JOURNAL OF COMBINATORIAL THEORY, Series A 29, 354-360 (1980)

A Note on Ramsey Numbers

MIKLÓS AJTAI, JÁNOS KOMLÓS, AND ENDRE SZEMERÉDI

Math Institute, Reáltanoda u. 13-15, 1053 Budapest, Hungary

Communicated by the Managing Editors

Received June 10, 1980

Upper bounds are found for the Ramsey function. We prove $R(3, x) < cx^2/\ln x$ and, for each $k \ge 3$, $R(k, x) < c_k x^{k-1}/(\ln x)^{k-2}$ asymptotically in x.

The Ramsey function R(k, x) is defined as the minimal integer n so that any graph on n vertices contains either a clique of size k or an independent set of size x. We show

$$R(3,x) \leqslant cx^2/\ln x \tag{1}$$

and further that for each k

$$R(k, x) \le c_k x^{k-1} / (\ln x)^{k-2}$$
. (2)

The function R(3, x) has been the object of much study. The asymptotic bounds

$$cx^2/(\ln x)^2 < R(3, x) < cx^2 \ln \ln x/\ln x$$

have been given by Erdös [2] (lower bound) and Graver and Yackel [3] (upper bound). A quite different proof of (1) is given in our paper [1].

Notation. All graphs are finite.

n = n(G) = number of vertices of G;

e = e(G) = number of edges of G:

t = t(G) =average degree in G = 2e/n;

 $\delta = \delta(G) = \text{edge density of } G = 2e/n(n-1);$

 $\omega(G) = \text{size of maximal clique in } G;$

 $\alpha(G) = \text{size of maximal independent set in } G;$

deg(P) = degree of (vertex) P.

Set r(P) equal to the summation of the degrees of the points Q adjacent to P. We call P a groupie if $r(P) \ge t \deg(P)$, where t = t(G).

LEMMA 1. Every graph G has a groupie.

Proof. Write PIQ if P is adjacent to Q in G

$$\sum_{P} r(P) = \sum_{P} \sum_{\substack{Q \\ P \neq Q}} \deg(Q) = \sum_{Q} \sum_{\substack{P \\ P \neq Q}} \deg(Q) = \sum_{Q} \deg(Q)^{2}.$$
 (4)

Set n = n(G), t = t(G). If $r(P) < t \deg(P)$ for all P then

$$t^2 n = \sum_{P} t \deg(P) > \sum_{P} r(P) = \sum_{P} \deg(P)^2.$$
 (5)

This is contradicted by the Cauchy-Schwartz inequality

$$\sum_{P} \deg(P)^2 \geqslant \left(\sum_{P} \deg(P)\right)^2 / n = t^2 n. \tag{6}$$

THEOREM 2. Let G be a graph with n = n(G), t = t(G). Assume G is trianglefree, Then

$$\alpha(G) \geqslant 0.01(n/t) \ln t \tag{7}$$

Note. No attempt is made in this paper to find best possible constants. For any G the classical theorem of Turán gives

$$\alpha(G) \geqslant n/(t+1). \tag{8}$$

This implies (7) when $t < e^{99}$. The flow chart of Fig. 1 indicates the "construction" of an independent set in G. Basically, groupies are pulled out of G (unless they have very high degree in which case they are discarded) until t becomes small. At this point Turán's Theorem takes over. The formal proof is inductive. Set

$$g(n, t) = 0.01 (n/t) \ln t,$$

 $g(G) = g(n, t), \quad \text{where} \quad n = n(G), \ t = t(G).$ (9)

We prove

$$\alpha(G) \geqslant g(G) \tag{10}$$

by induction on n(G). For $t < e^{99}$ we apply (8). Henceforth, assume $t \ge e^{99}$. Let P be a groupie of G. Set n = n(G), e = e(G), t = t(G), $d = \deg(P)$.

Fig. 1. Flow chart for Theorem 2.

Case 1. $d \ge 10t$. Set $G' = G - \{P\}$. Then

$$n' = n(G') = n - 1,$$

$$t' = t(G') \le 2(e - 10t)/(n - 1) = t(n - 20)/(n - 1).$$
(11)

A simple (omitted) calculation gives $g(n', t') \ge g(n, t)$. Then

$$a(G) \geqslant a(G') \geqslant g(G')$$
 (by induction)
 $\geqslant g(G)$. (12)

Case 2. d < 10t. Delete P and all neighbors of P to form G'.

$$n' = n(G') = n - 1 - d.$$
 (13)

Since G is trianglefree (the essential point) precisely r(P) edges have been omitted.

$$e' = e(G') = e - r(P) \leqslant e - td,$$

$$t' = t(G') = 2e'/n' \leqslant t(n - 2d)/(n - 1 - d).$$
(14)

Now a calculation (see Remark 1 below) yields

$$g(n', t') > g(n, t) - 1.$$
 (15)

As P is adjacent to no points of G'

$$\alpha(G) \geqslant \alpha(G') + 1 \geqslant g(G') + 1$$
 (by induction)
 $\geqslant g(G),$ (16)

completing the proof.

Remark 1. Inequality (15), whose details we omit, is not coincidental. The deletion of the neighbors of a groupie P decreases the edge density. One almost has $\delta(G') \leq \delta(G)$ (Not quite because of the deletion of P itself.) Begin with a graph G with large t(G). Suppose that each run through the loop of Fig. 1 (call that one time unit) produces a groupie of average degree. Suppose further that the edge density remains constant. When only half the points remained the average degree would be halved and points would be deleted from G at half the rate. The number of vertices remaining, as a function of "time," would decrease by exponential decay (versus the faster straight line decay). The process would continue until approximately $(n/t) \ln t$ independent points were found at which time t(G) would become small. The constant 0.01 allows groupies of moderate degree to be selected.

The monotone behavior of g(n, t) allows a more convenient form for Theorem 2.

THEOREM 2 (restatement). Let G be a trianglefree graph with $n(G) \le n$ and $1 \le t(G) \le t$. Then

$$\alpha(G) \geqslant 0.01(n/t) \ln t$$

Remark 2. When $t < n^{1/3+o(1)}$ Theorem 2 is "best possible." A random graph G with n vertices and nt/2 edges has $\alpha(G) \lesssim (n/t) \ln t$ and $t^3/6$ triangles. Deleting all points lying on triangles gives a graph G' with $n' = n(G') \sim n$, $t' = t(G') \sim t$ and $\alpha(G') \leqslant \alpha(G) \lesssim c(n'/t') \ln t'$.

Remark 3. Erdős has asked if a result similar to Theorem 2 may be proven with the condition "G is trianglefree" replaced by " $\omega(G) < 4$." In

particular, let $f_4(n, t)$ be the smallest value of $\alpha(G)$ over all G with $n(G) \le n$, $t(G) \le t$ and $\omega(G) < 4$. We cannot decide if

$$\lim_{t\to\infty} \lim_{n\to\infty} f_4(n,t)/(n/t) = +\infty \qquad (?).$$

THEOREM 3. $R(3, x) < 100 x^2/\ln x$.

Proof. Let G be a trianglefree graph with n vertices and $\alpha(G) < x$. The neighbors of any point P form an independent set so $\deg(P) < x$. Hence t(G) < x. Theorem 2 gives

$$x > \alpha(G) > 0.01(n/x) \ln x \tag{17}$$

and therefore

$$n < 100x^2/\ln x.$$
 (18)

Let h = h(G) denote the number of triangles in G. We now extend Theorem 2 to the case h(G) "small."

LEMMA 4. Let G be a graph with n = n(G), e = e(G), h = h(G), t = t(G). Let $0 with <math>pn \ge 3$. There exists an induced subgraph G' with parameters n', e', h', t' satisfying

$$n' > np/2$$
, $e' < 3ep^2$, $h' < 3hp^3$, $t' < 6tp$. (19)

Proof. We employ the probabilistic method. Let G' be the distribution on the subsets of G satisfying, for each $v \in G$,

$$\operatorname{Prob}[v \in \mathbf{G}'] = p \tag{20}$$

and with these probabilities mutually independent. Then n(G') has Binomial distribution B(n, p) with mean np and variance np(1-p). Applying the classical inequality of Chebyschev

Prob[
$$n(\mathbf{G}') < np/2$$
]
 $< \text{Prob}[|n(\mathbf{G}') - np| > (np(1-p))^{1/2}(np/(1-p))^{1/2}]$ (21)
 $< (1-p)/np < 1/3.$

(In applications we can usually use the Law of Large Numbers to bound the probability in (21) by a small term.)

The random variable e(G') has expectation ep^2 so

$$Prob[e(\mathbf{G}') \geqslant 3ep^2] < 1/3 \tag{22}$$

and similarly

$$Prob[h(\mathbf{G}') \geqslant 3hp^3] < 1/3. \tag{23}$$

Combining (21)-(23)

Prob
$$[n(G') > np/2 \text{ and } e(G') < 3ep^2 \text{ and } h(G') < 3hp^3] > 0.$$
 (24)

Therefore there exists a specific G' with parameters n', e', h', t' satisfying n' > np/2, $e' < 3ep^2$, $h' < 3hp^3$ and, finally, t' = 2e'/n' < 6tp.

LEMMA 5. Let $\varepsilon > 0$. Let G be a graph with n = n(G), t = t(G), h = h(G) and $h < nt^{2-\epsilon}$. If t is sufficiently large (dependent on ε)

$$\alpha(G) > c'(n/t) \ln t, \tag{25}$$

where c'is a positive constant dependent on ε .

Proof. We show Lemma 5 for $c' = 0.01 \ \epsilon/48$ and $t > 12^{2/\epsilon}$. By Lemma 4, with $p = t^{\epsilon/4-1}$, there exists a subgraph G' with parameters n', e', t', h' satisfying

$$n' > np/2$$
, $e' < 3ep^2$, $h' < 3hp^3$, $t' < 6tp$. (26)

Delete one point from each triangle of G' to give a graph G'' with parameters n'', e'', t'', h''. As h' < n'/2

$$n'' > n' - h' > np/4, e'' < 3ep^2, h'' = 0$$
 (27)

and thus t'' < 12tp. We apply Theorem 2 to yield

$$\alpha(G) \geqslant \alpha(G'') \geqslant 0.01(n''/t'') \ln t'' > c'(n/t) \ln t.$$
 (28)

Remark 4. The requirement $h < nt^{2-\epsilon}$ in Lemma 5 is best possible in that the union of n/(t+1) disjoint cliques of size t+1 (the Turán graph) has approximately $nt^2/6$ triangles and $\alpha \sim n/t$.

Theorem 6. For every $k \ge 2$

$$R(k, x) \le (5000)^k x^{k-1} / (\ln x)^{k-2}$$
 (29)

for x sufficiently large (dependent on k).

Proof. Theorem 6 holds for k = 2 trivially and for k = 3 by Theorem 3. We prove (29) by induction on k. Fix ε satisfying

$$0.96(k-2)^{-1} < \varepsilon < (k-2)^{-1}. \tag{30}$$

(To prove (2) for some c_k one needs here only to assume ε is "sufficiently small.") Let G be a graph with

$$n = n(G) > (5000)^k x^{k-1} / (\ln x)^{k-2}.$$
 (31)

Set $m = (5000)^{k-1} x^{k-2} / (\ln x)^{k-3}$. Assume $\omega(G) < k$. Every point P of G has $\deg(P) < R(k-1, x) \le m$ so that $t(G) \le m$.

Case 1. $h(G) < nm^{2-\epsilon}$. Applying Lemma 5, with $c' = 0.01\epsilon/48$ (and using the lower bound of (30)),

$$\alpha(G) > c'(n/m) \ln m > x. \tag{32}$$

Case 2. $h(G) > nm^{2-\epsilon}$. Some point P lies on at least $m^{2-\epsilon}/3$ triangles. Let G' be the set of points adjacent to P. G' has at most m vertices and at least $m^{2-\epsilon}/3$ edges. Therefore G' contains a point Q of degree at least $2m^{1-\epsilon}/3$ in G'. Let G'' be the set of vertices of G' adjacent to Q. Then

$$n(G'') > 2m^{1-\epsilon}/3 > R(k-2, x)$$
 (33)

since, by (30), ε is sufficiently small. If G'' contains a clique on (k-2) points the addition of P and Q would give a clique of size k in G. As this was assumed not to hold G'' contains no such clique and hence G'', and therefore G, contains an independent set of x points.

In either case, $\alpha(G) \geqslant x$, completing the proof. A slight alteration of the proof of Theorem 6 yields the following result, whose proof we delete.

THEOREM 7. Fix $\varepsilon > 0$. For every $k \ge 2$ there exists c_k so that for x sufficiently large either

$$R(k, x) < c_k R(k-1, x) x / \ln x$$

or

$$R(k-1,x) < R(k-2,x)x^{\epsilon}.$$

ACKNOWLEDGMENT

We are indebted to Joel Spencer, who wrote this paper for us.

REFERENCES

- 1. M. AJTAL, J. KOMLÓS, AND E. SZEMERÉDI, A dense infinite Sidon sequence, to appear.
- 2. P. Erdős, Graph theory and probability, II, Canad. J. Math. 13 (1961), 346-352.
- 3. J. E. GRAVER AND J. YACKEL, Some graph theoretic results associated with Ramsey's theorem, J. Combinatorial Theory 4 (1968), 125-175.