A Note on Ramsey Numbers

Miklós Ajtai, JÁnos Komlós, and Endre Szemerédi

Math Institute, Reáltanoda u. 13-15, 1053 Budapest, Hungary
Communicated by the Managing Editors
Received June 10, 1980

Upper bounds are found for the Ramsey function. We prove $R(3, x)<c x^{2} / \ln x$ and, for each $k \geqslant 3, R(k, x)<c_{k} x^{k-1} /(\ln x)^{k-2}$ asymptotically in x.

The Ramsey function $R(k, x)$ is defined as the minimal integer n so that any graph on n vertices contains either a clique of size k or an independent set of size x. We show

$$
\begin{equation*}
R(3, x) \leqslant c x^{2} / \ln x \tag{1}
\end{equation*}
$$

and further that for each k

$$
\begin{equation*}
R(k, x) \leqslant c_{k} x^{k-1} /(\ln x)^{k-2} . \tag{2}
\end{equation*}
$$

The function $R(3, x)$ has been the object of much study. The asymptotic bounds

$$
c x^{2} /(\ln x)^{2}<R(3, x)<c x^{2} \ln \ln x / \ln x
$$

have been given by Erdös [2] (lower bound) and Graver and Yackel [3] (upper bound). A quite different proof of (1) is given in our paper [1].

Notation. All graphs are finite.
$n=n(G)=$ number of vertices of G;
$e=e(G)=$ number of edges of G;
$t=t(G)=$ average degree in $G=2 e / n$;
$\delta=\delta(G)=$ edge density of $G=2 e / n(n-1)$;
$\omega(G)=$ size of maximal clique in G;
$\alpha(G)=$ size of maximal independent set in G;
$\operatorname{deg}(P)=$ degree of $($ vertex $) P$.

Set $r(P)$ equal to the summation of the degrees of the points Q adjacent to P. We call P a groupie if $r(P) \geqslant t \operatorname{deg}(P)$, where $t=t(G)$.

Lemma 1. Every graph G has a groupie.
Proof. Write PIQ if P is adjacent to Q in G

$$
\begin{equation*}
\sum_{P} r(P)=\sum_{P} \sum_{\substack{Q \\ P I Q}} \operatorname{deg}(Q)=\sum_{\substack{Q \\ P I Q}} \sum_{\substack{P \\ P}} \operatorname{deg}(Q)=\sum_{Q} \operatorname{deg}(Q)^{2} \tag{4}
\end{equation*}
$$

Set $n=n(G), t=t(G)$. If $r(P)<t \operatorname{deg}(P)$ for all P then

$$
\begin{equation*}
t^{2} n=\sum_{P} t \operatorname{deg}(P)>\sum_{P} r(P)=\sum_{P} \operatorname{deg}(P)^{2} \tag{5}
\end{equation*}
$$

This is contradicted by the Cauchy-Schwartz inequality

$$
\begin{equation*}
\sum_{P} \operatorname{deg}(P)^{2} \geqslant\left(\sum_{P} \operatorname{deg}(P)\right)^{2} / n=t^{2} n \tag{6}
\end{equation*}
$$

Theorem 2. Let G be a graph with $n=n(G), t=t(G)$. Assume G is trianglefree. Then

$$
\begin{equation*}
\alpha(G) \geqslant 0.01(n / t) \ln t \tag{7}
\end{equation*}
$$

Note. No attempt is mace in this paper to find best possible constants.
For any G the classical theorem of Turan gives

$$
\begin{equation*}
\alpha(G) \geqslant n /(t+1) \tag{8}
\end{equation*}
$$

This implies (7) when $t<e^{99}$. The flow chart of Fig. 1 indicates the "construction" of an independent set in G. Basically, groupies are pulled out of G (unless they have very high degree in which case they are discarded) until t becomes small. At this point Turan's Theorem takes over. The formal proof is inductive. Set

$$
\begin{align*}
g(n, t) & =0.01(n / t) \ln t \\
g(G) & =g(n, t), \quad \text { where } \quad n=n(G), t=t(G) . \tag{9}
\end{align*}
$$

We prove

$$
\begin{equation*}
\alpha(G) \geqslant g(G) \tag{10}
\end{equation*}
$$

by induction on $n(G)$. For $t<e^{99}$ we apply (8). Henceforth, assume $t \geqslant e^{99}$. Let P be a groupie of G. Set $n=n(G), e=e(G), t=t(G), d=\operatorname{deg}(P)$.

Fig. 1. Flow chart for Theorem 2.

Case 1. $d \geqslant 10 t$. Set $G^{\prime}=G-\{P\}$. Then

$$
\begin{align*}
n^{\prime} & =n\left(G^{\prime}\right)=n-1, \tag{11}\\
t^{\prime} & =t\left(G^{\prime}\right) \leqslant 2(e-10 t) /(n-1)=t(n-20) /(n-1) .
\end{align*}
$$

A simple (omitted) calculation gives $g\left(n^{\prime}, t^{\prime}\right) \geqslant g(n, t)$. Then

$$
\begin{align*}
\alpha(G) & \geqslant \alpha\left(G^{\prime}\right)
\end{aligned} \geqslant g\left(G^{\prime}\right) \quad \text { (by induction) } \quad \begin{aligned}
& \geqslant g(G) . \tag{12}
\end{align*}
$$

Case 2. $d<10 t$. Delete P and all neighbors of P to form G^{\prime}.

$$
\begin{equation*}
n^{\prime}=n\left(G^{\prime}\right)=n-1-d . \tag{13}
\end{equation*}
$$

Since G is trianglefree (the essential point) precisely $r(P)$ edges have been mitted.

$$
\begin{align*}
& e^{\prime}=e\left(G^{\prime}\right)=e-r(P) \leqslant e-t d, \tag{14}\\
& t^{\prime}=t\left(G^{\prime}\right)=2 e^{\prime} / n^{\prime} \leqslant t(n-2 d) /(n-1-d) .
\end{align*}
$$

Now a calculation (see Remark 1 below) yields

$$
\begin{equation*}
g\left(n^{\prime}, t^{\prime}\right)>g(n, t)-1 . \tag{15}
\end{equation*}
$$

As P is adjacent to no points of G^{\prime}

$$
\begin{align*}
\alpha(G) \geqslant \alpha\left(G^{\prime}\right)+1 & \geqslant g\left(G^{\prime}\right)+1 \quad \text { (by induction) } \tag{16}\\
& \geqslant g(G),
\end{align*}
$$

completing the proof.
Remark 1. Inequality (15), whose details we omit, is not coincidental. The deletion of the neighbors of a groupie P decreases the edge density. One almost has $\delta\left(G^{\prime}\right) \leqslant \delta(G)$ (Not quite because of the deletion of P itself.) Begin with a graph G with large $t(G)$. Suppose that each run through the loop of Fig. 1 (call that one time unit) produces a groupie of average degree. Suppose further that the edge density remains constant. When only half the points remained the average degree would be halved and points would be deleted from G at half the rate. The number of vertices remaining, as a function of "time," would decrease by exponential decay (versus the faster straight line decay). The process would continue until approximately (n / t) in t independent points were found at which time $t(G)$ would become small. The constant 0.01 allows groupies of moderate degree to be selected.
The monotone behavior of $g(n, t)$ allows a more convenient form for Theorem 2.

Theorem 2 (restatement). Let G be a trianglefree graph with $n(G) \leqslant n$ and $1 \leqslant t(G) \leqslant t$. Then

$$
\alpha(G) \geqslant 0.01(n / t) \ln t
$$

Remark 2. When $t<n^{1 / 3+o(1)}$ Theorem 2 is "best possible." A random graph G with n vertices and $n t / 2$ edges has $\alpha(G) \leqq(n / t) \ln t$ and $t^{3} / 6$ triangles. Deleting all points lying on triangles gives a graph G^{\prime} with $n^{\prime}=$ $n\left(G^{\prime}\right) \sim n, t^{\prime}=t\left(G^{\prime}\right) \sim t$ and $\alpha\left(G^{\prime}\right) \leqslant \alpha(G) \leqq c\left(n^{\prime} / t^{\prime}\right) \ln t^{\prime}$.

Remark 3. Erdös has asked if a result similar to Theorem 2 may be proven with the condition " G is trianglefree" replaced by " $\omega(G)<4$." In
particular, let $f_{4}(n, t)$ be the smallest value of $\alpha(G)$ over all G with $n(G) \leqslant n$, $t(G) \leqslant t$ and $\omega(G)<4$. We cannot decide if

$$
\begin{equation*}
\operatorname{Lim}_{t \rightarrow \infty} \operatorname{Lim}_{n \rightarrow \infty} f_{4}(n, t) /(n / t)=+\infty \tag{?}
\end{equation*}
$$

Theorem 3. $R(3, x)<100 x^{2} / \ln x$.
Proof. Let G be a trianglefree graph with n vertices and $\alpha(G)<x$. The neighbors of any point P form an independent set so $\operatorname{deg}(P)<x$. Hence $t(G)<x$. Theorem 2 gives

$$
\begin{equation*}
x>\alpha(G)>0.01(n / x) \ln x \tag{17}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
n<100 x^{2} / \ln x \tag{18}
\end{equation*}
$$

Let $h=h(G)$ denote the number of triangles in G. We now extend Theorem 2 to the case $h(G)$ "small."

Lemma 4. Let G be a graph with $n=n(G), e=e(G), h=h(G), t=t(G)$. Let $0<p<1$ with $p n \geqslant 3$. There exists an induced subgraph G^{\prime} with parameters $n^{\prime}, e^{\prime}, h^{\prime}, t^{\prime}$ satisfying

$$
\begin{equation*}
n^{\prime}>n p / 2, \quad e^{\prime}<3 e p^{2}, \quad h^{\prime}<3 h p^{3}, \quad t^{\prime}<6 t p . \tag{19}
\end{equation*}
$$

Proof. We employ the probabilistic method. Let \mathbf{G}^{\prime} be the distribution on the subsets of G satisfying, for each $v \in \mathbf{G}$,

$$
\begin{equation*}
\operatorname{Prob}\left[v \in \mathbf{G}^{\prime}\right]=p \tag{20}
\end{equation*}
$$

and with these probabilities mutually independent. Then $n\left(\mathbf{G}^{\prime}\right)$ has Binomial distribution $B(n, p)$ with mean $n p$ and variance $n p(1-p)$. Applying the classical inequality of Chebyschev

$$
\begin{align*}
& \operatorname{Prob}[\left.n\left(\mathbf{G}^{\prime}\right)<n p / 2\right] \\
& \quad<\operatorname{Prob}\left[\left|n\left(\mathbf{G}^{\prime}\right)-n p\right|>(n p(1-p))^{1 / 2}(n p /(1-p))^{1 / 2}\right] \tag{21}\\
& \quad<(1-p) / n p<1 / 3 .
\end{align*}
$$

(In applications we can usually use the Law of Large Numbers to bound the probability in (21) by a small term.)

The random variable $e\left(\mathbf{G}^{\prime}\right)$ has expectation $e p^{2}$ so

$$
\begin{equation*}
\operatorname{Prob}\left[e\left(\mathbf{G}^{\prime}\right) \geqslant 3 e p^{2}\right]<1 / 3 \tag{22}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\operatorname{Prob}\left[h\left(\mathbf{G}^{\prime}\right) \geqslant 3 h p^{3}\right]<1 / 3 . \tag{23}
\end{equation*}
$$

Combining (21)-(23)

$$
\begin{equation*}
\operatorname{Prob}\left[n\left(\mathbf{G}^{\prime}\right)>n p / 2 \text { and } e\left(\mathbf{G}^{\prime}\right)<3 e p^{2} \text { and } h\left(\mathbf{G}^{\prime}\right)<3 h p^{3}\right]>0 \tag{24}
\end{equation*}
$$

Therefore there exists a specific G^{\prime} with parameters $n^{\prime}, e^{\prime}, h^{\prime}, t^{\prime}$ satisfying $n^{\prime}>n p / 2, e^{\prime}<3 e p^{2}, h^{\prime}<3 h p^{3}$ and, finally, $t^{\prime}=2 e^{\prime} / n^{\prime}<6 t p$.

Lemma 5. Let $\varepsilon>0$. Let G be a graph with $n=n(G), t=t(G), h=h(G)$ and $h<n t^{2-\epsilon}$. If t is sufficiently large (dependent on ε)

$$
\begin{equation*}
\alpha(G)>c^{\prime}(n / t) \ln t \tag{25}
\end{equation*}
$$

where c^{\prime} is a positive constant dependent on ε.
Proof. We show Lemma 5 for $c^{t}=0.01 \varepsilon / 48$ and $t>12^{2 / \epsilon}$. By Lemma 4, with $p=t^{\epsilon / 4-1}$, there exists a subgraph G^{\prime} with parameters $n^{\prime}, e^{\prime}, t^{\prime}, h^{\prime}$ satisfying

$$
\begin{equation*}
n^{\prime}>n p / 2, \quad e^{t}<3 e p^{2}, \quad h^{\prime}<3 h p^{3}, \quad t^{\prime}<6 t p \tag{26}
\end{equation*}
$$

Delete one point from each triangle of G^{\prime} to give a graph $G^{\prime \prime}$ with parameters $n^{\prime \prime}, e^{\prime \prime}, t^{\prime \prime}, h^{\prime \prime}$. As $h^{\prime}<n^{\prime} / 2$

$$
\begin{equation*}
n^{\prime \prime}>n^{\prime}-h^{\prime}>n p / 4, \quad e^{\prime \prime}<3 e p^{2}, \quad h^{\prime \prime}=0 \tag{27}
\end{equation*}
$$

and thus $t^{\prime \prime}<12 t p$. We apply Theorem 2 to yield

$$
\begin{equation*}
\alpha(G) \geqslant \alpha\left(G^{\prime \prime}\right) \geqslant 0.01\left(n^{\prime \prime} / t^{\prime \prime}\right) \ln t^{\prime \prime}>c^{\prime}(n / t) \ln t \tag{28}
\end{equation*}
$$

Remark 4. The requirement $h<n t^{2-\epsilon}$ in Lemma 5 is best possible in that the union of $n /(t+1)$ disjoint cliques of size $t+1$ (the Turan graph) has approximately $n t^{2} / 6$ triangles and $\alpha \sim n / t$.

Theorem 6. For every $k \geqslant 2$

$$
\begin{equation*}
R(k, x) \leqslant(5000)^{k} x^{k-1} /(\ln x)^{k-2} \tag{29}
\end{equation*}
$$

for x sufficiently large (dependent on k).
Proof. Theorem 6 holds for $k=2$ trivially and for $k=3$ by Theorem 3 . We prove (29) by induction on k. Fix ε satisfying

$$
\begin{equation*}
0.96(k-2)^{-1}<\varepsilon<(k-2)^{-1} \tag{30}
\end{equation*}
$$

(To prove (2) for some c_{k} one needs here only to assume ε is "sufficiently small.") Let G be a graph with

$$
\begin{equation*}
n=n(G)>(5000)^{k} x^{k-1} /(\ln x)^{k-2} . \tag{31}
\end{equation*}
$$

Set $m=(5000)^{k-1} x^{k-2} /(\ln x)^{k-3}$. Assume $\omega(G)<k$. Every point P of G has $\operatorname{deg}(P)<R(k-1, x) \leqslant m$ so that $t(G) \leqslant m$.

Case 1. $h(G)<n m^{2-\epsilon}$. Applying Lemma 5 , with $c^{\prime}=0.01 \varepsilon / 48$ (and using the lower bound of (30)),

$$
\begin{equation*}
\alpha(G)>c^{\prime}(n / m) \ln m>x \tag{32}
\end{equation*}
$$

Case 2. $\quad h(G)>n m^{2-\epsilon}$. Some point P lies on at least $m^{2-\epsilon} / 3$ triangles. Let G^{\prime} be the set of points adjacent to $P . G^{\prime}$ has at most m vertices and at least $m^{2-\epsilon} / 3$ edges. Therefore G^{\prime} contains a point Q of degree at least $2 m^{1-\epsilon} / 3$ in G^{\prime}. Let $G^{\prime \prime}$ be the set of vertices of G^{\prime} adjacent to Q. Then

$$
\begin{equation*}
n\left(G^{\prime \prime}\right)>2 m^{1-\epsilon} / 3>R(k-2, x) \tag{33}
\end{equation*}
$$

since, by (30), ε is sufficiently small. If $G^{\prime \prime}$ contains a clique on ($k-2$) points the addition of P and Q would give a clique of size k in G. As this was assumed not to hold $G^{\prime \prime}$ contains no such clique and hence $G^{\prime \prime}$, and therefore G, contains an independent set of x points.

In either case, $\alpha(G) \geqslant x$, completing the proof. A slight alteration of the proof of Theorem 6 yields the following result, whose proof we delete.

Theorem 7. Fix $\varepsilon>0$. For every $k \geqslant 2$ there exists c_{k} so that for x sufficiently large either

$$
R(k, x)<c_{k} R(k-1, x) x / \ln x
$$

or

$$
R(k-1, x)<R(k-2, x) x^{E}
$$

Acknowledgment

We are indebted to Joel Spencer, who wrote this paper for us.

References

1. M. Ajtal, J. Komlós, and E. Szemerédi, A dense infinite Sidon sequence, to appear.
2. P. Erdös, Graph theory and probability, II, Canad. J. Math. 13 (1961), 346-352.
3. J. E. Graver and J. Yackel, Some graph theoretic results associated with Ramsey's theorem, J. Combinatorial Theory 4 (1968), 125-175.
