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Upper bounds are found for the Ramsey function. We prove R(3, x) < cx*/ln x 
and, for each k > 3, R(k, x) < c,xk-‘/(ln x)~-* asymptotically in x. 

The Ramsey function R(k, x) is defined as the minimal integer 12 so that 
any graph on n vertices contains either a clique of size k or an independent 
set of size x. We show 

R(3, x) < cx’/ln x 

and further that for each k 

R(k, x) < c,xk-‘/(ln x)~-*. 

(1) 

(2) 

The function R(3, x) has been the object of much study. The asymptotic 
bounds 

cx’/(ln x)’ < R(3, x) < cx2 In In x/in x 

have been given by ErdGs [2] (lower bound) and Graver and Yackel [3] 
(upper bound). A quite different proof of (1) is given in our paper [ 11. 

Notation. All graphs are finite. 

rz = n(G) = number of vertices of G; 

e = e(G) = number of edges of G; 

t = t(G) = average degree in G = 2e/n; 

S = 6(G) = edge density of G = 2e/n(n - 1); 
o(G) = size of maximal clique in G; 

a(G) = size of maximal independent set in G; 
deg(P) = degree of (vertex) P. 
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Set r(P) equal to the summation of the degrees of the points Q adjacent to 
P. We call P a groupie if r(P) > t deg(P), where t = t(G). 

LEMMA 1. Eue~y graph G has a groupie. 

ProoJ: Write PIQ if P is adjacent to Q in G 

c r(p) = c c des(Q) = c c d%(Q) = c deg(Q)'- 
P I’ Q Q P Q 

PIQ PIQ 

Set n = n(G), t = t(G). If r(P) ( t deg(P) for all P then 

(4) 

t*n = C t deg(P) > z r(P) = C deg(P)“. 
P P P 

This is contradicted by the Cauchy-Schwartz inequality 

7 deg(P)* >, (T deg(P)) lir = t’n. 

THEOREM 2. Let G be a graph with n = n(G), t = t(G). Assume G ts 
trianglefree, Then 

a(G) > 0.0 1 (n/t) In t (7) 

Note. No attempt is maae in this paper to find best possible constants. 
For any G the classical theorem of TurLn gives 

a(G) > n/(t -t 1). (8) 

This implies (7) when t < egg. The Sow chart of Fig. 1 indicates the 
“construction” of an independent set in G. Basically, groupies are pulled out 
of G (unless they have very high degree in which case they are discarded) 
until t becomes small. At this point Turan’s Theorem takes over. The formal 
proof is inductive. Set 

g(n, t) = 0.01 (n/t) In t, 

g(G) = g(n, t), where n = n(G), t = t(G). 
19) 

We prove 

a(G) > g(G) (10) 
by induction on n(G). For t < e9’ we apply (8). Henceforth, assume I > e”‘, 
Let P be a groupie of G. Set YI = n(G), e = e(G), r = t(G), d= deg(P). 



356 AJTAI ET AL. 

"al~ulate n, t 

All Points Unstarred 

Find Groupie P 

FIG. 1. Flow chart for Theorem 2. 

Case 1. d > 10~ Set G’ = G - {P}. Then 

n’ = n(G’) = n - 1, 

t’ = t(G’) < 2(e - lOt)/(rt - 1) = t(n - 20)/(n - 1). 
(11) 

A simple (omitted) calculation gives g(n’, t’) > g(n, t). Then 

a(G) 2 a(Q) 2 g(Q) (by induction) 

> g(G). 

Case 2. d < 10~ Delete P and all neighbors of P to form G’. 

n’ = n(G’) = n - 1 - d. 

04 

(13) 



RAMSEY NUMBERS 357 

Since G is trianglefree (the essential point) precisely r(P) edges have been 
omitted. 

e’ = e(G’) = e - r(P) < e - td, 

t’ = t(G’) = 2e’/n’ < t(n - 2d)/(n - 1 - d>. 

Now a calculation (see Remark 1 below) yields 

g(n’, t’) > g(n, t) - 1. (15) 

As P is adjacent to no points of G’ 

a(G) 2 a(G') + 12 g(P) + 1 

2 g(G), 

(by induction) 
Cl6) 

completing the proof. 

Remark 1, Inequality (15), whose details we omit, is not coincidental. 
The deletion of the neighbors of a groupie P decreases the edge density. One 
almost has S(G’) ,< 6(G) (Not quite because of the deletion of P itself.) Begin 
with a graph G with large t(G). Suppose that each run through the loop of 
Fig. 1 (call that one time unit) produces a groupie of average degree. 
Suppose further that the edge density remains constant. When only half the 
points remained the average degree would be halved and points would be 
deleted from G at half the rate. The number of vertices remaining, as a 
function of “time,” would decrease by exponential decay (versus the faster 
straight line decay). The process would continue until approximately 
(n/t) In t independent points were found at which time t(G) would become 
small. The constant 0.01 allows groupies of moderate degree to be selected. 

The monotone behavior of g(n, t) allows a more convenient form for 
Theorem 2. 

THEOREM 2 (restatement). Let G be a trianglefree graph with a(G) < M. 
and 1 < t(G) < t. Then 

a(G) > O.Ol(n/t) In t 

Remark 2. When t c n 1’3+0(1) Theorem 2 is “best possible.” A random 
graph G with n vertices and nt/2 edges has a(G) <, (n/t) In t and t3/6 
triangles. Deleting all points lying on triangles gives a graph G’ with n’ = 
n(G’) - n, t’ = t(G’) - f and a(G’) < a(G) .Y$ c(n’/t’) In t’. 

Remark 3. Erdos has asked if a result similar to Theorem 2 may be 
proven with. the condition “G is trianglefree” replaced by “o(G) < 4.” In 
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particular, letf,(n, t) be the smallest value of a(G) over all G with n(G) < ~1, 
t(G) < t and o(G) < 4. We cannot decide if 

THEOREM 3. R(3,x) < lOOx*/lnx. 

Pr-OOJ: Let G be a trianglefree graph with n vertices and a(G) < x. The 
neighbors of any point P form an independent set so deg(P) < X. Hence 
t(G) < x. Theorem 2 gives 

and therefore 

x > a(G) $ O.Ol(n/x) In x (17) 

72 < 100xz/ln x. (18) 

Let h = h(G) denote the number of triangles in G. We now extend 
Theorem 2 to the case h(G) “small.” 

LEMMA 4. Let G be a graph with II = n(G), e = e(G), h = h(G), t = t(G). 
Let 0 < p < 1 with pn > 3. There exists an induced subgraph G’ with 
parameters M’, e’, h’, t’ satisfying 

n’ > np/2, e’ < 3ep2, h’ < 3hp3, t’ < 6tp. (19) 

ProoJ We employ the probabilistic method. Let G’ be the distribution 
on the subsets of G satisfying, for each v & G, 

Prob[vEG’]=p (20) 

and with these probabilities mutually independent. Then n(G’) has Binomial 
distribution B(n, p) with mean np and variance np(1 - p). Ppplying the 
classical inequality of Chebyschev 

Prob[n(G’) < np/2] 

< Prob[jn(G’) - npl > (np(l - p))“‘(np/(l - p))“‘] 

< (1 - p)/np < l/3. 

(21) 

(In applications we can usually use the Law of Large Numbers to bound the 
probability in (21) by a small term.) 

The random variable e(G’) has expectation ep’ so 

Prob[e(G’) > 3ep2] < l/3 (22) 
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and similarly 

Prob[h(G’) >, 3hp3] ( l/3. (23) 

Combining (2 l)-(23) 

Prob[n(G’) > np/2 and e(G’) < 3ep2 and h(G’) < 3vlp3] > 0. (24) 

Therefore there exists a specific G’ with parameters n’, e’, h’, 1’ satisfying 
r~’ > np/2, e’ < 3ep2, h’ < 3hp3 and, finally, t’ = 2e’fn’ ( 6$. 

LEMMA 5. Let E > 0. Let G be a graph with n = n(G), 5 = t(G), h = h(G) 
and h < nt2-‘. If t is sufficiently large (dependent on E) 

a(G) > c’(n/t) In t, (25) 

where c’is a positive constant dependent on E, 

ProoJ: We show Lemma 5 for c’ = 0.01 e/48 and t > 122/‘. By Lemma 4, 
with p = t’/4- I, there exists a subgraph G’ with parameters n’, e’, t’, h’ 
satisfying 

n’ > np/2, e’ < 3ep2, h’ < 3hp3, t’ < 6tp. cm 

Delete one point from each triangle of C’ to give a graph G” with parameters 
n”, err, t”, h”. As h’ < n’/2 

n” > n’ - h’ > np/4, e” < 3ep2, 

and thus t” < 12tp. We apply Theorem 2 to yield 

h” = 0 

a(G) > a(G”) > O.Ol(n”/t”) In t” > c’(n/t) In t. cw 

Remark 4. The requirement h < nt’-’ in Lemma 5 is best possible in 
that the union of n/(t $ 1) disjoint cliques of size t $ 1 (the Tu& graph) 
has approximately nt*/6 triangles and cz - n/t. 

THEOREM 6. For every k > 2 

R(k, x) < (5000)kxk-‘/(tn xy (29) 

for x sz@ciently large (dependent on k). 

Proof. Theorem 6 holds for k = 2 trivially and for k = 3 by Theorem 3. 
We prove (29) by induction on k. Fix E satisfying 

0.96(k - 2)-I < E < (k - 2)- I. 
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(To prove (2) for some c, one needs here only to assume 6 is “sufficiently 
small.“) Let G be a graph with 

n = n(G) > (5000)kxk-‘/(ln x)~-~. (31) 

Set m = (5000)k-‘xk-2/(ln x)~-~. Assume U(G) < k. Every point P of G has 
deg(P) < R(k - 1, x) < m so that t(G) < m. 

Case 1. h(G) < nm2-E. Applying Lemma 5, with c’ = O.Ole/48 (and 
using the lower bound of (30)), 

a(G) > c’(n/m) In m > x. (32) 

Case 2. h(G) > nrn’-‘. Some point P lies on at least m2-‘13 triangles. 
Let G’ be the set of points adjacent to P. G’ has at most m vertices and at 
least m2-‘13 edges. Therefore G’ contains a point Q of degree at least 
2m’-‘/3 in G’. Let G” be the set of vertices of G’ adjacent to Q. Then 

n(G”) > 2m’-‘13 > R(k-2,x) (33) 

since, by (30), E is sufficiently small. If G” contains a clique on (k - 2) 
points the addition of P and Q would give a clique of size k in G. As this 
was assumed not to hold G” contains no such clique and hence G”, and 
therefore G, contains an independent set of x points. 

In either case, a(G) > x, completing the proof. A slight alteration of the 
proof of Theorem 6 yields the following result, whose proof we delete. 

THEOREM 7. Fix E > 0. For every k > 2 there exists ck so that for x 
sufficiently large either 

or 

R(k, x) < ckR(k - 1, x)x/In x 

R(k - 1, x) < R(k -L 2, x)xE. 
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