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Objectives. The purpose of this study was the investigation of
the in vivo role of lipoprotein(a) [Lp(a)] and inflammatory
infiltrates in the human coronary atherosclerotic plaque and their
correlation with the clinical syndrome of presentation.

Background. Lipoprotein(a) is an atherogenic and thrombo-
genic lipoprotein, and has been implicated in the pathogenesis of
acute coronary syndromes. Lipoprotein(a) induces monocyte che-
moattraction and smooth muscle cell activation in vitro. Macro-
phage infiltration is considered one of the mechanisms of plaque
rupture.

Methods. This study of atherectomy specimens investigated the
in vivo role of Lp(a) at different stages of the atherogenic process,
and its relationship with macrophage infiltration. We examined
coronary atheroma removed from 72 patients with stable or
unstable angina. Specimens were stained with antibodies specific
for Lp(a), macrophages (KP-1), and smooth muscle cells (alpha-
actin). Morphometric analysis was used to quantify the plaque
areas occupied by each of the three antigens, and their colocal-
ization.

Results. All specimens had localized Lp(a) staining; the mean
fractional area was 58.2%. Ninety percent of the macrophage
areas colocalized with Lp(a) positive areas, whereas 31.3% of the

smooth muscle cell areas colocalized with Lp(a) positive areas.
Patients with unstable angina (n 5 46) had specimens with larger
mean plaque Lp(a) areas than specimens from stable angina
patients (n 5 26): 64.4% versus 47.7% (p 5 0.004). Unstable
angina patients with rest pain (n 5 28) had greater mean plaque
Lp(a) area than unstable angina patients with crescendo exer-
tional pain (n 5 18): 71.1% versus 52.4% (p < 0.001). Mean KP-1
area was 31.2% in unstable rest angina versus 18.3% in stable
angina (p 5 0.05); alpha-actin area was greater in stable (48.5%)
and crescendo exertional angina (48.8%) than in rest angina
(30.4%). The strongest correlation between plaque KP-1 and
Lp(a) area was in unstable rest angina (r 5 0.88, p < 0.001), and
between alpha-actin and Lp(a) areas in the crescendo exertional
angina (r 5 0.62, p < 0.01).

Conclusions. Lipoprotein(a) is ubiquitous in human coronary
atheroma. It is detected in larger amounts in tissue from culprit
lesions in patients with unstable compared to stable syndromes,
and has significant colocalization with plaque macrophages. A
correlation of plaque alpha-actin and Lp(a) area suggests a role of
Lp(a) in plaque growth.

(J Am Coll Cardiol 1998;32:2035–42)
©1998 by the American College of Cardiology

Lipoprotein(a) [Lp(a)] is considered an independent risk
factor for premature cardiovascular disease (1). Elevated
serum lipoprotein Lp(a) levels have been associated with the
development of myocardial infarction and the presence and
extent of coronary (2–5), carotid (6), peripheral vascular (7)

and saphenous vein aortocoronary bypass graft (8,9) athero-
sclerosis, and with clinical restenosis after coronary interven-
tion (10). Although the unique structural features of Lp(a)
suggest both thrombogenic and atherogenic potential, the
precise mechanism of Lp(a) action is still uncertain.

The Lp(a) molecule consists of a low density lipoprotein
particle linked to apoprotein(a) [apo(a)]. Apoprotein(a) is a
glycoprotein of variable size (11) that shares remarkable
structural homology with plasminogen (12–14). Lipoprotein(a)
has been implicated in the regulation of plasminogen activator
inhibitor-1 expression in endothelial cells (15), and shown to
inhibit endothelial cell surface fibrinolysis (16), to attenuate
plasminogen binding to platelets (17) and to bind to plaque
matrix components (18). Autopsy studies in humans have
documented the presence of Lp(a) in aortic and coronary
atherosclerotic plaques (19,20) and an apparent colocalization
with fibrin(ogen) (21). Lipoprotein(a) has been localized at the
site of mural thrombus (20), at the sites of fibrin deposition
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(19–21), and occasionally within tissue factor–positive macro-
phages in human thoracic aortic wall (19).

Inflammation has been implicated in the pathogenesis of
coronary disease. Recruitment of circulating monocytes is an
early event in atherosclerosis (22), and enhanced macrophage
infiltration in the atherosclerotic plaque has been correlated
with acute clinical syndromes of rest angina and non–Q wave
myocardial infarction (23). Macrophages have been specifically
implicated in the induction of plaque rupture through diges-
tion of fibrous caps (24), and they express tissue factor that is
thought to promote local thrombogenicity (25). Plaque mac-
rophages may represent a population of preexisting cells within
the plaque in addition to newly attracted and differentiated
circulating monocytes in response to a local stimulus
(22,26,27). Our recent studies have implicated the apo(a)
portion of unoxidized Lp(a) in the induction of monocyte
chemotactic activity in human coronary and umbilical vein
endothelial cells (28). Oxidized Lp(a) has also been shown to
enhance in vitro adhesion of human monocytes to cultured
endothelial cells (29). Furthermore, Lp(a) has also been
localized in foam cells in human xanthomata (30). These
experimental data indicate that Lp(a) may be an attractant of
macrophages in the atheromatous plaque. Additionally, previ-
ous reports have associated Lp(a) with smooth muscle cell
proliferation (31,32) an event that may lead to progressive
luminal obstruction.

In this study, we have performed immunohistochemical
staining on serial sections of atheroma removed from patients
during percutaneous transluminal directional coronary
atherectomy (DCA). We quantified and localized the tissue
distribution of apo(a), of the KP-1 macrophage membrane
antigen, and of alpha-actin, a smooth muscle cell marker.
Using computerized morphometric analysis we determined the
colocalization of apo(a) with macrophages and smooth muscle
cells. We have also examined the relationship between plaque
macrophage and Lp(a) areas, and the patient’s clinical syn-
drome of presentation. Our findings indicate that Lp(a) is
abundant in human coronary atheroma; it is detected in larger
amount in patients with unstable angina as compared to stable
angina, and colocalizes with plaque macrophages. A correla-
tion of plaque alpha-actin and Lp(a) area suggests a role of
Lp(a) in atherosclerotic plaque growth.

Methods
Patient population. Coronary specimens were evaluated

from a total of 126 patients who underwent percutaneous

transluminal DCA at Mount Sinai Hospital from June 1993 to
December 1994. Inclusion criteria were successful intervention
on a culprit de novo lesion, and clinical syndrome of stable
angina (Canadian Cardiovascular Society classification [33]),
crescendo exertional angina (Braunwald class I [34]) or rest
angina within 48 h of the intervention (Braunwald class III
[34]). In cases of mixed clinical picture, patients were classified
according to the more severe and recent syndrome. Directional
coronary atherectomy of vein graft lesions (n 5 10), rescue
DCA for failed angioplasty (n 5 6) and unstable angina
patients who had DCA of a nonculprit (n 5 12) or restenotic
(n 5 10) lesion were excluded. Additionally, patients with too
small or inappropriately stained specimens (see below) were
excluded (n 5 16). According to the standard practice at our
Catheterization Laboratory, patients undergo angiography and
intervention at the same setting, within 48 h of admission.

Atherectomy specimens. All tissue specimens from the
culprit lesion were immediately immersed in 10% buffered
formalin and routinely processed for paraffin embedding.
Five-micrometer sections were serially cut, mounted on lysine-
coated slides and stained with hematoxylin and eosin, a
trichrome stain, and immunohistochemically as noted below.

Apoprotein(a) antibodies. Polyclonal rabbit antihuman
apo(a) antibody was prepared as previously described (35).
Rabbits were immunized with purified Lp(a) from a single
donor. The immunoglobulin G fraction of the rabbit immune
serum was isolated and sequentially absorbed with immobi-
lized low density lipoprotein, lys-plasminogen and fibrinogen.
The final antibody preparation had no reactivity against these
antigens by Western immunoblotting analysis (36). The murine
monoclonal antihuman antibodies, a-6 against kringle IV type
2 of apo(a) (amino-terminal specific) and a-40 (carboxy-
terminal specific) were prepared as detailed previously (37).

Immunocytochemistry. Antibody staining was performed
on deparaffinized and rehydrated sections. Lipoprotein(a) was
detected with the absorbed polyclonal apo(a) antibody at a
concentration of 8.1 mg/ml, with the a-6 monoclonal apo(a)
antibody at a concentration of 1 mg/ml and the a-40 monoclo-
nal apo(a) antibody at a concentration of 2 mg/ml. Only six
randomly selected specimens were stained with the a-40 anti-
body. Macrophages were identified with a murine monoclonal
antihuman CD-68 panmacrophage antibody (KP-1, M814,
Dako) at a concentration of 7.6 mg/ml. Smooth muscle cells
were identified with an antihuman smooth muscle cell alpha-
actin antibody (M851, Dako) at a concentration of 0.1 mg/ml.
Sections were washed in phosphate-buffered saline, blocked
with H2O2 and the appropriate normal serum, incubated with
primary antibody and reacted with the appropriate biotin-
conjugated secondary antibody, and then with streptavidin
conjugated with peroxidase (BioGenex, San Ramon, CA).
Peroxidase activity was detected with 3-39-diaminobenzidine.
Sections were dehydrated, coverslipped and examined. Positive
control, nonimmune negative and processing control slides
were performed for each antigen stain. Each antibody stain
was done as a batch using the same reagents, so as to obviate
staining differences. Preabsorption of the apo(a) antibodies

Abbreviations and Acronyms

apo(a) 5 apoprotein(a)
DCA 5 directional coronary atherectomy
Lp(a) 5 lipoprotein(a)
TGF-beta 5 transforming growth factor-beta
VLDL 5 very low density lipoprotein
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yielded negative staining. According to our previous method-
ology (23), specimens with less than 1.5 mm2 total tissue area
(n 5 42) were not stained immunohistochemically; addition-
ally, specimens with poor immunohistochemical staining or
missing an antigen stain were also excluded (n 5 12). Serially
cut tissue sections were immunostained for the assessment of
specific colocalization.

Morphometric analysis. Microscopic analyses were con-
ducted at 3100 magnification without knowledge of the clini-
cal syndrome, and independently of the other stains. Total
specimen plaque area, and segmental areas occupied by
apo(a), KP-1 or alpha-actin positive staining were manually
planimetered independently of each other using a microscope
drawing tube. Images were digitized using a Sony DKC-5000
camera and an Epson ES-1200C scanner (EU-13, Seico-Epson
Corp., Japan), processed and quantified with Adobe Photo-
shop 4.0 and NIH image 1.57 software, on a PowerMacintosh
computer. Total plaque area and the total area stained by
apo(a), KP-1 and alpha-actin were calculated. Images of KP-1
and alpha-actin staining were superimposed on Lp(a) images
to determine the KP-1/Lp(a) and alpha-actin/Lp(a) overlap
areas for each specimen (23).

Statistical analysis. Data were first compared for stable
versus unstable angina. However, prior studies of atherectomy
specimens in unstable angina had included only rest angina
patients (23–27). To analyze our results in accordance with this
literature and to clarify differences between subgroups of
unstable angina, the data were further divided into three
groups according to the patients’ clinical syndrome: stable
angina, crescendo exertional angina or rest angina. Results are
expressed as mean 6 SEM of the individual specimen mea-
surements. Analysis of variance with Tukey–Kramer correction
(for multiple comparisons) was used for comparisons between
the three groups. The significance of the trend in Lp(a) area
among the three groups was assessed with regression analysis.
A two-tailed Student t test was used for comparison of
continuous variables between two groups. Categorical vari-
ables were compared with Fisher’s exact test. Linear regression
analysis was performed for correlation between Lp(a) and
KP-1 areas, and between Lp(a) and alpha-actin areas. Multi-
variate logistic regression analysis was performed with plaque
KP-1 area as the independent variable; clinical (age, gender,
clinical syndrome) and morphologic [Lp(a) area, alpha-actin
area] parameters were included as dependent variables. The
statistical software JMP 3.2 (SAS Institute, Cary, NC) was used
in a PowerMacintosh computer, and a two-tailed probability
p , 0.05 was considered significant.

Results
The studied population (n 5 72) included 26 patients with

stable angina and 46 patients with unstable angina. Within the
unstable angina population, 18 patients had primary crescendo
exertional angina (Braunwald class I), and 28 patients had rest
angina (Braunwald class III). The patients were 91% male,
18% diabetic, 38% hyperlipidemic and 55% hypertensive, and

had a mean age of 52 6 1.1 years. The majority of lesions, 55%,
were in the left anterior descending coronary artery. There
were no differences among the groups with respect to the
baseline clinical characteristics, coronary risk factors or the
angiographic location of the treated lesions.

All patients had specimens with localized Lp(a) positive
staining, 93% of patients had localized KP-1 positive staining
and 94% had alpha-actin positive staining. There was no
difference in the areas stained with the polyclonal apo(a)
antibody or the a-6 monoclonal apo(a) antibody [specific for
the amino-terminal of apo(a)] in all plaques examined (Fig. 1).
Specimens stained with the a-40 antibody [specific for the
carboxy-terminal of apo(a)] showed localized staining in areas
that were also positive for the a-6 apo(a) antibody; however,
there were certain areas in each specimen with a-6 positive
staining that did not stain with the a-40 antibody.

In the entire study population (n 5 72), the mean total
plaque area was 5.6 6 0.9 mm2, the % Lp(a) area 58.2 6 4.2%,
the % KP-1 area 25.1 6 4.2% and the % alpha-actin area
41.2 6 5.9%. KP-1 positive areas significantly overlapped with
Lp(a) positive areas; there was 90.1 6 4.2% KP-1/Lp(a)
colocalization. On the other hand, alpha-actin positive areas
were predominantly detected on Lp(a) negative areas; there
was 31.3 6 6.1% alpha-actin/Lp(a) colocalization. An example
is shown in Figure 2.

Figure 1. Demonstration of two Lp(a) stains, utilizing the polyclonal
apoprotein(a) antibody (left panel) and the monoclonal apoprotein(a)
antibody a-6 (right panel). The positive staining occupies the same
plaque areas in both stains, but the polyclonal antibody stains with
greater intensity. Lp(a) occupies the majority of the plaque. Original
magnification 340 (brown 5 peroxidase developed with 3-39-
diaminobenzidine).
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Plaque Lp(a) area was 64.4 6 3.5% in unstable angina (n 5
46) versus 47.7 6 4.9% in stable angina (n 5 26) patients, p 5
0.004. There were trends toward greater macrophage area
(28.9 6 3.9% vs. 18.3 6 4.5%, p 5 0.09) and lower smooth
muscle cell area (37.2 6 4.4% vs. 45.8 6 6.8%, p 5 0.1) in
unstable compared to stable angina patients.

The distribution among the three groups (stable angina,
crescendo exertional angina, rest angina) of total plaque area
and of fractional specimen areas occupied by Lp(a), KP-1, and
alpha-actin and their overlap are shown in Table 1. All groups
had similar total plaque areas from the retrieved specimens.
Lipoprotein(a) positive area was significantly greater with
more unstable syndromes (rest angina . crescendo exertional
angina . stable angina, p for trend ,0.001). Macrophage area
was significantly greater in unstable rest angina compared to
stable angina, whereas alpha-actin areas were similar among
the groups. Additionally, there were no differences among the
groups with respect to the Lp(a)/macrophage or Lp(a)/alpha-
actin colocalizations.

Irrespective of localization of the staining, there were
significant linear correlations (Figure 3) between the plaque
areas of Lp(a) and macrophages in all groups: r 5 0.88 in
unstable rest angina (p , 0.0001) (Fig. 3), r 5 0.60 in
crescendo exertional angina (p 5 0.01) and r 5 0.73 in stable
angina (p , 0.001). On the other hand, plaque alpha-actin and
Lp(a) amounts correlated significantly in the crescendo exer-

tional angina group (r 5 0.62, p , 0.001) (Fig. 4), but less so
in rest angina (r 5 0.37, p 5 0.05) or in stable angina (r 5 0.24,
p 5 0.25).

In the multivariate analysis controlling for the clinical
syndrome, age, gender, total plaque area and plaque alpha-
actin area, the plaque Lp(a) area was the single most powerful
correlate of plaque macrophage area (p 5 0.01), whereas the
clinical syndrome was no longer a significant correlate of the
fractional macrophage area.

Discussion
This is the first report to examine human coronary atherec-

tomy specimens for the presence and extent of Lp(a) by
morphometric analysis of immunohistologic tissue sections.
Morphometric analysis has also been used to quantify the area
of the plaque containing macrophage membrane antigen
(KP-1) and alpha-actin, a marker of smooth muscle cells. We
have quantified the colocalization of these antigens with
apo(a), and have correlated these findings with the clinical
syndrome observed in the patients from whom the atherec-
tomy specimens were obtained. While Lp(a) has been previ-
ously demonstrated in atherosclerotic plaques, this report
shows the extent of plaque Lp(a) positive area, its colocaliza-
tion with macrophages and its relationship with unstable
angina. Thus, our results support an important in vivo role of

Figure 2. Comparative staining of an atherosclerotic
plaque of a rest angina patient: eosin (A), alpha-actin (B),
KP-1 (C) and polyclonal apoprotein(a) antibody (D). The
distribution of Lp(a) and macrophages is nearly identical
(C, D). Smooth muscle cells occupy a certain portion of the
Lp(a) area, but they also localize in Lp(a) negative area.

Table 1. Histopathologic Data

Total Plaque
Area (mm2)

% Lp(a)
Positive Area

% KP-1
Positive Area

% Alpha-Actin
Positive Area

% KP-1 Lp(a)
Overlap

% Alpha-Actin
Lp(a) Overlap

Stable angina (n 5 26) 5.9 6 0.8 47.7 6 4.9* 18.3 6 4.5† 48.5 6 6.8‡ 87.5 6 6.0 30.0 6 6.0
Crescendo exertional angina (n 5 18) 5.8 6 1.1 52.4 6 5.4* 24.9 6 7.2 48.8 6 5.4 87.9 6 4.4 30.6 6 5.9
Rest angina (n 5 28) 5.1 6 0.8 71.1 6 3.4* 31.2 6 4.7† 30.4 6 5.8‡ 92.2 6 3.1 34.9 6 6.6

*p , 0.001 by analysis of variance among the three groups with Tukey–Kramer correction for multiple comparisons; p for trend ,0.001. †Greater KP-1 positive
area in rest versus table angina (p 5 0.05). ‡Lower alpha-actin positive area in rest versus stable angina (p 5 0.02). Variables are expressed as mean 6 SEM.
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Lp(a) in the pathogenesis of atherosclerosis and the acute
coronary syndromes, and expand on prior in vitro findings on
the potential mechanisms of action of Lp(a) in the atheroscle-
rotic plaque.

In this study, apo(a) antigen was present in atheroma from
stable and unstable angina patients. Furthermore, of all the
specimens studied, 58.2 6 4.2% of total plaque area was
apo(a) positive, documenting that Lp(a) was a major compo-
nent of the atherosclerotic plaque in the studied population. A
murine monoclonal antibody directed against kringle IV type 2
repeats (a-6) located at the amino-terminal end of apo(a) was
used to confirm the specificity of the immunopurified rabbit
apo(a) antibody used to document localization of apo(a). Both
the monoclonal and the polyclonal apo(a) antibody stained
identical areas of the tissue sections (Fig. 1), indicating that the
polyclonal anti-apo(a) antibody reacted only with the apo(a)
antigen. Recent studies have shown that a variety of inflam-
matory proteolytic enzymes cleave the apo(a) portion of Lp(a)
into carboxy-terminal and amino-terminal domains (38,39).
Peripheral blood neutrophils have also been shown to cleave
Lp(a) into similar domains (39,40). Fragments from the
amino-terminal of apo(a) have been documented in both
human urine (41) and plasma (42), indicating that the frag-

mentation of apo(a) occurs in vivo. Our studies have shown
that human neutrophils and peripheral blood monocytes
cleave fibrin-bound Lp(a), releasing the amino-terminal por-
tion of apo(a) from the fibrin surface, whereas the carboxy-
terminal of apo(a) remained bound to fibrin (40). These
observations suggest that proteolysis by inflammatory cells may
be responsible for the fragmentation of apo(a) observed in
vivo.

The present study documents that the amino-terminal
portion of apo(a), as recognized by the monoclonal antibody
a-6, colocalized with the plaque areas stained by the polyclonal
anti-apo(a), indicating that this portion of the apo(a) remained
bound to the plaque, even if cleavage had occurred. The
staining of serial tissue sections with the a-40 murine mono-
clonal antibody, directed against the carboxy-terminal portion
of apo(a), colocalized with the a-6 positive staining, suggesting
that the apo(a) in the plaque was intact. The intensity of the
a-40 staining was weaker than that of the a-6 staining, and
there were areas that stained positive with a-6 and negative
with a-40. It is not clear whether this was due to hidden
epitopes in the carboxy-terminal portion of apo(a) unable to
react with the a-40 monoclonal antibody, or whether the
apo(a) was cleaved with loss of the carboxy-terminal portion of
the molecule.

Lesion histopathology and the clinical syndrome of presen-
tation. We also report for the first time a relationship between
the amount of Lp(a) in the atheromatous plaque and the
cardiac clinical syndrome. The fractional plaque Lp(a) area
was increased in severe unstable (rest) angina compared to
crescendo exertional angina and to stable angina (71.1 6 3.4%
. 52.4 6 5.4% . 47.7 6 4.9%, p , 0.001). Fractional plaque
apo(a) positive area was 58.2 6 4.2%, greater than the
fractional KP-1 positive area (25.1 6 4.2%). However, 90.1 6
4.2% of the KP-1 positive staining was localized on apo(a)
positive areas, which was significantly different than random
colocalization (p , 0.001). The KP-1/apo(a) overlap did not
differ significantly with the clinical syndromes. Additionally,
apo(a) area, not the clinical syndrome, was the most powerful
correlate of the plaque KP-1 area in our multivariate analysis.

The major etiology of acute coronary syndromes is localized
thrombus formation upon a disrupted or eroded plaque;
however, it is likely that most ruptured plaques heal endog-
enously, without clinical manifestation, and unstable angina
may also develop without plaque disruption or even thrombus
formation (27,43). We have previously reported that unstable
angina Braunwald class III (i.e., with rest pain within 48 h) is
associated with a higher incidence of angiographically complex
and thrombotic lesions compared to less severe unstable
angina syndromes (44). Within plaques from rest angina
patients, macrophages have been shown to accumulate close to
the fibrous caps and are thought to promote plaque disruption
(24). The mechanism by which macrophages accumulate in the
atherosclerotic plaque remains unknown.

According to the “response-to-injury” hypothesis, growth
factors and cytokines are secreted from dysfunctional vascular
endothelial cells, promoting increased adherence of circulating

Figure 3. Correlation between Lp(a) and KP-1 in rest angina (r2 5
0.77, p , 0.0001).

Figure 4. Correlation between Lp(a) and alpha-actin in crescendo
exertional angina (r2 5 0.38, p , 0.001).
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monocytes and T lymphocytes to the vessel wall (22). Lipopro-
tein(a) may induce the accumulation of monocytes/macrophages
in the plaque and thereby increase the propensity for plaque
rupture. The significant Lp(a)/macrophage colocalization, as well
as the strong correlation between plaque Lp(a) and macrophage
area, provide support to prior in vitro data that implicated the
apo(a) moiety of Lp(a) in monocyte chemoattraction (28). In
addition, after plaque rupture has occurred in these patients, the
lipid core of the plaque is exposed to flowing blood, and thrombus
formation occurs (43). Lipoprotein(a) may enhance local throm-
bogenicity by the competitive antagonism of apo(a) with plasmin-
ogen in cell membrane receptors, thereby inhibiting quiescent
endogenous fibrinolysis, and increasing the likelihood for devel-
opment of a severe acute clinical syndrome (12–17).

Prior in vitro reports have provided potential mechanisms
for the Lp(a)–macrophage interaction. Cultured macrophages
have been reported to acquire the ability to internalize Lp(a)
via an apo(a) receptor (45,46) different from the part of apo(a)
that antagonizes plasminogen (46); thus, association with
macrophage cell membrane may not preclude plasminogen
antagonism. Additionally, we have shown that the very low
density lipoprotein (VLDL) receptor can initiate the internal-
ization and degradation of Lp(a) in murine embryonic fibro-
blasts infected with human VLDL receptor complementary
DNA (36). It has also been demonstrated that the VLDL
receptor is found on vascular endothelium (47) and colocalizes
with foam cells in human atherosclerotic plaque tissue (36).
These studies suggest that cellular uptake of Lp(a), mediated
by the VLDL receptor, may contribute to the macrophage–
foam cell transformation.

The fact that the clinical classification was no longer a
significant correlate of the plaque macrophage infiltration
when plaque Lp(a) area was entered in the multivariable
statistical model may reflect the relative discrepancy between
pathologic events within the plaque and specific ischemic
symptomatology, that is, that the majority but not all patients
with acute coronary syndromes have a disrupted plaque
(37,48), and that a minority of stable angina patients may also
have a complex or disrupted lesion (49). The fact that Lp(a)
was the single statistically significant correlate of plaque mac-
rophage area suggests that plaques with high Lp(a) area had
the highest macrophage area, and these plaques may have
been the ones that produced plaque disruption with superim-
posed thrombosis, regardless of the severity of the clinical
presentation.

In the present study, Lp(a) area was associated with smooth
muscle cell actin stained area in plaque tissue from patients
with crescendo exertional angina. In this population there is
relatively low incidence of angiographically complex lesions
and intracoronary thrombus (44). In this subset of patients,
Lp(a) may have a role in the growth of atherosclerotic plaque
and the transformation from stable to unstable angina. The
association between the extent of Lp(a) and vascular smooth
muscle cell areas in crescendo exertional angina (Fig. 3), and a
31% colocalization is of interest since the VLDL receptor is
expressed on smooth muscle cells, as well as on endothelial

cells and macrophages (47,50). The colocalization of Lp(a)
with smooth muscle cells extends previous experimental obser-
vations concerning the modulation of transforming growth
factor-beta (TGF-beta). Lipoprotein(a) has been shown to
inhibit the formation of TGF-beta in a coculture of bovine
endothelial and smooth muscle cells by preventing the forma-
tion of cell surface–bound plasmin, an activator of latent
TGF-beta. Since TGF-beta deficiency promotes smooth mus-
cle cell migration, it was postulated that this mechanism might
occur in the vessel wall in vivo (31). Grainger et al, extended
these observations by demonstrating that Lp(a) stimulated
vascular smooth muscle cell proliferation in tissue culture (32).
Confirming evidence for the role of Lp(a) in vivo has been
provided by the finding that TGF-beta formation is inhibited
by apo(a) in the aorta of the human apo(a) transgenic mouse
by inhibiting activation of plasminogen to plasmin (32,51).

The possible effects of Lp(a) on vascular smooth muscle cell
proliferation and migration may be critical in coronary athero-
sclerotic plaque growth (52), progressive luminal narrowing
and the development of accelerated ischemic symptoms even
in the absence of plaque disruption or thrombus formation
(53).

Conclusions. In summary, we report that Lp(a) is an
extensive component of the human coronary atherosclerotic
plaque of living patients. This is the first description of an
association of plaque Lp(a) area with the clinical syndrome of
unstable angina. We also found that plaque Lp(a) correlates
with the amount and location of macrophage infiltration, and
that plaque Lp(a) area is associated with the extent of smooth
muscle cell area in crescendo exertional angina patients. Our
findings provide support of an in vivo role of Lp(a) in the
atherosclerotic plaque and the development of acute coronary
syndromes.

Limitations. Antithrombotic therapy prior to DCA may
have altered plaque composition; however, the routine practice
in our hospital of performing early intervention within 48 h
of admission provides a rather uniform time frame for DCA
specimen collection in all patients. With respect to unstable
angina, only specimens from culprit lesions, as determined
by the operator and based on established criteria (44,49),
were included in this study. Analysis of nonculprit lesions
might have offered an additional control group. Studies of
artherectomy specimens are always subject to sampling error
of the removed tissue. In the present study, blood Lp(a)
levels were not provided for a correlation of plaque Lp(a)
area with the blood Lp(a) level. With respect to smooth
muscle cells, alpha-actin staining may underestimate their
presence in the atherosclerotic plaque, since when these
cells proliferate they change from the contractile to the
proliferative phenotype.

We would like to thank Veronica E. Gulle for expert laboratory assistance.
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