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ABSTRACT

Over the past 1.5 decades, numerous stem cell trials have been performed in patients with cardiovascular disease.
Although encouraging outcome signals have been reported, these have been small, leading to uncertainty as to whether
they will translate into significantly improved outcomes. A reassessment of the rationale for the use of stem cells in
cardiovascular disease is therefore timely. Such a rationale should include analyses of why previous trials have not
produced significant benefit and address whether mechanisms contributing to disease progression might benefit from
known activities of stem cells. The present paper provides such a reassessment, focusing on patients with left ventricular
systolic dysfunction, either nonischemic or ischemic. We conclude that many mechanisms contributing to progressive left
ventricular dysfunction are matched by stem cell activities that could attenuate the myocardial effect of such mecha-
nisms. This suggests that stem cell strategies may improve patient outcomes and justifies further testing.

(J Am Coll Cardiol 2015;66:2038-47) © 2015 by the American College of Cardiology Foundation.

ver the past 1.5 decades, numerous stem
cell trials have been performed in patients
with cardiovascular disease, using both
autologous and allogeneic stem cells, numerous
stem cell types, and various strategies to administer
the stem cells. Although many individual studies re-
ported encouraging signals, these were all phase 1 or

2 studies with appropriately small numbers of
patients, and their conclusions must therefore be
considered preliminary. In an attempt to increase sta-
tistical robustness, a recent meta-analysis assessing
the results of all randomized clinical trials of stem
cell therapy for patients with acute myocardial infarc-
tion (AMI) was performed, demonstrating no net
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beneficial effects on outcomes, except for a small
improvement in ejection fraction (1). A major review
of patients with heart failure (HF) yielded similar con-
clusions (2).

Given these results, a reassessment of the rationale
for the use of stem cells in cardiovascular disease is
timely. There are powerful arguments for concluding
that stem cell-based mechanisms exist that might be
therapeutically efficacious, thereby making con-
tinued pursuit of stem cell strategies for treating
cardiovascular disease reasonable. Such a rationale
include the likely mechanisms
contributing to progression of the disease and the
potential influences, if any, of stem cells on such
mechanisms. The present paper is intended to pro-
vide such a rationale, focusing on the patient with
HF and left ventricular (LV) systolic dysfunction,
whether nonischemic cardiomyopathy (NICM) or
ischemic cardiomyopathy (ICM).

would have to

By definition, the most conspicuous difference be-
tween ICM and NICM is the existence of atheroscle-
rotic lesions of the epicardial coronary arteries in
patients with ICM and the absence of such lesions in
patients with NICM. This leads to 1 major difference
in the initiation of the cardiomyopathic process and
its progression to HF: most patients with ICM have had
1 or more previous clinically-recognized or clinically-
silent myocardial infarctions (MIs), with the develop-
ment of progressive remodeling and LV dysfunction
occurring consequent either to an initial large injury
to the LV or to smaller, repeated injuries occurring
over time. Such a mechanism does not exist in NICM.

Despite this difference, disease progression in ICM
can occur, even when the initial infarct does not
result in severe LV dysfunction, and conversely,
many patients with large infarcts do not develop such
progression (3,4). These findings raise the possibility
that a given patient may experience progressive
deterioration of LV function on the basis of additional
mechanisms independently of MI, which may be
shared by patients with ICM and with NICM.

Another abnormality shared by both ICM and NICM
patients, which might provide an important thera-
peutic target, is the presence of dysfunctional but
viable myocardium. Patients with ICM invariably
have areas of myocardial scar, usually extensive,
whereas patients with NICM either do not or have it to
a lesser extent. Bello et al. (5) observed, using cardiac
magnetic resonance imaging, that whereas all pa-
tients with ICM had myocardial scar, only 12% of pa-
tients with NICM did so. Importantly, both ICM and
NICM patients had areas of myocardial dysfunction
due not to scar, but to dysfunctional viable myocar-
dium (DVM).
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Although more common and extensive in
patients with NICM, DVM provides a poten-
tial target for therapeutic interventions in
both ICM and NICM. If the dysfunctional tis-
sue consists of viable rather than scarred
myocardium, LV function can presumably be
improved. Figure 1, adapted from Bello et al.
(5), demonstrates these concepts—that LV

ECM

HF =

MMP

ejection fraction can be improved, that the
magnitude of improvement is related to the
percent of the LV that is dysfunctional but
viable, and that DVM is present in both ICM and
NICM.

The concept of DVM may also help direct which
patients may benefit most from stem cell therapy. As
the stage of HF that may be considered too late for
stem cell therapy is unclear, the presence of DVM may
help guide the identification of those patients with
the most potential to benefit.

The potential of any therapy, including stem cells,
toimprove outcomes in ICM or NICM is related not only
to its effects on restoring function to DVM, but also to
its capacity to improve processes that contribute to
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FIGURE 1 Ischemic or Nonischemic DCM: Identification of
Dysfunctional But Viable Myocardium and Relation to
Beta-Blocker-Induced Increase in EF
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et al. (5). DCM = dilated cardiomyopathy; EF = ejection fraction; LV =
ventricle.

absence of delayed hyperenhancement by magnetic resonance imaging. The

blocker therapy is directly related to the percent of the LV that is dysfunctional,
but still viable. Importantly, although compared with patients with ischemic
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CENTRAL ILLUSTRATION Mechanisms Contributing to Progression of Ischemic and Nonischemic Dilated Cardiomyopathy
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A display of some pathways believed to contribute to the development and progression of ischemic and nonischemic cardiomyopathy, which overlap with activities
exerted by different types of stem cells. Orange font indicates possible primary causes. LV = left ventricular; ROS = reactive oxygen species.

progressive deterioration of LV structure and function
(Central Illustration). On the basis of this conceptual
framework, our paper explores the potential of stem
cells to exert beneficial effects in ICM and NICM by
considering the overlap between pathways believed to
contribute to disease progression (other than athero-
sclerotic disease of the large coronary arteries) and the
known activities of stem cells that could favorably in-
fluence these pathways.

MECHANISMS CONTRIBUTING TO
PROGRESSIVE LV DYSFUNCTION THAT
MIGHT BE TARGETED BY ADMINISTRATION
OF STEM CELLS

The Central Illustration displays some of the pathways,
exclusive of large vessel coronary artery disease,
believed to (both individually and in combination)
play a role in initiation/progression of LV dysfunction
and adverse LV remodeling and, ultimately, in
development of HF.

INFLAMMATORY AND IMMUNE RESPONSES. Patients
with both ICM and NICM exhibit persistently elevated

C-reactive protein levels, consistent with a chronic
inflammatory state. Elevated C-reactive protein levels
were found to be independent markers of mortality
(6,7). In addition, DVM has been associated with
the up-regulation of other inflammatory markers,
such as inducible nitric oxide synthase and tumor
necrosis factor alpha (8). In patients with HF, circu-
lating levels of T regulatory cells are reduced and
their suppressive function compromised, providing
further evidence that an important mechanism
modulating immune and inflammatory responses is
deranged in this condition (9).

A persistent inflammatory state can contribute
directly not only to the development of DVM and
adverse LV remodeling (10), but also to increased
reactive oxygen species, apoptosis, fibrosis, and
microvascular dysfunction, which further exacerbate
its effects on DVM and adverse LV remodeling (11-14)
(Central Illustration). It has long been established that
inflammation plays a critical role in progression of the
arterial wall component of atherosclerotic heart dis-
ease (15). However, the deleterious effects of the in-
flammatory and immune systems are now recognized
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as also contributing to adverse LV remodeling and
progressive LV dysfunction following AMI (16,17). The
potential importance of immune and inflammatory
processes as key targets for disease modulation is
evidenced by studies in progress testing whether in-
terventions that modulate these processes favorably
influence disease outcomes (18,19).

On the basis of these considerations, we and others
propose to extend the concept of the causal role of
inflammatory and immune pathways beyond their
influences on plaques involving the large coronary
arteries or induction of these pathways by AMI—that
is, we hypothesize that a patient’s particular immune
and inflammatory responses are potential critical
players in the progression to HF, even in the absence
of large vessel disease. Such pathways, we propose,
would be operative in patients with ICM, as well as in
patients with NICM. We further suggest that the
causal role played by such responses will vary from
patient to patient, depending on multiple factors
including genetic, epigenetic, and environmental.

MICROVASCULAR DYSFUNCTION. Animal models
and human studies have shown microvascular
dysfunction (MVD) in subjects without demonstrable
cardiac disease and in patients with both NICM and
ICM (20-25). Abnormalities include decreased capil-
lary density, impaired vasculogenesis, and impaired
endothelial function leading to a reduced vasodilator
response to increased oxygen demand (24,26,27). In
addition, Roura et al. (20) found defective vasculari-
zation in NICM patients that included decreased
epicardial microvascular density. These abnormal-
ities could be exacerbated by inflammatory and
immune responses. Moreover, through myocardial
ischemia at the microvascular level, MVD could lead
either to DVM or to myocyte cell death and to pro-
gressive LV dysfunction and adverse LV remodeling
(Central Illustration). In this regard, the magnitude of
MVD has been correlated with the risk of adverse
outcome in patients with NICM (24).

OXIDATIVE STRESS. Patients with ICM and NICM
exhibit abnormalities in mitochondrial function,
leading to energy deprivation and increased oxidative
stress (6-8,24,28-33). As depicted in the Central
Illustration, these abnormalities, through complex
interactions with other pathways, likely contribute to
progression of DVM and adverse LV remodeling,
thereby playing a role in the development of HF.

EXTRACELLULAR MATRIX PRODUCTION AND INCREASED
APOPTOSIS. Myocardial remodeling involves a com-
bination of changes in cardiac structure and function,
including increased apoptosis (6,34) and dysfunc-
tional collagen homeostasis. These may, in part, be
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due to ischemia-induced cardiomyocyte degeneration
and replacement of sarcomeres with glycogen or
mitochondria deposits (35). The underlying biology of
dysfunctional collagen homeostasis in ICM and NICM,
including extracellular matrix (ECM) expansion and
interstitial fibrosis, is poorly understood (36). It
is unclear if myocyte loss occurs first followed by
replacement fibrosis, or if primary fibroblast activation
and development of fibrosis then lead to myocyte
loss through myocyte compression and compromised
blood flow to myocytes (36). Further contributing
to the abnormal collagen homeostasis is increased
expression of matrix metalloproteinase activity,
leading to adverse LV remodeling (37).

PARACRINE STEM CELL ACTIVITIES
THAT COULD FAVORABLY INFLUENCE
MECHANISMS OPERATIVE IN ICM AND NICM

Many types of adult stem cells have been used in
clinical trials (2). In vitro and in vivo studies have
defined detailed characteristics of these cells, which
differ in their degree of differentiation, the patterns
of the molecules they secrete, the tissue niche from
which they derive, their potential for eliciting a host
immune response, and their ability to engraft into the
target tissue.

Although some adult stem cells differentiate to
express markers characteristic of cardiomyocytes,
endothelial cells, and smooth muscle cells (38), most
investigators now believe that the potential benefit
derived from stem cells obtained from adult donors
does not result through their transdifferentiating
into, and thereby regenerating, the target tissue.
Rather, any potential beneficial effect derives from
their paracrine activities; i.e., through secretion of
numerous cytokines and growth factors, including
those relating to inflammation, adverse LV remodel-
ing, collagen deposition, angiogenesis, tissue healing,
apoptosis, mitochondrial dysfunction, microvascular
dysfunction, and collagen deposition (38-45). These
multiple activities could attenuate the multiple
pathways contributing to progression of DVM and
adverse LV remodeling that ultimately lead to HF
(Central Illustration).

We believe this multiplicity of effects can uniquely
benefit clinical outcomes to a greater degree than a
therapeutic agent with more targeted and, therefore,
more limited activities. Furthermore, that different
types of stem cells secrete different varieties of factors
suggests that their particular patterns of secretory
products influence their relative efficacy. Following
is a more detailed description of stem cell paracrine
activities that could influence processes leading
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to progressive adverse LV remodeling and, ultimately,
to HF.
ANTI-INFLAMMATORY, IMMUNOMODULATORY, AND
ANTIOXIDANT ACTIVITIES. Mesenchymal stem cells
(MSCs) exert immunosuppressive activity in vitro
(46,47). In the presence of an inflammatory milieu,
MSCs suppress proliferation and activation of T cells,
dendritic cells (DCs), macrophages, and B lymphocytes
and alter the secretory profile of DCs, T cells (T helper 1
[TH1] and TH2), and natural killer cells, thus inducing
an anti-inflammatory and immunotolerant pheno-
type. Thus, MSCs stimulate DCs to decrease secretion
of tumor necrosis factor alpha and increase secretion
of interleukin-10, TH1 cells to decrease secretion of
interferon (interferon) gamma, TH2 cells to increase
secretion of interleukin-4, and natural killer cells to
decrease secretion of interferon gamma. These cells
also exert anti-inflammatory effects in vivo (48,49).
MSCs also exert antioxidant and anti-inflammatory
activities in vivo. Although we are not aware of any
demonstration of these activities in the setting of
HF, compelling data using other models have
demonstrated these activities in vivo. Thus, carbon
tetrachloride-induced liver injury in rats damages the
liver, at least in part, by reducing glutathione pro-
duction and increasing free radical levels, triggering
a cascade of reactions leading to liver inflammation
and fibrosis. Treatment with MSCs increased gluta-
thione levels and decreased hepatic necrosis, fatty
changes, and inflammation (48). Similarly, in a rat
liver model of ischemic reperfusion, administration
of MSCs led to less liver damage, higher superoxide
dismutase and glutathione peroxidase activities,
fewer apoptotic hepatocytes, and lower levels of
Bcl-2-associated X and caspase-3 proteins (49). The
published data relating to whether other stem cell
types have such activities is much more limited,
although they may have such activities (50).
NEOVASCULARIZATION. Patients with ICM or NICM
have coronary microvascular dysfunction, raising
the possibility that angiogenic interventions might
improve outcomes. Angiogenesis involves the coor-
dinated expression of a very large number of factors,
such as vascular endothelial growth factor, hepato-
cyte growth factor, and angiopoietin-1, which pro-
mote migration of endothelial progenitor cells to the
target organ and are involved in regulation of the
ECM (43,51). Many of these factors are secreted by
stem cells, and multiple studies have suggested that
stem cells can enhance angiogenesis by increasing
capillary density (41,52,53). For example, when
comparing 18 control subjects to 15 NICM patients,
Roura et al. (20) found defective vascularization in
NICM patients, characterized by short and smaller
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major coronary segments (when adjusted to LV mass)
and decreased epicardial microvascular density (20).

The potential of stem cells to improve collateral

development adds an important mechanism by which
they could contribute to improved outcomes in ICM
and NICM. This is highly relevant in DVM, as neo-
vascularization may allow increased perfusion and
improvement of myocardial function. Conversely, a
small recent study (n = 6) examining the mechanisms
of bone marrow-derived cell therapy in patients
during LV assist device placement did not show evi-
dence of increased vascular tissue, as assessed by
density of CD31" endothelial cells and number of
manually-counted blood vessels (54). As the authors
duly noted, the results may be discordant from prior
studies due to the unique physiological properties of
LVADs on the myocardium, as well as the small study
sample and older age of the donor cells.
ADVERSE REMODELING, ECM PRODUCTION, AND
INHIBITION OF APOPTOSIS. Myocardial remodeling
involves a combination of changes in cardiac struc-
ture and function, including apoptosis and an altered
ECM. Among the changes in ECM is its expansion,
resulting from collagen overproduction. The under-
lying biology of ECM expansion with associated
development of myocardial fibrosis is poorly under-
stood. It is unclear if primary fibroblast activation
induces reactive fibrosis, thereby causing myocyte
loss, or if myocyte injury occurs first and is then fol-
lowed by fibroblast activation and replacement
fibrosis (36). Interestingly, the abnormalities of ECM-
related processes are improved by renin-angiotensin-
aldosterone modulation drugs that also improve HF
outcomes (36). This raises the possibility that the
diverse molecular pathways involved in the processes
leading to an altered ECM and to reversibility of DVM
might also benefit from the multiple stem cell-
released paracrine factors.

As an example, injection of MSCs can alter matrix
metalloproteinase (MMP) expression (43), which
could enhance their ability to migrate through tissue
and thereby to contribute to tissue remodeling. In
addition, their specific microenvironment appears to
determine their overall activity. Recent studies have
clarified MSC-related effects on MMPs and their in-
hibitors, the tissue inhibitors of metalloproteinase
(TIMPs) (55,56). Thus, MSCs exposed to proin-
flammatory cytokines and hypoxia secrete TIMP-2
and -1, thereby reducing levels of MMP-2 and -9
(56). These activities could inhibit a key mechanism
involved in adverse remodeling.

Numerous other studies suggest that stem cell-
released factors inhibit cardiomyocyte apoptosis. The
likelihood that these effects are due to paracrine
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activity is evidenced by a study in rats, where bone
marrow mononuclear-derived cells were cultured
under hypoxic conditions and the obtained superna-
tant was associated with improved cardiac function,
decreased apoptosis, and enhanced angiogenesis
when injected into ischemic rat hearts (44). Nagaya
et al. (57), using a rat model of NICM, injected MSCs
into the myocardium. There was increased expression
of MMP-2 and -9, and increased vascular endothelial
growth factor, hepatocyte growth factor, and insulin
growth factor-1, which are associated with angiogen-
esis and antiapoptotic and antifibrotic properties (57).
Zhang et al. (53), using a rat model of diabetic
cardiomyopathy, injected bone marrow mononuclear-
derived cells into the femoral vein and demonstrated
increased expression of MMP-2, decreased expression
of an apoptotic factor, MMP-9, increased arteriolar
density, and decreased collagen volume in myocar-
dium. Similar findings were seen in rats with hyper-
tensive heart disease (58). The published ICM data
has also extensively demonstrated the reduction of
infarct size and inhibition of apoptosis of chronic
ischemic HF post-stem cell injection (59,60).

CARDIAC REGENERATION. Numerous types of adult
progenitor cells have been hypothesized as having
potential for cardiac regeneration, either by trans-
differentiation or by recruitment or activation of
resident cardiac stem cells. Although the former is
now regarded as an unlikely therapeutic mechanism
for adult stem cells, the latter 2 concepts are under
active consideration. Two widely cited clinical trials
in patients with ICM, SCIPIO (Stem Cell Infusion in
Patients with Ischemic Cardiomyopathy) (61) and
CADUCEUS (Cardiosphere-Derived Autologous Stem
Cells) trials (62), reported that stem cell administra-
tion led to regeneration of functioning myocardium.
However, these 2 trials involved very few patients (10
randomized patients in SCIPIO, 25 in CADUCEUS).
(Note: an “Expression of Concern” was issued by The
Lancet [63] relating to the SCIPIO paper, and a critical
paper authored by the senior investigator of the lab-
oratory responsible for the stem cell aspect of this
study was retracted [64,65].) Pre-clinical data pub-
lished after SCIPIO further questioned the contribu-
tion of the type of stem cell used (c-kit-positive
cardiac stem cells), as endogenous c-kit-positive cells
did not produce significant cardiomyocytes within
the heart in a mouse model (66).

CLINICAL TRIALS WITH
STEM CELL THERAPY IN HF

OVERVIEW. Definitive data supporting proof of stem
cell clinical efficacy are still lacking. This is not
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surprising, given that adequately powered pivotal
trials have not yet been reported. In this regard, 2
recently published comprehensive reviews, 1
focusing on stem cell treatment of AMI and the other
on stem cell treatment of HF, have focused on
whether efficacy has been attained.

Analyzing the results in patients with AMI, Clif-
ford et al. (1) published a meta-analysis of all clinical
trials that were randomized and published through
2012 (39 trials, 1,765 participants) (1). Although there
was a significant increase in ejection fraction with
stem cell therapy (as determined by cardiac mag-
netic resonance imaging), it averaged only 1.78%.
This magnitude of improvement is of unknown
clinical consequence. There were no significant
changes in mortality or morbidity. Sanganalmath
and Bolli (2) reached the same conclusion in a review
of HF studies published through 2012 (37 trials; 17
randomized). Thus, both studies concluded that,
viewed as a totality, evidence of efficacy is not
compelling.

Meta-analyses provide a powerful tool for taking
groups of clinical trials that individually have too few
patients to yield statistically robust results and, by
grouping the patients, markedly increase statistical
power. However, when the individual trials being
analyzed use different cell types, have very different
cell delivery protocols, and vary in their patient
accrual criteria, the grouping of all studies and
the analysis provided would miss individual studies
using particular cells and modes of administra-
tion that might be effective. At this time, no
adequately powered individual studies convincingly
demonstrate efficacy. Although individual studies
may report encouraging “signals,” until adequately
powered randomized trials are completed, we have
to recognize that efficacy has
demonstrated.

not yet been

AUTOLOGOUS VERSUS
ALLOGENEIC STEM CELLS

With rare exceptions, all published stem cell studies
for cardiovascular indications have used autologous
cells. This may be a critically important reason why
the overall results of stem cell trials have been
disappointing (1,2).
disease are usually older and have numerous risk
factors—characteristics that compromise stem cell

Patients with cardiovascular

function in both humans and experimental animals
(40,67). More recently, studies using allogeneic stem
cells have been initiated (Table 1). This may be a
critically important change in stem cell therapeutic
strategy that could lead to clinical benefit.
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TABLE 1 Ongoing Clinical Trials of Stem Cell Therapy in Nonischemic and Ischemic Dilated Cardiomyopathy*

Origin ClinicalTrials.gov Estimated Patient Cell Delivery
Trial of CM NCT # Status Trial Type Enrollment Source Method
DYNAMIC NICM NCT02293603 Recruiting Phase 1 RCT 42 Allogeneic CDC IC
NOGA-DCM NICM NCT01350310 Recruiting Phase 2 RCT 60 Allogeneic HSC IM
IC
POSEIDON-DCM NICM NCT01392625 Recruiting Phase 1 and 2 RCT 36 Autologous MSC TE
Allogeneic MSC
RIMECARD NICM NCT01739777 Recruiting Phase 1 and 2 RCT 30 Umbilical cord MSC \%
Maranon NICM NCT01957826 Recruiting Phase 1 and 2 RCT 70 Autologous MSC TE
CardioCell NICM NCT02123706 Recruiting Phase 2 RCT 20 Allogeneic MSC v
Iniciativa Andaluza NICM NCT02033278 Recruiting Phase 2 and 3 RCT 51 Autologous BMMC IC
REMEDIUM NICM NCT02248532 Recruiting Phase 2 and 3 RCT 80 Autologous IM
CD34* BMMC
Aghdami NICM NCT02256501 Recruiting Phase 1 RCT 32 Autologous BMMC IC
Ageless NICM NCT01502501 Recruiting Phase 1 and 2 RCT 10 Autologous ADSC IM
Regenerative I\
Teva Pharmaceutical NICM NCT02032004 Recruiting Phase 3 RCT 1,730 Allogeneic MSC TE
Royan Institute ICM NCT01758406 Recruiting Phase 2 RCT 50 Autologous CSC IC
Ageless ICM NCT01502514 Recruiting Phase 1 and 2 RCT 10 Autologous ADSC IM
Regenerative IC
AHEPA ICM NCT01753440 Recruiting Phase 2 and 3 RCT 30 Allogeneic MSC IM
Hebein ICM NCT01946048 Not yet recruiting Phase 1 RCT 10 Allogeneic umbilical IM
cord MSC
WJ-ICMP ICM NCT02368587 Not yet recruiting Phase 2 RCT 160 Umbilical MSC IC
v
ISCIC ICM NCT01615250 Recruiting Phase 1 RCT 50 Peripheral CD34* SC IM
AHEPA ICM NCT01759212 Recruiting Phase 2 and 3 RCT 5 Allogeneic MSCs IM
Malheiros ICM NCT01913886 Recruiting Phase 1 and 2 RCT 10 Autologous MSCs IC
AlsterMACs ICM NCTO01337011 Recruiting Phase 1 and 2 RCT 64 Autologous CD133" IC
BMC IM
HUC-Heart ICM NCT02323477 Recruiting Phase 1 and 2 RCT 79 Allogeneic IM

umbilical MSCs
Autologous BMC

IMPACT-CABG ICM NCT01033617 Recruiting Phase 2 RCT 20 CD133+ BMC IM
ESCORT ICM NCT02057900 Recruiting Phase 1 RCT 6 Embryonic SC EPI
ASSURANCE ICM NCTO00869024 Recruiting Phase 1 and 2 RCT 24 Autologous BMC IM
NICM
CSCC_ASC ICM NCT02387723 Recruiting Phase 1 RCT 10 Allogeneic ADSC IM
ESTIMATION ICM NCT01394432 Recruiting Phase 3 RCT 50 Autologous MSC TE
TRIDENT ICM NCT02013674 Ongoing Phase 2 RCT 30 Allogeneic MSC TE
RACE-STEMI ICM NCT02323620 Not yet recruiting Phase 3 RCT 200 Autologous BMC IC
REPEAT ICM NCT01693042 Recruiting Phase 2 and 3 RCT 676 Autologous BMC IC
BAMI ICM NCTO01569178 Recruiting Phase 3 RCT 300 Autologous BMC IC

*Last checked April 2, 2015 on Clinicaltrials.gov. Studies with an unknown status (status that had not been verified for more than 2 years), completed, terminated, suspended, or withdrawn were excluded.

ADSC = adipose-derived stem cell; Ageless Regenerative | = Safety and Efficacy of Adipose Derived Stem Cells for Non-Ischemic Congestive Heart Failure I; Ageless Regenerative Il = Safety and Efficacy of
Adipose Derived Stem Cells for Congestive Heart Failure Il; Aghdami = Intracoronary Transplantation of Bone Marrow Derived Mononuclear Cells in Pediatric Cardiomyopathy; AHEPA = Allogeneic Stem Cells
Implantation Combined With Coronary Bypass Grafting in Patients With Ischemic Cardiomyopathy; AHEPA = Left Ventricular Assist Device Combined With Allogeneic Mesenchymal Stem Cells Implantation in
Patients With End-stage Heart Failure; AlsterMACs = Intra-coronary Versus Intramyocardial Application of Enriched CD133pos Autologous Bone Marrow Derived Stem Cells; ASSURANCE = Stem Cell Therapy
in Patients With Severe Heart Failure & Undergoing Left Ventricular Assist Device Placement; BAMI = The Effect of Intracoronary Reinfusion of Bone Marrow-derived Mononuclear Cells(BM-MNC) on All
Cause Mortality in Acute Myocardial Infarction; BMC = bone marrow cell; BMMC = bone marrow mononuclear cell; Cardiocell = A Study to Assess the Effect of Intravenous Dose of (aMBMC) to Subjects With
Non-ischemic Heart Failure; CDC = cardiosphere-derived cell; CM = cardiomyopathy; CSC = cardiac stem cell; CSCC_ASC = CSCC_ASC Therapy in Patients With Severe Heart Failure; DYNAMIC = Dilated
cardiomYopathy iNtervention With Allogeneic Myocardlally-regenerative Cells; EPI = epicardial; ESCORT = Transplantation of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure;
ESTIMATION = "ESTIMATION Study" for Endocardial Mesenchymal Stem Cells Implantation in Patients After Acute Myocardial Infarction; Hebein = Umbilical Cord Derived Mesenchymal Stem Cells Therapy in
Ischemic Cardiomyopathy; HSC = hematopoietic stem cell; HUC-Heart = Human Umbilical Cord Stroma MSC in Myocardial Infarction; IC = intracoronary; ICM = ischemic cardiomyopathy; IM = intra-
myocardial; IMPACT-CABG = IMPACT-CABG Trial: IMPlantation of Autologous CD133+ sTem Cells in Patients Undergoing CABG; Inciativa Andaluza = Infusion Intracoronary of Mononuclear Autologous Adult
no Expanded Stem Cells of Bone Marrow on Functional Recovery in Patients With Idiopathic Dilated Cardiomyopathy and Heart Failure; ISCIC = Implantation of Peripheral Stem Cells in Patients With Ischemic
Cardiomyopathy; IV = intravenous; Malheiros = Mesenchymal Stem Cells to Treat Ischemic Cardiomyopathy; Maranon = Mesenchymal Stem Cells for Idiopathic Dilated Cardiomyopathy; MSC = mesenchymal
stem cell; NCT = National Clinical Trial; NICM = nonischemic cardiomyopathy; NOGA-DCM = Safety and Efficacy Study of Intramyocardial Stem Cell Therapy in Patients With Dilated Cardiomyopathy;
POSEIDON-DCM = PercutaneOus StEm Cell Injection Delivery Effects On Neomyogenesis in Dilated CardioMyopathy (The POSEIDON-DCM Study); RACE-STEMI = Impact of Intracoronary Injection of
Autologous BMMC for LV Contractility and Remodeling in Patients With STEMI; RCT = randomized controlled trial; REMEDIUM = Repetitive Intramyocardial CD34+ Cell Therapy in Dilated Cardiomyopathy;
REPEAT = Compare the Effects of Single Versus Repeated Intracoronary Application of Autologous Bone Marrow-derived Mononuclear Cells on Mortality in Patients With Chronic Post-infarction Heart
Failure; RIMECARD = Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy; Royan Institute = Transplantation of Autologous Cardiac Stem Cells in
Ischemic Heart Failure; SC = stem cell; TE = transendocardial; Teva Pharmaceutical = The Purpose of This Study is to Evaluate the Efficacy and Safety of a Allogeneic Mesenchymal Precursor Cells (CEP-
41750) for the Treatment of Chronic Heart Failure; TRIDENT = The TRansendocardial Stem Cell Injection Delivery Effects on Neomyogenesis Study; WJ-ICMP = Intracoronary or Intravenous Infusion Human
Wharton' Jelly-derived Mesenchymal Stem Cells in Patients With Ischemic Cardiomyopathy.
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FUTURE IMPLICATIONS

Many questions about stem cell therapy for HF
remain unanswered. We do not know the most
effective cell type for cell therapy. This is com-
pounded by the utilization of different cell types and
either autologous or allogeneic cells in different
studies. As mentioned earlier, there are distinct dif-
ferences between stem cells derived from older pa-
tients with risk factors versus those derived from
young, healthy donors. Other questions remain, such
as the optimal dose, whether repeated administration
is necessary, the ideal stage of HF for implementa-
tion, and the most effective route of administration.
We also do not yet know whether optimal efficacy of
stem cells requires a strategy to stimulate the cells to
augment secretion of factors that might attenuate the
many mechanisms involved in HF progression.
Finally, if stem cell modification is necessary, we do
not know whether this can best be achieved by ge-
netic modification, by altering their growth condi-
tions, or by some other strategy.

An additional question arises: assuming that the
dysfunctional myocardium is not actively ischemic
(which may not be true), are sufficient homing sig-
nals present in the damaged myocardium of these
patients to induce stem cell engraftment? Evidence
suggests that this signal exists (68,69), but the issue

Mechanisms for HF Progression and Effects of Stem Cells

needs further study. Alternatively, if cells do not
adequately home to the injured tissue, is it possible
that during their residence in other distant tissues
(lungs, spleen, liver) they secrete factors that either:
1) are delivered via the circulatory system to the
myocardium, where they exert direct beneficial
effects; and/or 2) exert systemic effects by modu-
lating processes that cause progressive myocardial
injury, such as activation of the inflammatory and
immune systems?

The field of stem cell research in HF is extremely
active and robust (Table 1). Studies are assessing
various cell types of either autologous or allogeneic
origin and various delivery routes. Thus, despite the
remaining issues, we believe that the outcomes data
and mechanistic knowledge accumulated from the
many pre-clinical and clinical studies performed to
date, and the knowledge we will accumulate from
studies in progress, have the potential to provide in-
sights that will eventually lead stem cell therapeutics
to become a highly successful strategy in improving
outcomes in patients with HF.
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Javed Butler, Cardiology Division, Stony Brook Uni-
versity, Health Sciences Center, T-16, Room 080
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