus, CTLA4 provides a negative feedback loop that down-regulates

 cell responses [25,26]. Besides, CTLA4 is constitutively expressed
n FoxP3+ Tregs and is critical for their suppressor function [27,28].
TLA4-dependent ligation of B7 also transmits outside-in signals to
he APC, down-modulating expression of B7 molecules [29] and up-
egulating the tolerogenic enzyme indoleamine 2,3-dioxygenase
IDO) [30].

As direct blockade of CD28 with anti-CD28 mAbs turned out
o be difficult due to unwanted agonistic ‘side effects’, alterna-
ive strategies were sought and resulted in the development of
he fusion protein CTLA4Ig [31]. This fusion protein consists of
he extracellular CTLA4 domain and the Fc portion of IgG1. Due
o its higher affinity CTLA4Ig prevents CD28 signals by outcompet-
ng CD28 for binding to its only ligands CD80/86 [32]. At the time

hen CTLA4Ig was designed, the higher binding affinity but not
he physiologic function of CTLA4 as negative regulator had been
evealed [33]. Only later it was recognized that blocking CD80/86
lso prevents ligation of CTLA4 and thus prevents a negative cos-
imulatory signal to the T cell. CTLA4Ig (abatacept) has since been
pproved for the treatment of rheumatoid arthritis [34] and a sec-
nd generation CTLA4Ig, belatacept [35], is close to clinical approval
or renal transplantation (see below) [36,37]. Another approach
o target CD28 was the development of anti-CD80/86 monoclonal
ntibodies (mAb). Anti-CD80/86 prolonged renal allograft survival
n non-human primates (NHP) [38,39] and were tested in a phase

 clinical trial [40]. Further development seems uncertain [28] in
articular in view of CTLA4’s role in the induction of peripheral
olerance [41].

In vivo blockade of CD28 with CTLA4Ig potently prolongs
llograft survival in numerous rodent models [42–44].  CTLA4Ig
nduces long-term survival of heart [44,45],  islet [46] and renal
rafts [47,48],  although donor splenocyte transfusion (DST) –
romoting the generation of Tregs [49] – was  required for the

nduction of robust tolerance in most models [43]. CTLA4Ig syn-
rgizes with other costimulation blockers, most notably with
nti-CD154 [10]. The timing of CTLA4Ig administration influences
ts effects with delayed administration leading to superior results
43], probably by allowing up-regulation and engagement of CTLA4
9,50]. Although CTLA4Ig is highly effective in rodent models, it
oes not lead to skin graft tolerance across MHC barriers [10,42].
ranslation of CTLA4Ig therapy into NHP was disappointing at
rst, with only modest prolongation of allograft survival [12,51],
hich prompted the development of belatacept, a 2nd generation
TLA4Ig with increased binding affinity [35]. Recently, alefacept, a
imeric fusion protein consisting of the CD2-binding portion of the
uman lymphocyte function-associated antigen-3 (LFA-3) linked
o the Fc portion of human IgG1, was found to act synergistically
ith CTLA4Ig in NHP renal transplantation [52]. Alloreactive CD8 T

ells progressively lose CD28 expression upon activation, becoming
ncreasingly insensitive to CD28 blockade by CTLA4Ig/belatacept.
owever, since they upregulate CD2 in this process, alefacept
ffectively targets those effector/memory CD8 cells that are not
ontrolled by CTLA4Ig/belatacept [53]. As alefacept is clinically
pproved for the treatment of psoriasis, this combination of
reatments offers immediate potential for clinical translation.
Recently, interest in CD28-specific mAbs was  rekindled. Two
ypes of agonistic anti-CD28 mAbs can be distinguished [54]:
uperagonistic anti-CD28 mAbs induce full T cell activation even in
he absence of TCR stimulation, whereas conventional (agonistic)
nology 23 (2011) 293– 303 295

anti-CD28 mAbs provide a costimulatory signal only in combina-
tion with TCR stimulation. Superagonistic anti-CD28 mAb leads
to the preferential activation and expansion of Tregs in vitro and
in vivo [55,56]. Agonistic anti-CD28 mAbs prevent autoimmune
diseases [57], GVHD [58] and prolong allograft survival [59,60] in
rodent models. Clinical development of superagonistic anti-CD28
had to be stopped, however, after catastrophic results from a phase
I trial. Six healthy volunteers experienced a massive cytokine storm
upon administration of a superagonistic anti-CD28 mAb  [61]. In
rodents, in sharp contrast, superagonistic anti-CD28 therapy had
not been associated with massive release of pro-inflammatory
cytokines [57], presumably because activation and expansion
of Tregs effectively suppressed the inflammatory response [62].
Recently, progress was reported in the development of mAbs block-
ing CD28 without agonistic activity. A monovalent single chain
antibody (sc28AT) prevented T cell proliferation and cytokine
production in vitro and synergized with CNIs to prevent acute
and chronic allograft rejection in NHP models [63]. By selectively
blocking CD28, CTLA4 (and presumably PDL-1) signals remain
intact and contribute to the immunomodulatory effects.

2.1.1.2. ICOS/B7h pathway. The CD28 homolog inducible costimu-
latory molecule (ICOS) is expressed upon activation in CD4+ and
CD8+ T cells and persists in effector and memory T cells [64,65].
ICOS binds to its ligand B7h (B7 homolog; B7-H2, ICOSL) which is
structurally related to B7-1/2 but does not bind to CD28 or CTLA4
[66]. Signalling through ICOS enhances T cell proliferation, survival
and cytokine production and is important for T–B cell interactions,
providing help to B cells [67]. ICOS expression on B cells is involved
in the immunoglobulin class switch [64], germinal center formation
and memory B cell generation [21]. Furthermore ICOS is upregu-
lated on NK cells, promoting NK cell function [68].

ICOS is expressed on both Th1 and Th2 cells, however expres-
sion is higher on Th2 cells. In non-transplant settings, ICOS blockade
effectively inhibits Th2 responses through mechanisms requiring
intact CTLA4 and STAT6 signalling pathways [69]. A critical role
for ICOS in Th1 responses was not observed in models examin-
ing primary and recall responses [70] but it seems to regulate
CD28-independent anti-viral Th1 and Th2 responses and cytokine
proliferation [71]. Anti-ICOS mAbs prolong cardiac allograft sur-
vival [72], with timing of ICOS blockade being a critical factor as
only delayed blockade suppresses effector CD8+ T cell generation
and significantly extends allograft survival [69]. ICOS blockade pro-
longs allograft survival to a lesser degree than anti-CD40L mAbs or
CTLA4Ig [72], but combined treatment with either of these results in
long-term cardiac allograft survival and prevents chronic rejection
[73]. Thus co-blockade of ICOS/B7h and CD28/B7 or CD40/CD40L
has synergistic effects on the prevention of allograft rejection.

2.1.2. Costimulatory molecules of the TNF/TNFR family
2.1.2.1. CD40/CD154 pathway. In addition to CD28/B7, the
CD40/CD154 (CD40L) pathway is the second major pathway
on which interest focuses in transplantation medicine. CD40 is a
member of the TNFR superfamily and is constitutively expressed –
at low levels – on the surface of APCs, including B cells, endothelial
cells and fibroblasts [74] and is significantly upregulated upon
activation [75]. Ligation of CD40 is critical for DC activation and
maturation as well as for B cell activation and the immunoglobulin
class switch. Downstream signalling of CD40 leads to up-regulation
of MHC  molecules and costimulatory molecules of the B7 family as
well as increased inflammatory cytokine production [18]. CD154
(CD40L) – the only known ligand of CD40 – belongs to the TNF

superfamily, is expressed on activated T cells (including iNKT cells)
and subsets of NK cells, eosinophils and platelets [74]. To date, it has
still not been fully resolved whether CD40L transmits a signal to T
cells, which is of particular interest with regard to the development
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f antibodies to CD40L/CD40 [76–80].  Mutations in the CD40 or the
D40L gene cause the hyper IgM syndrome, an immunodeficiency
isorder characterized by defects of immunoglobulin class switch
ecombination, with or without defects of somatic hypermutation
eading to humoral immunodeficiency and a susceptibility to
pportunistic infections [81].

Increased levels of CD40 (upon activation) result in increased
D40/CD154 interactions and an increased strength of antigen
pecific signals, making interruption of this pathway an attrac-
ive therapeutic target in autoimmune diseases [82] and allograft
ejection [5,18].  Blockade of CD40/CD154 costimulation (by either
nti-CD154 mAb  or genetic knockout) is exceptionally effective in
xperimental transplantation models [9],  preventing acute rejec-
ion and prolonging allograft survival [83]. However, CD40/CD154
lockade on its own does not prevent chronic rejection [84,85].
he therapeutic efficacy of CD40/CD154 blockade is increased
hrough combination with a number of other therapies, in par-
icular DST, CTLA4Ig and rapamycin [86]. Combining anti-CD154

Abs with DST leads to donor-specific tolerance without signs of
hronic rejection in murine models of islet and cardiac allograft
ransplantation [10]. Although CTLA4Ig was shown to synergize
ith anti-CD154 mAb  [10], long-term skin graft survival was not

chieved when stringent strain combinations were used [87,88].
Monoclonal antibodies specific for CD154 have shown great

romise in both rodent and early NHP models [10,12,13,89]. Unex-
ectedly, however, anti-humanCD154 antibodies were associated
ith severe thromboembolic complications in a phase I trial [90]

and subsequent NHP studies [91]). Clinical development of anti-
D154 mAbs was suspended indefinitely. The pro-thrombotic
ffects of anti-CD154 mAbs were identified to involve the expres-
ion of CD154 on platelets where it participates in the stabilization
f thrombi [92]. Anti-CD40 mAbs are an alternative approach for
locking CD40/CD154 costimulatory signals without interfering
ith the aggregation of platelets. Results obtained with newly
esigned anti-CD40 mAbs are encouraging [93,94].  A chimeric anti-
D40 mAb  (Chi220) substantially prolongs islet allograft survival in
hesus macaques, acting synergistically with belatacept [93]. Sev-
ral anti-CD40 mAbs are currently under investigation, with at least
ne of them having recently entered clinical development (Clinical-
rials.gov Identifier: NCT01279538).

.1.2.2. OX40/OX40L. The costimulatory molecule OX40 (CD134)
elongs to the TNFR family, is expressed on activated T cells [95]
preferentially on CD4+ T cells including activated Tregs) and medi-
tes T cell differentiation, proliferation and survival [96]. OX40
igand (OX40L) is expressed on activated dendritic cells, B cells and
ascular epithelial cells [97]. Signalling through the OX40/OX40L
athway is critical for humoral immune responses and enhances

 cell proliferation and differentiation [97]. OX40 costimulation is
ot dependent on intact CD28 signalling although CD28 signal up-
egulates OX40 expression on T cells [98]. OX40 has a critical role in
egulating differentiation programs for Th1/Th2 as well as memory

 cell generation [96,99,100].
Blockade of the OX40/OX40L pathway (using anti-OX40L mAbs)

as little effect on the survival of allografts. However, OX40 plays
 critical role in CD28- and CD40-independent rejection as anti-
X40L prolongs allograft survival in CD28/CD40L double deficient
ice [101] and synergizes with CD154- and/or CD28-blockade to

revent allograft rejection [101,102].  Although OX40 signalling
eems to have little impact on primary T cell responses [101], it
s important for the survival of activated T cells and memory T cell

eneration [103]. Thus, OX40 blockade is a potent candidate for tar-
eting CD154/CD28 costimulation blockade-resistant memory cells
104,105], which are a major concern in clinical transplantation
106].
nology 23 (2011) 293– 303

Of  note, OX40 is constitutively expressed on both natural and
induced Tregs and plays a pivotal role in Treg generation and sup-
pressor function [107–109]. In contrast to its positive costimulatory
role in effector T cells, signalling through the OX40/OX40L path-
way leads to negative costimulation in Tregs. OX40 ligation leads to
decreased FoxP3 expression and loss of suppressor function in vitro
and in vivo [110]. Moreover, OX40 costimulation prevents the de
novo induction of iTregs by TGF� [110] and the generation of Tr1
regulatory cells [111]. Thus, OX40 signals promote effector cells and
shut down regulatory T cells.

2.1.2.3. 4-1BB/4-1BBL pathway. 4-1BB (CD137) is also a mem-
ber of the TNFR family, primarily expressed on activated T cells
[112], mediating T cell activation, differentiation and survival upon
engagement [113,114].  Its ligand 4-1BBL is expressed on mature
DC, activated B cells and macrophages. The 4-1BB/4-1BBL pathway
is suggested to contribute to skin allograft rejection in the absence
of CD28 signalling, and is critical for cytotoxic T lymphocyte (CTL)
responses [115,116].

The role of the 4-1BB costimulatory pathway with regard to
transplantation varies between models. Blocking the 4-1BB signal
with 4-1BB-Ig, anti-4-1BBL mAbs or genetic knockdown leads to
prolongation of cardiac and intestinal allograft survival, whereas
skin grafts are still promptly rejected [117,118].  The bulk of data
suggests that 4-1BB costimulatory signals play an eminent role in
CD8+ T cell mediated allograft rejection [5].

2.1.2.4. GITR/GITRL pathway. The glucocorticoid-induced TNF-R
family related gene (GITR) is expressed at high levels on CD4+ and
CD8+ T cells upon activation, whereas Tregs constitutively express
GITR [119]. GITR is suggested to be involved in Treg survival and
function as anti-GITR leads to loss of suppressive function in vitro
[120,121].  In conventional T cells GITR/GITRL costimulatory signals
promote T cell proliferation and cytokine production. However, its
role in transplantation still needs to be clarified [122,123].

2.1.3. Cell adhesion molecules
2.1.3.1. LFA-1/ICAM pathway. Leukocyte function-associated
antigen-1 (LFA-1) is a �2 integrin heterodimer consisting of the
unique � chain CD11a and the common � chain CD18. LFA-1 binds
to intracellular adhesion molecules, primarily ICAM-1. LFA-1 is
involved in T cell trafficking, immunological synapse formation
and costimulation [124]. In addition to promoting optimal T cell
activation through stabilization of the T/APC contact during TCR
engagement, LFA-1 appears to deliver direct costimulatory signals
[125] involved in T cell activation and CTL function [126,127].
LFA-1 is also expressed on B cells [128] and upregulated on
memory T cells [129], suggesting therapeutic potency in targeting
CD154/CD28 costimulation blockade-resistant memory cells.

Blockade of LFA-1 (by anti-LFA-1 mAbs) synergizes with other
costimulation blockers and immunosuppressive drugs in prolong-
ing survival of islet, cardiac and skin allografts and in preventing
GVHD [130–135]. An anti-LFA-1 mAb  disappointed in early clini-
cal pilot trials of adult BMT  [136] and data on the efficacy in solid
organ transplantation remain controversial [137,138].  A human-
ized anti-LFA-1 (i.e. anti-CD11a, efalizumab) mAb was effective in
the treatment of psoriasis and was approved by the FDA for this
indication [139,140].  Efalizumab reversibly blocks LFA-1/ICAM-1,
resulting in reduced T cell activation and impaired T cell traffick-
ing [141]. However, efalizumab was  withdrawn from the market
due to safety concerns [18]. Given the encouraging efficacy results

of efalizumab in autoimmune disease, LFA-1 was  reconsidered
as therapeutic target in transplantation and LFA-1 blockade has
recently been reported to prolong cardiac and islet allograft survival
in NHP [142,143].
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.2. Negative costimulatory pathways

.2.1. CTLA4/B7
CTLA4 (CD152) is a member of the Ig superfamily and shares

igands B7.1 and B7.2 (with a preference for B7.1 [144]) with the
tructurally related CD28, but has a 10–20-fold higher binding
ffinity [144]. In contrast to CD28, CTLA4 is expressed only by
ctivated T cells, but not by naive, resting T cells [20]. However,
TLA4 is constitutively expressed at high levels by Tregs, where

t is critical for their suppressive function [28,145]. Both naive
D4+CD25− T cells and memory T cells up-regulate CTLA4 upon
timulation, however expression declines rapidly in CD4+CD25− T
ells [146]. Engagement of CTLA4 delivers a negative costimulatory
ignal (co-inhibitory signal), inhibiting TCR- and CD28-mediated
ignal transduction, leading to suppression of T cell activation and
he induction of T cell anergy [21,25,147]. The importance of CTLA4
s central negative regulator of T cell responses is underlined by
he fact that CTLA4 knockout mice rapidly die from lymphopro-
iferative disease due to uncontrolled B7 costimulation [148–150].
he details coordinating the balance between costimulatory sig-
als through CD28 and CTLA4 during an immune response still
eed to be clarified. CTLA4 plays an important role in attenuating
lloresponses and promoting tolerance induction. Importantly, an
ntact CTLA4 pathway is critical for tolerance induction even in the
bsence of a CD28/B7 costimulatory signal [5,151]. In light of this
ro-tolerogenic function of CTLA4, the therapeutic use of CTLA4Ig
aises concerns as it blocks a potentially beneficial CTLA4 signal
hrough saturating B7 [20]. Indeed, blocking CTLA4 experimentally
esults in abrogation of tolerance, highlighting its importance for
olerance induction/maintenance [41,152]. Deliberate ligation of
TLA4 could suppress allogeneic T cell responses. However, most
oluble anti-CTLA4 mAbs lack agonistic properties and rather block
TLA4 signals when used in vivo. Membrane-bound anti-CTLA4
Abs with ligating properties resembling natural B7-1, in contrast,
ere effective in down-modulating allogeneic T cell responses

n vivo [151].

.2.1.1. PD-1/PD-L1/2. Programmed death-1 (PD-1) belongs to the
g superfamily and shares homology with CTLA4 and CD28. It is
nducibly expressed as monomer on activated T cells, activated B
ells, NK cells and macrophages [21] and binds to PD-L1 (B7-H1)
nd PD-L2 (B7-DC). PD-L1 is constitutively expressed on T cells
including Tregs), B cells, myeloid cells (including mast cells) and
endritic cells and can be upregulated upon activation [153]. In
ontrast to B7-1/2, PD-L1 is also expressed on non-hematopoietic
ells and non-lymphoid organs (heart, lung, and muscle) where
t is suggested to regulate peripheral tolerance [154]. Notably,
D-L1 has recently been identified as additional ligand for B7.1
155]. Functional studies suggested that the B7-1:PD-L1 interac-
ion inhibits T cell proliferation and cytokine production [155].
xpression of PD-L2 is inducible by cytokines and restricted to
acrophages, mast cells and dendritic cells [21]. The fact that

D-L1/2 is expressed on mast cells suggests a role for the PD-
/PD-L1/2 pathway in Treg/mast cell interactions in peripheral
olerance [156,157].  Moreover, PD-L1 promotes Treg development
nd function [158], implicating PD-1 as attractive therapeutic tar-
et in autoimmune diseases and tolerance induction [159]. PD-1
ignals inhibit T cell activation, proliferation and cytokine produc-
ion by mechanisms distinct from CTLA4 [160]. Co-localization of
D-1 and TCR/CD28 is required for PD-1 mediated inhibition and
an be overcome by exogenous IL2 [161]. The importance of PD-1
s potent regulator of T and B cell responses is demonstrated by PD-
 knockout mice that develop lymphoproliferative/autoimmune
isease [162,163].

The role of the PD-1/PD-L1/2 pathway in transplantation is
ather complex and incompletely understood [5].  Expression of PD-
nology 23 (2011) 293– 303 297

1 and its ligands is upregulated in cardiac allografts during acute
rejection [164]. PD-L1Ig (but not PD-L2Ig) was shown to synergize
with anti-CD154 or rapamycin in preventing rejection of cardiac
and islet allografts [164,165].  However, other studies have shown
that PD-L1/2 can trigger stimulatory signals, which may  be related
to the widespread tissue expression of PD-1 ligands [5,21].  Thus,
although PD-1 is a promising therapeutic target, the exact roles of
PD-1 and its ligands in allograft rejection still need to be determined
before its potential can be realized.

2.2.1.2. BTLA/CD160/HVEM. B and T lymphocyte attenuator (BTLA;
CD272) is a member of the Ig superfamily and is expressed in the
thymus and in the bone marrow during T cell and B cell develop-
ment, respectively. BTLA is constitutively expressed at low levels
on naïve T and B cells, NK cells, macrophages and dendritic cells
and is up-regulated on activated T cells. Unlike CTLA4 and PD-L1,
BTLA is not expressed on Tregs [166]. Interestingly, BTLA binds to
herpes virus-entry mediator (HVEM), a member of the TNFR family
expressed on activated T cells, B cells and NK cells [167,168].  The
co-inhibitory signal through BTLA/HVEM suppresses T cell activa-
tion and differentiation in vitro [169], but little is currently known
about its role regarding B cells and NK cells regulation.

CD160, also a new member of the Ig superfamily, is the sec-
ond co-inhibitory ligand of HVEM. It is constitutively expressed in
subsets of both CD4+ and CD8+ T cells and NKT cells and is upregu-
lated upon activation [166,170].  Engagement of CD160 and HVEM
suppresses T cell activation and proliferation upon CD3/CD28
stimulation in vitro [171]. The balance between negative costimu-
latory signals through BTLA/HVEM and CD160/HVEM engagement
and positive costimulatory signals through LIGHT/HVEM or
LT�R/HVEM contributes to allogeneic T cell regulation, however
the exact mechanisms still have to be determined. Although bind-
ing affinity of HVEM is higher for LIGHT than for BTLA and CD160,
co-inhibitory functions are dominant over costimulatory functions.
This complex pathway highlights the importance of differences in
ligand/receptor binding affinity and distinct expression patterns of
these molecules in immune response regulation [170].

Targeting the BTLA/HVEM/CD80 pathway in transplantation
models prolongs survival of heart [172] and islet allografts
[173,174], with the outcome depending on the degree of MHC
mismatch [175]. Blockade of BTLA at the time of hematopoietic
stem cell transplantation prevents GVHD, but is not sufficient to
reverse ongoing disease [176]. Different approaches have been
employed for targeting the BTLA/HVEM/CD160 pathway includ-
ing non-depleting antagonistic mAb  blocking HVEM (anti-HVEM
mAb, anti-LIGHT mAb, anti-LT�R), non-depleting agonistic mAbs
signalling through co-inhibitory receptors (anti-BTLA mAb, anti-
CD160 mAb) and depleting mAbs against CD160 and LIGHT in
combination with therapies that inhibit CD4+ T cell-mediated
alloresponses [166]. The therapeutic efficiency and possible inter-
actions with other costimulatory pathways still need to be
determined.

2.3. TIM family molecules

T cell immunoglobulin (Ig) and mucin domain (TIM) molecules
are members of the type I transmembrane glycoprotein family. Ini-
tially, TIM molecules were identified as cell-surface proteins for
differentiation between Th1 and Th2 cells, but soon they gained a
lot of attention as putative therapeutic targets for immune regula-
tion in autoimmune and allergic diseases [177,178].  The TIM family
has 8 known members in mice (TIM 1–4 and putative TIM 5–8) and

3 members in humans (TIM 1, 3 and 4), all of them encoding trans-
membrane proteins that have an IgV domain, a mucin-like domain
and a cytoplasmic tail. The TIM molecules have broad immuno-
logical functions, including T cell activation, induction of T cell
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poptosis and T cell tolerance, and the capacity of APCs to clear
poptotic cells [179].

.3.1. TIM 1/TIM 4
In mice, TIM 1 is inducibly expressed on activated CD4+ T cells.

pon differentiation only Th2 cells constitutively express TIM 1
hereas Th1 and Th17 cells lose TIM 1 expression [179,180].  TIM 1

s also expressed on mast cells [181] and some B cells [182]. Human
IM 1 was originally described as cellular receptor for hepatitis A
irus (HAVCR) [183] and is also known as kidney injury molecule

 (KIM1), which is highly upregulated after ischemia/reperfusion
njury [184]. Several ligands have been identified, among them TIM

 itself [185], TIM 4 [186], IgA� [187] and phosphatidylserine [188].
nlike other TIM family members, TIM 4 is constitutively expressed
n APCs but not on T cells and lacks a cytoplasmic signalling motif
186]. Engagement of TIM 1 delivers costimulatory signals involved
n T cell proliferation, survival and cytokine production [180]. Dif-
erent TIM 1 mAbs recognizing distinct epitopes of TIM 1 as well as
ifferent binding affinities have profoundly different effects on the
ype of response that is induced [179]. Additionally, TIM 1 costim-
lation abrogates suppressor function in Tregs and reduces FoxP3
xpression, thereby preventing Treg generation. As agonist anti-
IM 1 mAb  enhances Th17 differentiation, TIM 1 is suggested to
lay a major role in regulating the balance between Tregs and Th17
ell conversion [189].

While agonist anti-TIM 1 mAbs prevent tolerance induction in
n islet allograft model [189], low affinity anti-TIM mAb  synergizes
ith rapamycin to prolong cardiac allograft survival by inhibition

f the alloreactive Th1 responses [190]. TIM 1 costimulation mod-
lates the T cell response by inducing a Th1- to Th2-type cytokine
witch, and by regulating the Treg/Th17 balance, however the exact
echanisms have yet to be defined.

.3.2. TIM 3
TIM 3 is expressed on Th1 and Th17 cells but not on resting T cells

r Th2 cells [191,192].  Moreover, TIM 3 is constitutively expressed
y cells of the innate immune system mast cells, macrophages and
endritic cells [193,194].  TIM 3 binds to galectin 9, which is pre-
ominantly expressed on Tregs and on naive CD4+ T cells—where

t is down-regulated upon activation. Engagement of TIM 3/galectin
 inhibits Th1 responses by induction of cell death [195] and also

nhibits Th17 differentiation in vitro [196].
Blocking TIM 3 costimulation by anti-TIM 3 mAbs or TIM 3Ig

ccelerates the development of autoimmune disease and abro-
ates tolerance in islet allograft models [192]. TIM 3 signalling is
uggested to play a major role in regulating allograft tolerance by
egatively regulating T-cell responses.

. Costimulatory blockade and the mixed chimerism
pproach

As discussed earlier, blocking the CD28 and CD40 pathways
as potent immonomodulating effects but does not induce robust
olerance by itself. The use of costimulation blockers as part of

ixed chimerism protocols, however, turned out to be particularly
ffective in promoting tolerance in stringent rodent models. Estab-
ishment of mixed chimerism through transplantation of donor
one marrow (BM) is a promising strategy for inducing transplan-
ation tolerance, achieving permanent acceptance of fully MHC

ismatched skin grafts in the experimental setting (which is com-
only regarded as the most stringent test for tolerance) [197] and

perational tolerance in clinical renal transplantation [198,199].

idespread clinical application of this tolerance approach is, how-

ver, prevented by the toxicities of current BM transplantation
BMT) protocols. Since the introduction of the mixed chimerism
oncept with myeloablative total body irradiation (TBI) [200]
nology 23 (2011) 293– 303

and global T cell depletion [201,202],  gradual progress has been
made towards the development of minimally toxic conditioning
regimens [203]. The introduction of costimulation blockers as a
component of BMT  protocols was a major step closer to this goal,
allowing a drastic reduction of recipient conditioning by obviating
the need for global destruction of the pre-existing recipient T cell
repertoire [204,205].  Subsequently, protocols devoid of recipient
irradiation [206,207] and even devoid of any cytotoxic condi-
tioning became possible with the use of costimulation blockers
[208]. Numerous such BMT  protocols have since been developed,
employing anti-CD154 mAbs with or without CTLA4Ig. In attempts
to minimize cytotoxic recipient conditioning several adjunctive
treatments were identified that promote BM engraftment under
minimal conditioning in costimulation blocker-treated BMT  recip-
ients, including the use of facilitating cells, DST, non-depleting
anti-CD4 and anti-CD8 mAbs, rapamycin, NK cell depletion and Treg
treatment (reviewed in detail in [203,209]).

Central clonal deletion was recognized as a cardinal tolerance
mechanism in mixed chimerism a long time ago and has remained
a key mechanism also in protocols using costimulation block-
ers [210]. Since costimulation blockers allow BMT  in recipients
in which the pre-existing T cell repertoire was for the first time
left largely intact, mechanisms of peripheral tolerance need to
effectively control mature donor-reactive T cells in these systems.
Progressive peripheral clonal deletion of mature donor-reactive
CD4 [211] and CD8 [212] T cells was  identified as the main mecha-
nism of peripheral tolerance in such chimeras [205,213].  Deletion
shows features of both activation-induced cell death and passive
cell death [213], but the molecular details of this powerful toler-
ance mechanism that clonally eliminates mature donor-reactive T
cells remain incompletely understood to this day. PD-1/PD-L1 is
essential for CD8 but not CD4 T cell tolerance [214] as cell intrinsic
PD-1 and either CTLA4 or B7-1/2 are required by CD8 (but not CD4)
T cells [215]. While CD28 signalling is not required for tolerance
induction in this model, an early cell intrinsic CTLA4 signal is criti-
cal for CD4 tolerance [216]. Non-deletional, regulatory mechanisms
also contribute to peripheral tolerance [217], but their relative
importance depends on the degree of recipient conditioning, with
regulation becoming more important with minimal conditioning
[208,218,219].

The induction of chimerism and tolerance is markedly more dif-
ficult to achieve in large animals/NHP than in rodents, requiring
more extensive recipient conditioning. In a DLI-identical canine
BMT  model, CTLA4Ig [220] and anti-CD154 mAb  (together with
DST) [221] improved BM engraftment, allowing the dose of total
body irradiation to be reduced (tolerance was not tested). In an
irradiation-based non-myeloablative NHP model of kidney allo-
graft tolerance, adjunctive anti-CD154 mAb  treatment enhanced
chimerism and obviated the need for splenectomy, but did not
obviate the need for T cell depletion [222]. Of note, while stable
chimerism is necessary for the induction of skin graft tolerance
in mice, transient chimerism in combination with kidney trans-
plantation is sufficient to promote renal allograft tolerance in
certain NHP systems [222–224] and in patients [199,225],  indi-
cating that the tolerance mechanisms differ significantly between
these two  settings. This difference might be explained at least
in part through the fact that the kidney graft itself seems to
participate in tolerance induction in NHP and humans [226]. In
another NHP BMT  model employing non-myeloablative doses of
busulfan, costimulation blockade with anti-CD154 mAb plus belat-
acept, together with basiliximab and sirolimus, led to remarkably
high levels of chimerism and a median chimerism duration of >4

months (no organ transplants were preformed in this study) [227].
More recently, new MHC  typing technologies became available in
this rhesus macaque model allowing the investigation of defined
MHC barriers [228]. Unexpectedly, donor BM was rejected after
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ithdrawal of immunosuppression/costimulation blockade even
n the MHC-matched situation (and also in the one haplotype-

ismatched setting). Pre-existing non-tolerized donor-reactive T
ells appear to be mainly responsible for BM rejection, although
he mechanisms of this resistance towards costimulation blockade
nd mixed chimerism remain undefined. As no organs were trans-
lanted, it is unclear whether or not operational tolerance towards

 kidney graft would have been achieved with this regimen induc-
ng transient chimerism. Thus, costimulation blockers are effective
n large animal models of mixed chimerism, but considerably less
o than in rodent models, necessitating more extensive recipient
onditioning.

. Clinical translation of costimulatory blockade

Once it became apparent in the NHP setting that costimula-
ion blockade does not induce tolerance by itself, attention shifted
o employing costimulation blockers as immunosuppressive drug
herapy. As mentioned earlier, development of anti-CD40L mAbs
ad to be stopped due to thromboembolic events and no data
re yet available for the clinical use of anti-CD40 mAbs as possi-
le alternative. Similarly, efalizumab (anti-LFA), which had been
pproved for the treatment of psoriasis, is no longer on the market.
hus, belatacept is currently the only costimulation blocker in an
dvanced stage of clinical development for use in organ transplant
ecipients.

Results from phase II and phase III renal transplant trials have
een reported with belatacept [36,37,229–231]. Collectively, the
btained data demonstrate that belatacept is effective as pri-
ary immunosuppressant (i.e. it does not require concomitant

se of calcineurin inhibitors). Graft and patient survival in belat-
cept patients were comparable to those receiving cyclosporine.
otably, renal function at 1 and 2 years post-transplant was signif-

cantly better with belatacept compared to cyclosporine. However,
pisodes of acute rejection were more frequent in belatacept
atients. Paradoxically, the incidence of acute rejection was higher

n the group treated with a higher dose of belatacept than in the one
reated with a lower dose (two dosing regimens were compared)
37]. While the specific cause for these observations is presently
nknown, the current understanding of the complexities of the
D28/B7 pathway offers some potential explanations. It is con-
eivable that at higher concentrations B7 occupation by belatacept
eaches a level that interferes with inhibitory signals through CTLA4
nd/or PDL-1 which are important regulatory mechanisms foster-
ng graft acceptance [5,63,155,232].  Moreover, T regulatory cells

ight be impeded twofold, through the abrogation of CD28 sig-
als and the inhibition of CTLA4 function. As CD28 signals suppress
h17 differentiation, CD28 blockade through belatacept might also
rive Th17 development [233]. Regarding safety aspects, the side
ffects of belatacept were limited to the immune system with-
ut off-target toxicities, which are a major morbidity factor with
alcineurin inhibitors. Like any non-specific immunosuppression,
owever, belatacept was associated with increased risks of infec-
ions and tumors. Of particular concern is the high incidence of
ost-transplant lymphoproliferative disorders (PTLD), including an
nusually high number of cases with CNS involvement, that was
bserved with belatacept, in particular in Epstein–Barr virus serol-
gy negative recipients [37].

Thus, it is hoped that the costimulation blocker Belatacept will
e approved as an immunosuppressant for use in kidney transplan-
ation. The FDA however has expressed concerns about the high

ncidence of vascular rejection and occurrence of PTLD especially
n the brain and thus has delayed its decision until clinical data at 3
ears is presented. Despite these concerns the advantages of the use
f this agent will hopefully allow approval which will reduce the
nology 23 (2011) 293– 303 299

dependence on CNI use. It remains to be seen whether belatacept-
based protocols – likely involving additional biologicals [52] – can
be developed which allow minimization or even controlled with-
drawal of immunosuppression.

5. Conclusion

It is firmly established that costimulatory signals are critical
for the regulation of allo-immune responses and that their mod-
ulation represents a potent tool for preventing allograft rejection
and potentially even for the induction of tolerance. However,
recent advances in the field revealed that costimulation path-
ways are a complex network of numerous positive and negative,
time-dependent and partially redundant signals whose effect also
depends on the specific subset of T cells they affect. Although
the therapeutic exploitation of costimulation blockade has conse-
quently become more difficult to realize than initially envisioned,
the costimulation blocker CTLA4Ig/belatacept is close to clinical
approval as immunosuppressive drug and offers hope that other
biologicals modulating T cell costimulation will follow.
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