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Thermoplasma acidophilum is a thermo-acidophilic archaeon. We purified tRNALeu (UAG) from T. aci-
dophilum using a solid-phase DNA probe method and determined the RNA sequence after determin-
ing via nucleoside analysis and m7G-specific aniline cleavage because it has been reported that T.
acidophilum tRNA contains m7G, which is generally not found in archaeal tRNAs. RNA sequencing
and liquid chromatography–mass spectrometry revealed that the m7G modification exists at a novel
position 49. Furthermore, we found several distinct modifications, which have not previously been
found in archaeal tRNA, such as 4-thiouridine9, archaeosine13 and 5-carbamoylmethyuridine34.
The related tRNA modification enzymes and their genes are discussed.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Thermoplasma acidophilum is a thermo-acidophilic archaeon,
which optimally grows at 59 �C and pH 1.9 [1,2]. There is little
known with regard to the RNA modifications of this archaeon ex-
cept for early studies [3–5]. In 1981 and 1983, sequences of initia-
tor and elongator tRNAMet were determined and novel
modifications at positions 15 and 56, which were later named
archaeosine15 [6] and Cm56 [7–9], were reported [3,4]. In 1991,
Edmonds et al. reported that a tRNA mixture from T. acidophilum
contains N7-methylguanine (m7G) [5], which is commonly found
at position 46 in class I tRNAs (regular tRNAs) from eubacteria
and eukaryotes [8,9]. The m7G46 modification contributes to main-
taining the L-shaped tRNA structure via formation of a m7G46–
C13–G22 tertiary base pair. The m7G modification has been found
in anticodon-loops of organelle class II tRNAs (tRNAs with a long
variable region): m7G34 in mitochondrial tRNASer and m7G36 in
chloroplast tRNALeu [8,9].
In this study, we report that the m7G modification exists at the
novel position 49 in class II tRNALeu. Furthermore, we found several
other distinct modifications in this tRNA.

2. Materials and methods

2.1. Strain, media, and culture

T. acidophilum HO-62 strain was previously isolated from Hak-
one, Japan [2]. The culture was performed at 56 �C under microaer-
ophilic conditions as described previously [2].

2.2. Preparation of class I and class II tRNA fractions, nucleoside
analysis and aniline cleavage at the m7G base

Total RNA was prepared from T. acidophilum cells by phenol
extraction. Class I and class II tRNA fractions were separated by
10% polyacrylamide gel electrophoresis (PAGE) (7 M urea), visual-
ized with 0.2% toluidine blue staining, and the bands were excised.
RNAs were extracted with 400 ll of gel elution buffer (0.5 M
ammonium acetate, 10 mM MgCl2, 1 mM EDTA, and 0.1% SDS) for
12 h at room temperature and then recovered by ethanol precipi-
tation. Nucleoside analysis was performed according to our recent
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Fig. 1. Class II tRNA fraction from T. acidophilum contains the m7G nucleoside.
(A) Total RNA fraction was prepared by phenol extraction. Classes I and II tRNA
fractions were purified by 10% PAGE (7 M urea). (B) Nucleoside analyses of class I
(upper) and class II (lower) tRNA fractions. Classes I and II tRNA fractions were
completely digested to nucleosides and then analyzed by HPLC C18 reverse phase
column chromatography. A small peak corresponding to m7G was detected in the
class II tRNA sample. In contrast, m7G was not detectable in the class I tRNA sample.
(C) The 50-ends of tRNAs were labeled with 32P, reduced by NaBH4, and then treated
with aniline. The m7G-specific aniline cleavage was observed in the class II tRNA
fraction.
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reports [10,11]. 0.1 A260 units of tRNA was 32P-labeled at the 50-end
with [c-32P]-ATP and T4 polynucleotide kinase after bacterial alka-
line phosphatase treatment. Reduction by NaBH4 and aniline cleav-
age were performed as described previously [12–14].

2.3. Purification of tRNALeu by solid-phase DNA probe and RNA
sequencing

A 30-biotinylated DNA oligomer (50-GTAAATCCATCGCCTTTGGC-
CAGTCT biotin-30) was used. Purification of tRNALeu by solid-phase
DNA probe was performed as described [10,11,14–16]. Eluted
tRNALeu was further purified by 10% PAGE (7 M urea). RNA se-
quence of tRNALeu was partially determined using Kuchino’s post
labeling method with slight modifications [10,17,18]. The 32P-la-
beled nucleotides were analyzed by two-dimensional thin layer
chromatography (2D-TLC) [19].

2.4. Mass spectrometry

20 ng of purified tRNALeu was digested by RNase T1 and RNase A,
and then analyzed by capillary liquid chromatography (LC)/nano-
electrospray ionization mass spectrometry (MS) as described
[20]. For detecting pseudouridine (W), derivatization of W by cya-
noethylation was performed according to the literature [21].
Nucleoside analysis was performed using 800 ng of T. acidphilum
tRNALeu and 40 lg of yeast total RNA prepared from Dtrm9 strain
according to our previous report [22].

3. Results

3.1. Class II tRNA fraction contains m7G nucleoside

In 1991, it was reported that a tRNA mixture from T. acidophi-
lum contained N7-methylguanine (m7G) [5], which is commonly
found at position 46 in class I tRNAs from eubacteria and eukary-
otes [8,9]. Therefore, we initially assumed that the m7G modifica-
tion in T. acidophilum tRNA was contained in class I tRNA. We
prepared class I and II tRNA fractions (Fig. 1A) and performed
nucleoside analyses (Fig. 1B). Unexpectedly, we could not detect
a m7G peak in the class I tRNA fraction (Fig. 1B upper) whereas a
small peak was found at the elution position of m7G in the class
II tRNA fraction (Fig. 1B lower). To confirm that m7G is present in
the class II tRNA fraction, we performed m7G-specific aniline cleav-
age (Fig. 1C). This showed that bands derived from m7G-modified
tRNA(s) were detected in the class II tRNA fraction (Fig. 1C). In con-
trast, aniline cleavage did not occur in the class I tRNA fraction,
consistent with the results from nucleoside analysis.

3.2. The m7G modification does not exist in the anticodon of class II
tRNAs

Some organelle tRNAs (tRNASer and tRNALeu) have the m7G
modification in the anticodon-loop [8,9]. Therefore, we purified
tRNASer (GCU) and tRNALeu (UAG) from T. acidophilum class II tRNA
fraction using a solid-phase DNA probe method (Fig. 2A). Because
nucleoside analysis failed to detect m7G in tRNASer (data not
shown) but showed its presence in tRNALeu (see Fig. 3A), we ana-
lyzed tRNALeu using Kuchino’s post label RNA sequencing method
[10,17,18] (Fig. 2B). It is generally difficult to determine the whole
sequence of class II tRNA by this method, because the long variable
region in class II tRNA shows resistance to formamide limited
cleavage. Although we performed the long formamide reaction
(120 s), we could not determine the position of m7G. Furthermore,
this long reaction caused the increase of double-hit fragments,
which gave non-specific pA, pG, pC and pU spots on the 2D-TLC
(Fig. 2B). However, we could detect several modifications as shown
in Fig. 2B. Unexpectedly, G36 was identified as unmodified (data
not shown). Furthermore, we found an unknown uridine modifica-
tion at position 34. These results prompted us to employ LC/MS
analysis of tRNALeu.

3.3. Mass spectrometry analysis reveals that tRNALeu contains 5-
carbamoylmethyuridine (ncm5U)

Fig. 3A shows the result of the LC/MS analysis. We found a mod-
ified uridine at 19.09 min of elution. The m/z value of this modified
uridine was 302, which coincides with that of 5-carbamoylmethy-
uridine (ncm5U). The ncm5U modification has been found at posi-
tion 34 only in tRNA from eukaryotes [8,9,23]. Although the
biosynthesis pathway of ncm5U modification has not been clari-
fied, this modification is derived from 5-carboxymethyluridine
(cm5U) [24,25]. Although cm5U is the precursor of both ncm5U
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Fig. 2. Purification of tRNALeu by solid-phase DNA probe and determination of
modified nucleotides by Kuchino’s post labeling method. (A) Nucleotide sequence
of tRNALeu is depicted as a cloverleaf model. The complementary region to the DNA
probe is illustrated. Purity of tRNALeu was checked by 10% PAGE (7 M urea) (right
panel, methylene blue staining). (B) 0.02 A260 units of tRNALeu were analyzed by the
Kuchino’s post labeling method. Several modified nucleotides could be identified by
2D-TLC. The arrows show the spots corresponding to modified nucleotides. The
unidentified spot (depicted as ncm5U34?) was determined as ncm5U34 by later
analyses (see Figs. 3 and 4).
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coincides with that of ncm5U. Furthermore, m7G, m1G and archaeosine could be
detected. (B) To determine the elution position of ncm5U, we analyzed tRNA from
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BH2+ and MH+ ions coincided, demonstrating that the unknown U modification in T.
acidophilum is ncm5U.
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and 5-methoxycarbonylmethyluridine (mcm5U), the biosynthesis
of mcm5U requires Trm9 and Trm112 proteins in Saccharomyces
cerevisiae [25]. Thus, the S. cerevisiae trm9 gene disruptant strain
accumulates ncm5U in its tRNA fraction [25]. To determine
whether the modified U in tRNALeu is ncm5U, we prepared the stan-
dard ncm5U from the S. cerevisiae trm9 gene disruptant strain
(Fig. 3B) and compared the modified U and ncm5U by LC/MS
(Fig. 3C). The elution times and BH2+ and MH+ ions coincided be-
tween the modified uridine from T. acidophilum tRNALeu and the
standard marker of ncm5U. Thus, we confirmed that T. acidophilum
tRNALeu contains ncm5U. Furthermore, we confirmed the identity
of the peak of m7G in the LC/MS of nucleosides from tRNALeu

(Fig. 3A), consistent with the result of the aniline cleavage experi-
ment (Fig. 1C).

3.4. Distinct modifications in T. acidophilum tRNALeu

Positions of modified nucleotides were determined by LC/MS/
MS analysis. tRNALeu was digested with RNase A or RNase T1 and
then the digested fragments analyzed (Supplementary Fig. 1 and
Table 1). For example, in the case of the m7G modification, the
modification was found in the fragment UUCG⁄AGp, which was de-
rived from RNase T1 digestion (Fig. 4A). Because RNase T1 cleaves
at the 30-end of G residues, the existence of the UUCG⁄AGp frag-
ment suggests the modification of G⁄ (corresponding to G49). The
mass of the fragment (1968 Da, Supplementary Table 1) suggests
the methylation of G⁄. Two methylguanosines (m7G and m1G) were
detected by nucleoside analysis (Fig. 3A) and the position of m1G
was determined as 37 by Kuchino’s post label method (Fig. 2B),
strongly suggesting that the G⁄ is m7G. In fact, the MS/MS analysis
detected the fragment (m/z = 900.594) without the m7G base de-
rived from UUCG⁄AGp (Fig. 4A), because the N-glycosyl bond of
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m7G is unstable as compared to those of the other methylated
guanosines [20]. Thus, G⁄49 was identified as m7G49. This conclu-
sion was confirmed by LC/MS/MS analysis of RNase A digested
sample: the m7GAGGGUp fragment was detected (Supplementary
Fig. 1 and Table 1). Similarly, s4U8 and s4U9 (Fig. 4B), archaeosine
(G+) 13 and G+15 (Fig. 4C), ncm5U34 (Fig. 4D), m2

2G26 (Supple-
mentary Fig. 1 and Table 1), W39 and W55 (Supplementary Fig. 1
and Table 1), Cm56 (Supplementary Fig. 1 and Table 1) and
m1A58 (Supplementary Fig. 1 and Table 1) were detected by LC/
MS/MS. The positions of W modifications were determined by
LC/MS/MS analysis of cyanoethylated tRNALeu [21]. Because the
reaction efficiency of cyanoethylation at position 54 was low, we
could not confirm whether the W54 modification was present.
However, the results of Kuchino’s post label method clearly
showed the existence of W54 modification. Therefore, we con-
cluded that U54 is modified to W54. A summary is shown in
Fig. 5 and Table 1.

4. Discussion

In this study, we initially focused on the m7G modification in T.
acidophilum tRNA because the position(s) of this modification re-
mained unidentified for two decades [5]. To our surprise, the
m7G modification was found at the novel, irregular position 49 in
the class II tRNALeu. Aquifex aeolicus TrmB (tRNA (m7G46) methyl-
transferase) [14,26] does not methylate this tRNALeu transcript
(data not shown), suggesting that m7G49 in tRNALeu is not a result
of conformational change of tRNA and an already known tRNA
methyltransferase. Thus, this result suggests the existence of a no-
vel tRNA (m7G49) methyltransferase. Because tRNA (m7G46)
methyltransferases (eukaryotic Trm8–Trm82 [27] and eubacterial
TrmB [26,28]) share homology in their catalytic domain, we
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searched for candidate genes in the T. acidophilum genome.
Although one candidate gene (Ta0679) was found (Table 1), we
have been unable to prepare soluble recombinant protein in
Escherichia coli (data not shown). The tRNA (m7G49) methyltrans-
ferase activity may require another subunit as in eukaryotic Trm8–
Trm82.

The s4U modification at position 9 is novel in archaeal tRNAs,
whereas this modification is often found in eubacterial class II
tRNAs [8,9,29]. The eubacterial s4U8 modification is generated by
the cooperative activity of ThiI and IscS, transferring a sulfur atom
from cysteine to tRNA [30,31]. Because s4U8 is also found at the
neighboring position, ThiI is probably involved in the s4U9 modifi-
cation. However the iscS gene is not present in the T. acidophilum
genome [32]. ThiI from c-proteobacteria consists of four domains
including a rhodanase-like domain (RLD) [30,31]. In contrast, gen-
eral archaeal ThiI proteins do not have a RLD [33]. However, T. aci-
dophilum ThiI is an exception and does contain a RLD like c-
proteobacterial proteins. This unusual RLD may function instead
of IscS. Furthermore, because T. acidophilum prefers a sulfur-rich
environment, T. acidophilum may utilize a sulfur atom for tRNA
modification without IscS like the ThiI from Methanococcus marip-
aludis [33]. Moreover, it has been reported that ubiquitin-like small
proteins are involved in the sulfur transfer in archaea: at least
UbaA protein from Haloferax volcanii is involved in 2-thiolation of
U34 [34]. These ubiquitin-like small proteins may be involved in
Table 1
Modified nucleosides in T. acidophilum tRNALeu.

This
study

In previous reports Feature E

Archaea Eubacteria Eukaryotes

s4U8 + + � Archaea and eubacteria specific U
s4U9 � + � Novel position in archaea U
G+13 � � � Novel position A
G+15 + � � Archaea specific A
m2

2G26 + + + Novel position in archaeal class
II tRNA

T

ncm5U34 � � + Novel modification in archaea E
m1G37 + + + Common a
W39 + + + Common P
m7G49 � � � Novel position ?
W54 + � + Archaea and eukaryotes

specific
P

W55 + + + Common P
a

Cm56 + � � Archaea specific a
m1A58 + + + Common a
s4U formations in T. acidophilum. Because IscS is involved in thia-
mine biosynthesis [31,35], future study is required to investigate
sulfur metabolism in T. acidophilum.

Unexpectedly, G+ was detected not only at position 15 (com-
mon position) but also at position 13 (novel position). In general,
G+ is synthesized by two-step reactions [36] involving ArcTGT
and ArcS. Only one set of these genes is encoded in the T. acidophi-
lum genome and are therefore probably involved in the biosynthe-
sis of G+13 as well as G+15.

The ncm5U34 is a novel modification in archaeal tRNAs.
Although the biosynthesis pathway of ncm5U34 is unclear, the
elongator complex is involved in the eukaryotic ncm5U34 modifi-
cation [24]. The eukaryotic elongator complex is composed of six
subunits whereas only one gene (elp3) exists in the T. acidophilum
genome. Archaeal Elp3 consists of a S-adenosyl-L-methionine bind-
ing central domain and a C-terminal histone acetyltransferase-like
domain [37]. This archaeal Elp3 may be involved in the biogenesis
pathway of ncm5U34. In general, xm5U modifications at the first
position (i.e., 34) in the anticodon shifts the puckering equilibrium
of the ribose of xm5U34 to the C30-endo form and results in restric-
tion of the wobble base pairing only with A and G [38]. In the T. aci-
dophilum genome, five tRNALeu genes exist and one tRNALeu has a
CAG anticodon. Therefore, there is no necessity to modify U34 to
ncm5U34. These observations may mean that there is a division
of roles of the five tRNALeu species according to the corresponding
codons in T. acidophilum protein synthesis.

The m2
2G26 modification has not been reported from archaeal

class II tRNAs [8,9]. In fact, it has been reported that one of positive
determinants for Pyrococcus furiosus Trm1 is the regular size vari-
able region (5 nt) [39]. In contrast, Trm1 from A. aeolicus (thermo-
philic eubacterium) can methylate the class II tRNA [15]. Therefore,
the substrate specificity of T. acidophilum Trm1 seems to be a
eubacterial type.

The other modifications are explainable by reported archaeal
tRNA modification enzymes (Table 1) [40–43]. Furthermore,
although we detected the m1A58 modification in tRNALeu, A58 in
elongator tRNAMet has been reported as unmodified A58 [3]. In
addition, Pyrococcus abyssi TrmI has a multisite specificity towards
A57 and A58 [42]. In the current study, we did not detect the
m1A57 modification in tRNALeu. Therefore, T. acidophilum TrmI
may modify specific tRNA species. To characterize these tRNA
modification enzymes, further studies will be necessary.

Genome sequencing demonstrated that T. acidophilum genome
contains only around 1500 open reading frames [32]. Therefore,
we initially imagined the T. acidophilum tRNA modification system
as a simplified system formed by limited tRNA modification en-
zymes. However, contrary to expectations, tRNA modifications in
xpected modification enzyme Candidate gene(s) in T. acidophilum

baA? + ThiI Ta0844? + Ta0506
baA? + ThiI? Ta0844? + Ta0506?
rcTgt? + ArcS? Ta1493? + Ta0924?
rcTgt + ArcS Ta1493 + Ta0924
rm1 Ta0997

lp3? + a? Ta1311? + a?
Trm5 Ta0836
us3 Ta0932

Ta0679? + a?
us10 Ta1296

us10 or Cbf5 with H/ACA proteins (Nop10
nd Gar1)

Ta1296 or Ta1244 with (Ta1202 and
Ta0940)

Trm56 Ta0931
TrmI Ta0852
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T. acidophilum are unprecedented. Because genome sequencing
suggests that more than 200 genes are derived from other archaea
and eubacteria [32], these genes may produce the distinct tRNA
modifications. Thus, some tRNA modification enzymes may have
derived from other organisms and then evolved uniquely in the
T. acidophilum genome. To clarify the evolution processes of tRNA
modification enzymes in archaea, further studies will be required.
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