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Upper bounds are found for the Ramsey function. We prove R(3,x) < cx?/Inx
and, for each k > 3, R(k, x) < ¢,:x*~"/(In x)*~* asymptotically in x.

The Ramsey function R(k, x) is defined as the minimal integer # so that
any graph on n vertices contains either a clique of size k or an independent
set of size x. We show

R(3,x) < cx?/ln x (1)
and further that for each &

Rk, x) <, "'/(In x)*~2 ()

The function R(3, x) has been the object of much study. The asymptotic
bounds

ex?/(Inx)?> <R(3,x) <ex?Inln x/ln x

have been given by Erdds [2] (lower bound) and Graver and Yackel (3]
(upper bound). A quite different proof of (1) is given in our paper [1].

Notation. All graphs are finite.

n = n(G) = number of vertices of G;

e = ¢(G) = number of edges of G;

t = (G) = average degree in G = 2¢/n;

d = §(G) = edge density of G = 2e/n(n— 1);
w(G) = size of maximal clique in G;

a(G) = size of maximal independent set in G;
deg(P) = degree of (vertex) P.
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Set r(P) equal to the summation of the degrees of the points Q adjacent to
P. We call P a groupie if r(P) > t deg(P), where t = H{G).

LEMMA 1. Every graph G has a groupie.
Proof. Write PIQ if P is adjacent to @ in G

SHP)=3 3 deg(@) =3 deg(Q)=§deg(Q)z~ 4)
r P Q o °F
rPIQ PIQ

Set n == n{G), t = {G). If r(P) < t deg(P) for all P then

fn=73" tdeg(P) > r(P)=> deg(P). (5)

This is contradicted by the Cauchy-Schwartz inequality

2}; deg(P)’ > (g deg(P)> 2/ n=t'n. (6)

THEOREM 2. Let G be a graph with n=n(G), t=t(G). Assume G is
trianglefree. Then

a(G) > 0.01(n/f)Int (M

Note, No attempt is maae in this paper to find best possible constants.
For any G the classical theorem of Turan gives

«G) > nf(t + 1). ®

This implies (7) when ¢< e, The flow chart of Fig. 1 indicates the
“construction” of an independent set in G. Basically, groupies are pulled out
of G (unless they have very high degree in which case they are discarded)
until ¢ becomes small. At this point Turan’s Theorem takes over. The formal
proof is inductive. Set

g(n, H)=001 (n/t) In¢, o
g(G) = g(n, 1), where n=n(G), t=H{G). ®)

We prove

a(G) > g(G) (10)

by induction on n(G). For 1 < ¢* we apply (8). Henceforth, assume 7 >¢"°,
Let P be a groupie of G. Set n==n(G), e = e(G), t = H{G), d = deg(P).
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Case 1.

A simple (omitted) calculation gives g(n', t') > g(n, t). Then

Yes YV No

t Find Grouple P ‘
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Fic. 1. Flow chart for Theorem 2.

d > 10t Set G

G — {P}. Then

n=n(G)=n-1,
¢ =t(G') < 2(e— 10t)/(n— 1) =t(n — 20)/(n — 1).

G) 2 a(G') > g(G')

> g(G).

(by induction)

Case 2. d < 10t. Delete P and all neighbors of P to form G’.

n=nG)=n—-1-d.

(11)

(12)

(13)
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Since G is trianglefree (the essential point) precisely r(P) edges have been
omitted.

e=e(G)=e—rP)ge—1d,

(14)
V' =tG)=2e/n <t(n—2d)/(n—1—d).

Now a calculation (see Remark 1 below) yields
g, ) > gln,t)— 1. (15)
As P is adjacent to no points of G
(G za(G@)+128(G)+ 1 (by induction)

16
> 8(G), (16)

completing the proof.

Remark 1. Inequality (15), whose details we omit, is not coincidental.
The deletion of the neighbors of a groupie P decreases the edge density. One
almost has 6(G") < 6(G) (Not quite because of the deletion of P itself.) Begin
with a graph G with large #(G). Suppose that each run through the loop of
Fig. 1 (call that one time unit) produces a groupie of average degree.
Suppose further that the edge density remains constant. When only half the
points remained the average degree would be halved and points would be
deleted from G at half the rate. The number of vertices remaining, as a
function of “time,” would decrease by exponential decay (versus the faster
straight line decay). The process would continue urtil approximately
{(n/t)In¢ independent points were found at which time ¥(G) would become
small. The constant 0.01 allows groupies of moderate degree {o be selected.

The monotone behavior of g(n, ) allows a more convenient form for
Theorem 2.

THEOREM 2 (restatement). Let G be a trianglefree graph with @ <n
and 1 < H{G) < t. Then

a(G) 2 0.01(n/t)In¢

Remark 2. When t < n'?*°% Theorem 2 is “best possible.” A random
graph G with n vertices and nt/2 edges has a(G)<S(n/t)lnt and /6
triangles. Deleting all points lying on triangles gives a graph G' with n’ =
(@) ~n, t =t(G')~t and a(GY < a(G)Sc(n'/t')In t.

Remark 3. ErdGs has asked if a result simﬂar to Theorem 2 may be
proven with the condition “G is trianglefree” replaced by “w(G) < 4.” In
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particular, let f,(n, f) be the smallest value of a(G) over all G with n(G) < n,
HG) <t and ©(G) < 4. We cannot decide if

Lim Lim fi(n. 0/ (3/1)=+e0 ()

THEOREM 3. R(3,x) < 100 x%/In x.

Proof. Let G be a trianglefree graph with n vertices and a{G) < x. The
neighbors of any point P form an independent set so deg(P) < x. Hence
t(G) < x. Theorem 2 gives

x> a(G) > 0.01(n/x) In x (17)
and therefore
n < 100x%/In x. (18)

Let A= h(G) denote the number of triangles in G. We now extend
Theorem 2 to the case A(G) “small.”

LEMMA 4, Let G be a graph with n=n(G), e = e(G), h = h(G), t = t(G).
Let 0< p<1 with pn>»3. There exists an induced subgraph G' with
parameters n', ', ', ' satisfying

n>npl2, € <3ep’, K <3hp*, ¥ <6ip. (19

Proof. We employ the probabilistic method. Let G’ be the distribution
on the subsets of G satisfying, for each v € G,

Problv€EG’ |=p (20

and with these probabilities mutually independent. Then n(G’) has Binomial
distribution B(n, p) with mean np and variance np(l — p). Applying the
classical inequality of Chebyschev

Prob[n(G") < np/2)
< Probl[n(G’) ~np| > (np(1 — ) (mp/(1—p)™?] (1)
< —p)/np<1/3.

{In applications we can usually use the Law of Large Numbers to bound the
probability in (21) by a small term.)
The random variable e(G’) has expectation ep* so

Prob[e(G’) > 3ep®] < 1/3 (22)
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and similarly
Prob[A(G’) > 3mp*] < 1/3. (23)
Combining (21)}-(23)
Prob[n(G') > np/2 and e(G') < 3ep and #(G’) < 34p*] > 0. (24)

Therefore there exists a specific G' with parameters n', e', %', ¢ satisfying
n' > np/2, e < 3ep?, h' < 3hp® and, finally, t* = 2¢'/n’ < 61p.

LEMMA 5. Let € > 0. Let G be a graph with n = n(G), t = «G), h = A(G)
and h < nt*". If t is sufficiently large (dependent on &)

a(G)> ¢(n/t)Int, (25)

where c'is a positive constant dependent on &,

Progf. We show Lemma 5 for ¢/ =0.01 £/48 and ¢ > 12%¢, By Lemma 4,
with p=1*"1 there exists a subgraph G’ with parameters n’, ¢, ', #’
satisfying

n>npf2, e <3ep?, K <3P, 1 <6ip. (26)

Delete one point from each triangle of G’ to give a graph G” with parameters
n', e R As b < n'[2

' >n' —h >npld, e <3ep’, K" =0 @n
and thus #” < 12¢p. We apply Theorem 2 to yield
a(G) > a{G") > 0.01(n"/t"YIn ¢" > c'{n/t) Int. (28)
Remark 4. The requirement # < n*~¢ in Lemma 5 is best possible in
that the union of n/(t + 1) disjoint cliques of size ¢4 1 (the Turan graph)
has approximately nt?/6 triangles and a ~ n/t.
THEOREM 6. For every k > 2
R(k, x) < (5000)x*~1/(In x)*—2 29)
Jor x sufficiently large (dependent on k).

Proof. Theorem 6 holds for k=2 trivially and for k = 3 by Theorem 3.
We prove {29) by induction on k. Fix ¢ satisfying

0.96(k—2) '<e<(k—2)"" (30}
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(To prove (2) for some ¢, one needs here only to assume ¢ is “sufficiently
small,”) Let G be a graph with

n=n(G) > (5000)x*~"/(In x)*2. (31)

Set m = (5000)*~1x*=?/(In x)*—*. Assume w(G) < k. Every point P of G has
deg(P) < R(k ~ 1, x) < m so that #(G) < m.

Case 1. h(G) < nm® . Applying Lemma 5, with ¢’ =0.01¢/48 (and
using the lower bound of (30)),

a(G) > c'(n/m)lnm > x. (32)

Case 2. h(G)> nm*~*. Some point P lies on at least m*~%/3 triangles.
Let G’ be the set of points adjacent to P. G' has at most m vertices and at
least m*~¢/3 edges. Therefore G’ contains a point Q of degree at least
2m'~</3 in G'. Let G" be the set of vertices of G' adjacent to Q. Then

n(G"y > 2m'=¢/3 > R(k — 2, x) (33)

since, by (30), ¢ is sufficiently small. If G” contains a clique on (k —2)
points the addition of P and Q would give a clique of size k in G. As this
was assumed not to hold G” contains no such clique and hence G”, and
therefore G, contains an independent set of x points.

In either case, a(G) > x, completing the proof. A slight alteration of the
proof of Theorem 6 yields the following result, whose proof we delete.

THEOREM 7. Fix € > 0. For every k > 2 there exists c, so that for x
sufficiently large either

R(k,x) < e, R(k — 1, x)x/In x
or
R(k—1,x) < R(k—2,x)x"
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